blob: 9ad1c48c71a5bf34d5e9a2939aa77e5701edcbe1 [file] [log] [blame]
/*
* Copyright 2004-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* This file uses the low level AES and engine functions (which are deprecated
* for non-internal use) in order to implement the padlock engine AES ciphers.
*/
#define OPENSSL_SUPPRESS_DEPRECATED
#include <stdio.h>
#include <string.h>
#include <openssl/opensslconf.h>
#include <openssl/crypto.h>
#include <openssl/engine.h>
#include <openssl/evp.h>
#include <openssl/aes.h>
#include <openssl/rand.h>
#include <openssl/err.h>
#include <openssl/modes.h>
#ifndef OPENSSL_NO_PADLOCKENG
/*
* VIA PadLock AES is available *ONLY* on some x86 CPUs. Not only that it
* doesn't exist elsewhere, but it even can't be compiled on other platforms!
*/
# undef COMPILE_PADLOCKENG
# if defined(PADLOCK_ASM)
# define COMPILE_PADLOCKENG
# ifdef OPENSSL_NO_DYNAMIC_ENGINE
static ENGINE *ENGINE_padlock(void);
# endif
# endif
# ifdef OPENSSL_NO_DYNAMIC_ENGINE
void engine_load_padlock_int(void);
void engine_load_padlock_int(void)
{
/* On non-x86 CPUs it just returns. */
# ifdef COMPILE_PADLOCKENG
ENGINE *toadd = ENGINE_padlock();
if (!toadd)
return;
ERR_set_mark();
ENGINE_add(toadd);
/*
* If the "add" worked, it gets a structural reference. So either way, we
* release our just-created reference.
*/
ENGINE_free(toadd);
/*
* If the "add" didn't work, it was probably a conflict because it was
* already added (eg. someone calling ENGINE_load_blah then calling
* ENGINE_load_builtin_engines() perhaps).
*/
ERR_pop_to_mark();
# endif
}
# endif
# ifdef COMPILE_PADLOCKENG
/* Function for ENGINE detection and control */
static int padlock_available(void);
static int padlock_init(ENGINE *e);
/* RNG Stuff */
static RAND_METHOD padlock_rand;
/* Cipher Stuff */
static int padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
const int **nids, int nid);
/* Engine names */
static const char *padlock_id = "padlock";
static char padlock_name[100];
/* Available features */
static int padlock_use_ace = 0; /* Advanced Cryptography Engine */
static int padlock_use_rng = 0; /* Random Number Generator */
/* ===== Engine "management" functions ===== */
/* Prepare the ENGINE structure for registration */
static int padlock_bind_helper(ENGINE *e)
{
/* Check available features */
padlock_available();
/*
* RNG is currently disabled for reasons discussed in commentary just
* before padlock_rand_bytes function.
*/
padlock_use_rng = 0;
/* Generate a nice engine name with available features */
BIO_snprintf(padlock_name, sizeof(padlock_name),
"VIA PadLock (%s, %s)",
padlock_use_rng ? "RNG" : "no-RNG",
padlock_use_ace ? "ACE" : "no-ACE");
/* Register everything or return with an error */
if (!ENGINE_set_id(e, padlock_id) ||
!ENGINE_set_name(e, padlock_name) ||
!ENGINE_set_init_function(e, padlock_init) ||
(padlock_use_ace && !ENGINE_set_ciphers(e, padlock_ciphers)) ||
(padlock_use_rng && !ENGINE_set_RAND(e, &padlock_rand))) {
return 0;
}
/* Everything looks good */
return 1;
}
# ifdef OPENSSL_NO_DYNAMIC_ENGINE
/* Constructor */
static ENGINE *ENGINE_padlock(void)
{
ENGINE *eng = ENGINE_new();
if (eng == NULL) {
return NULL;
}
if (!padlock_bind_helper(eng)) {
ENGINE_free(eng);
return NULL;
}
return eng;
}
# endif
/* Check availability of the engine */
static int padlock_init(ENGINE *e)
{
return (padlock_use_rng || padlock_use_ace);
}
/*
* This stuff is needed if this ENGINE is being compiled into a
* self-contained shared-library.
*/
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
static int padlock_bind_fn(ENGINE *e, const char *id)
{
if (id && (strcmp(id, padlock_id) != 0)) {
return 0;
}
if (!padlock_bind_helper(e)) {
return 0;
}
return 1;
}
IMPLEMENT_DYNAMIC_CHECK_FN()
IMPLEMENT_DYNAMIC_BIND_FN(padlock_bind_fn)
# endif /* !OPENSSL_NO_DYNAMIC_ENGINE */
/* ===== Here comes the "real" engine ===== */
/* Some AES-related constants */
# define AES_BLOCK_SIZE 16
# define AES_KEY_SIZE_128 16
# define AES_KEY_SIZE_192 24
# define AES_KEY_SIZE_256 32
/*
* Here we store the status information relevant to the current context.
*/
/*
* BIG FAT WARNING: Inline assembler in PADLOCK_XCRYPT_ASM() depends on
* the order of items in this structure. Don't blindly modify, reorder,
* etc!
*/
struct padlock_cipher_data {
unsigned char iv[AES_BLOCK_SIZE]; /* Initialization vector */
union {
unsigned int pad[4];
struct {
int rounds:4;
int dgst:1; /* n/a in C3 */
int align:1; /* n/a in C3 */
int ciphr:1; /* n/a in C3 */
unsigned int keygen:1;
int interm:1;
unsigned int encdec:1;
int ksize:2;
} b;
} cword; /* Control word */
AES_KEY ks; /* Encryption key */
};
/* Interface to assembler module */
unsigned int padlock_capability(void);
void padlock_key_bswap(AES_KEY *key);
void padlock_verify_context(struct padlock_cipher_data *ctx);
void padlock_reload_key(void);
void padlock_aes_block(void *out, const void *inp,
struct padlock_cipher_data *ctx);
int padlock_ecb_encrypt(void *out, const void *inp,
struct padlock_cipher_data *ctx, size_t len);
int padlock_cbc_encrypt(void *out, const void *inp,
struct padlock_cipher_data *ctx, size_t len);
int padlock_cfb_encrypt(void *out, const void *inp,
struct padlock_cipher_data *ctx, size_t len);
int padlock_ofb_encrypt(void *out, const void *inp,
struct padlock_cipher_data *ctx, size_t len);
int padlock_ctr32_encrypt(void *out, const void *inp,
struct padlock_cipher_data *ctx, size_t len);
int padlock_xstore(void *out, int edx);
void padlock_sha1_oneshot(void *ctx, const void *inp, size_t len);
void padlock_sha1(void *ctx, const void *inp, size_t len);
void padlock_sha256_oneshot(void *ctx, const void *inp, size_t len);
void padlock_sha256(void *ctx, const void *inp, size_t len);
/*
* Load supported features of the CPU to see if the PadLock is available.
*/
static int padlock_available(void)
{
unsigned int edx = padlock_capability();
/* Fill up some flags */
padlock_use_ace = ((edx & (0x3 << 6)) == (0x3 << 6));
padlock_use_rng = ((edx & (0x3 << 2)) == (0x3 << 2));
return padlock_use_ace + padlock_use_rng;
}
/* ===== AES encryption/decryption ===== */
# if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb)
# define NID_aes_128_cfb NID_aes_128_cfb128
# endif
# if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb)
# define NID_aes_128_ofb NID_aes_128_ofb128
# endif
# if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb)
# define NID_aes_192_cfb NID_aes_192_cfb128
# endif
# if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb)
# define NID_aes_192_ofb NID_aes_192_ofb128
# endif
# if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb)
# define NID_aes_256_cfb NID_aes_256_cfb128
# endif
# if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb)
# define NID_aes_256_ofb NID_aes_256_ofb128
# endif
/* List of supported ciphers. */
static const int padlock_cipher_nids[] = {
NID_aes_128_ecb,
NID_aes_128_cbc,
NID_aes_128_cfb,
NID_aes_128_ofb,
NID_aes_128_ctr,
NID_aes_192_ecb,
NID_aes_192_cbc,
NID_aes_192_cfb,
NID_aes_192_ofb,
NID_aes_192_ctr,
NID_aes_256_ecb,
NID_aes_256_cbc,
NID_aes_256_cfb,
NID_aes_256_ofb,
NID_aes_256_ctr
};
static int padlock_cipher_nids_num = (sizeof(padlock_cipher_nids) /
sizeof(padlock_cipher_nids[0]));
/* Function prototypes ... */
static int padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc);
# define NEAREST_ALIGNED(ptr) ( (unsigned char *)(ptr) + \
( (0x10 - ((size_t)(ptr) & 0x0F)) & 0x0F ) )
# define ALIGNED_CIPHER_DATA(ctx) ((struct padlock_cipher_data *)\
NEAREST_ALIGNED(EVP_CIPHER_CTX_get_cipher_data(ctx)))
static int
padlock_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
const unsigned char *in_arg, size_t nbytes)
{
return padlock_ecb_encrypt(out_arg, in_arg,
ALIGNED_CIPHER_DATA(ctx), nbytes);
}
static int
padlock_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
const unsigned char *in_arg, size_t nbytes)
{
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
int ret;
memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
if ((ret = padlock_cbc_encrypt(out_arg, in_arg, cdata, nbytes)))
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
return ret;
}
static int
padlock_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
const unsigned char *in_arg, size_t nbytes)
{
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
size_t chunk;
if ((chunk = EVP_CIPHER_CTX_get_num(ctx))) { /* borrow chunk variable */
unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx);
if (chunk >= AES_BLOCK_SIZE)
return 0; /* bogus value */
if (EVP_CIPHER_CTX_is_encrypting(ctx))
while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
ivp[chunk] = *(out_arg++) = *(in_arg++) ^ ivp[chunk];
chunk++, nbytes--;
} else
while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
unsigned char c = *(in_arg++);
*(out_arg++) = c ^ ivp[chunk];
ivp[chunk++] = c, nbytes--;
}
EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE);
}
if (nbytes == 0)
return 1;
memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) {
if (!padlock_cfb_encrypt(out_arg, in_arg, cdata, chunk))
return 0;
nbytes -= chunk;
}
if (nbytes) {
unsigned char *ivp = cdata->iv;
out_arg += chunk;
in_arg += chunk;
EVP_CIPHER_CTX_set_num(ctx, nbytes);
if (cdata->cword.b.encdec) {
cdata->cword.b.encdec = 0;
padlock_reload_key();
padlock_aes_block(ivp, ivp, cdata);
cdata->cword.b.encdec = 1;
padlock_reload_key();
while (nbytes) {
unsigned char c = *(in_arg++);
*(out_arg++) = c ^ *ivp;
*(ivp++) = c, nbytes--;
}
} else {
padlock_reload_key();
padlock_aes_block(ivp, ivp, cdata);
padlock_reload_key();
while (nbytes) {
*ivp = *(out_arg++) = *(in_arg++) ^ *ivp;
ivp++, nbytes--;
}
}
}
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
return 1;
}
static int
padlock_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
const unsigned char *in_arg, size_t nbytes)
{
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
size_t chunk;
/*
* ctx->num is maintained in byte-oriented modes, such as CFB and OFB...
*/
if ((chunk = EVP_CIPHER_CTX_get_num(ctx))) { /* borrow chunk variable */
unsigned char *ivp = EVP_CIPHER_CTX_iv_noconst(ctx);
if (chunk >= AES_BLOCK_SIZE)
return 0; /* bogus value */
while (chunk < AES_BLOCK_SIZE && nbytes != 0) {
*(out_arg++) = *(in_arg++) ^ ivp[chunk];
chunk++, nbytes--;
}
EVP_CIPHER_CTX_set_num(ctx, chunk % AES_BLOCK_SIZE);
}
if (nbytes == 0)
return 1;
memcpy(cdata->iv, EVP_CIPHER_CTX_iv(ctx), AES_BLOCK_SIZE);
if ((chunk = nbytes & ~(AES_BLOCK_SIZE - 1))) {
if (!padlock_ofb_encrypt(out_arg, in_arg, cdata, chunk))
return 0;
nbytes -= chunk;
}
if (nbytes) {
unsigned char *ivp = cdata->iv;
out_arg += chunk;
in_arg += chunk;
EVP_CIPHER_CTX_set_num(ctx, nbytes);
padlock_reload_key(); /* empirically found */
padlock_aes_block(ivp, ivp, cdata);
padlock_reload_key(); /* empirically found */
while (nbytes) {
*(out_arg++) = *(in_arg++) ^ *ivp;
ivp++, nbytes--;
}
}
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), cdata->iv, AES_BLOCK_SIZE);
return 1;
}
static void padlock_ctr32_encrypt_glue(const unsigned char *in,
unsigned char *out, size_t blocks,
struct padlock_cipher_data *ctx,
const unsigned char *ivec)
{
memcpy(ctx->iv, ivec, AES_BLOCK_SIZE);
padlock_ctr32_encrypt(out, in, ctx, AES_BLOCK_SIZE * blocks);
}
static int
padlock_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg,
const unsigned char *in_arg, size_t nbytes)
{
struct padlock_cipher_data *cdata = ALIGNED_CIPHER_DATA(ctx);
int n = EVP_CIPHER_CTX_get_num(ctx);
unsigned int num;
if (n < 0)
return 0;
num = (unsigned int)n;
CRYPTO_ctr128_encrypt_ctr32(in_arg, out_arg, nbytes,
cdata, EVP_CIPHER_CTX_iv_noconst(ctx),
EVP_CIPHER_CTX_buf_noconst(ctx), &num,
(ctr128_f) padlock_ctr32_encrypt_glue);
EVP_CIPHER_CTX_set_num(ctx, (size_t)num);
return 1;
}
# define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE
# define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE
# define EVP_CIPHER_block_size_OFB 1
# define EVP_CIPHER_block_size_CFB 1
# define EVP_CIPHER_block_size_CTR 1
/*
* Declaring so many ciphers by hand would be a pain. Instead introduce a bit
* of preprocessor magic :-)
*/
# define DECLARE_AES_EVP(ksize,lmode,umode) \
static EVP_CIPHER *_hidden_aes_##ksize##_##lmode = NULL; \
static const EVP_CIPHER *padlock_aes_##ksize##_##lmode(void) \
{ \
if (_hidden_aes_##ksize##_##lmode == NULL \
&& ((_hidden_aes_##ksize##_##lmode = \
EVP_CIPHER_meth_new(NID_aes_##ksize##_##lmode, \
EVP_CIPHER_block_size_##umode, \
AES_KEY_SIZE_##ksize)) == NULL \
|| !EVP_CIPHER_meth_set_iv_length(_hidden_aes_##ksize##_##lmode, \
AES_BLOCK_SIZE) \
|| !EVP_CIPHER_meth_set_flags(_hidden_aes_##ksize##_##lmode, \
0 | EVP_CIPH_##umode##_MODE) \
|| !EVP_CIPHER_meth_set_init(_hidden_aes_##ksize##_##lmode, \
padlock_aes_init_key) \
|| !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_##ksize##_##lmode, \
padlock_##lmode##_cipher) \
|| !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_##ksize##_##lmode, \
sizeof(struct padlock_cipher_data) + 16) \
|| !EVP_CIPHER_meth_set_set_asn1_params(_hidden_aes_##ksize##_##lmode, \
EVP_CIPHER_set_asn1_iv) \
|| !EVP_CIPHER_meth_set_get_asn1_params(_hidden_aes_##ksize##_##lmode, \
EVP_CIPHER_get_asn1_iv))) { \
EVP_CIPHER_meth_free(_hidden_aes_##ksize##_##lmode); \
_hidden_aes_##ksize##_##lmode = NULL; \
} \
return _hidden_aes_##ksize##_##lmode; \
}
DECLARE_AES_EVP(128, ecb, ECB)
DECLARE_AES_EVP(128, cbc, CBC)
DECLARE_AES_EVP(128, cfb, CFB)
DECLARE_AES_EVP(128, ofb, OFB)
DECLARE_AES_EVP(128, ctr, CTR)
DECLARE_AES_EVP(192, ecb, ECB)
DECLARE_AES_EVP(192, cbc, CBC)
DECLARE_AES_EVP(192, cfb, CFB)
DECLARE_AES_EVP(192, ofb, OFB)
DECLARE_AES_EVP(192, ctr, CTR)
DECLARE_AES_EVP(256, ecb, ECB)
DECLARE_AES_EVP(256, cbc, CBC)
DECLARE_AES_EVP(256, cfb, CFB)
DECLARE_AES_EVP(256, ofb, OFB)
DECLARE_AES_EVP(256, ctr, CTR)
static int
padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids,
int nid)
{
/* No specific cipher => return a list of supported nids ... */
if (!cipher) {
*nids = padlock_cipher_nids;
return padlock_cipher_nids_num;
}
/* ... or the requested "cipher" otherwise */
switch (nid) {
case NID_aes_128_ecb:
*cipher = padlock_aes_128_ecb();
break;
case NID_aes_128_cbc:
*cipher = padlock_aes_128_cbc();
break;
case NID_aes_128_cfb:
*cipher = padlock_aes_128_cfb();
break;
case NID_aes_128_ofb:
*cipher = padlock_aes_128_ofb();
break;
case NID_aes_128_ctr:
*cipher = padlock_aes_128_ctr();
break;
case NID_aes_192_ecb:
*cipher = padlock_aes_192_ecb();
break;
case NID_aes_192_cbc:
*cipher = padlock_aes_192_cbc();
break;
case NID_aes_192_cfb:
*cipher = padlock_aes_192_cfb();
break;
case NID_aes_192_ofb:
*cipher = padlock_aes_192_ofb();
break;
case NID_aes_192_ctr:
*cipher = padlock_aes_192_ctr();
break;
case NID_aes_256_ecb:
*cipher = padlock_aes_256_ecb();
break;
case NID_aes_256_cbc:
*cipher = padlock_aes_256_cbc();
break;
case NID_aes_256_cfb:
*cipher = padlock_aes_256_cfb();
break;
case NID_aes_256_ofb:
*cipher = padlock_aes_256_ofb();
break;
case NID_aes_256_ctr:
*cipher = padlock_aes_256_ctr();
break;
default:
/* Sorry, we don't support this NID */
*cipher = NULL;
return 0;
}
return 1;
}
/* Prepare the encryption key for PadLock usage */
static int
padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
struct padlock_cipher_data *cdata;
int key_len = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
unsigned long mode = EVP_CIPHER_CTX_get_mode(ctx);
if (key == NULL)
return 0; /* ERROR */
cdata = ALIGNED_CIPHER_DATA(ctx);
memset(cdata, 0, sizeof(*cdata));
/* Prepare Control word. */
if (mode == EVP_CIPH_OFB_MODE || mode == EVP_CIPH_CTR_MODE)
cdata->cword.b.encdec = 0;
else
cdata->cword.b.encdec = (EVP_CIPHER_CTX_is_encrypting(ctx) == 0);
cdata->cword.b.rounds = 10 + (key_len - 128) / 32;
cdata->cword.b.ksize = (key_len - 128) / 64;
switch (key_len) {
case 128:
/*
* PadLock can generate an extended key for AES128 in hardware
*/
memcpy(cdata->ks.rd_key, key, AES_KEY_SIZE_128);
cdata->cword.b.keygen = 0;
break;
case 192:
case 256:
/*
* Generate an extended AES key in software. Needed for AES192/AES256
*/
/*
* Well, the above applies to Stepping 8 CPUs and is listed as
* hardware errata. They most likely will fix it at some point and
* then a check for stepping would be due here.
*/
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
&& !enc)
AES_set_decrypt_key(key, key_len, &cdata->ks);
else
AES_set_encrypt_key(key, key_len, &cdata->ks);
# ifndef AES_ASM
/*
* OpenSSL C functions use byte-swapped extended key.
*/
padlock_key_bswap(&cdata->ks);
# endif
cdata->cword.b.keygen = 1;
break;
default:
/* ERROR */
return 0;
}
/*
* This is done to cover for cases when user reuses the
* context for new key. The catch is that if we don't do
* this, padlock_eas_cipher might proceed with old key...
*/
padlock_reload_key();
return 1;
}
/* ===== Random Number Generator ===== */
/*
* This code is not engaged. The reason is that it does not comply
* with recommendations for VIA RNG usage for secure applications
* (posted at http://www.via.com.tw/en/viac3/c3.jsp) nor does it
* provide meaningful error control...
*/
/*
* Wrapper that provides an interface between the API and the raw PadLock
* RNG
*/
static int padlock_rand_bytes(unsigned char *output, int count)
{
unsigned int eax, buf;
while (count >= 8) {
eax = padlock_xstore(output, 0);
if (!(eax & (1 << 6)))
return 0; /* RNG disabled */
/* this ---vv--- covers DC bias, Raw Bits and String Filter */
if (eax & (0x1F << 10))
return 0;
if ((eax & 0x1F) == 0)
continue; /* no data, retry... */
if ((eax & 0x1F) != 8)
return 0; /* fatal failure... */
output += 8;
count -= 8;
}
while (count > 0) {
eax = padlock_xstore(&buf, 3);
if (!(eax & (1 << 6)))
return 0; /* RNG disabled */
/* this ---vv--- covers DC bias, Raw Bits and String Filter */
if (eax & (0x1F << 10))
return 0;
if ((eax & 0x1F) == 0)
continue; /* no data, retry... */
if ((eax & 0x1F) != 1)
return 0; /* fatal failure... */
*output++ = (unsigned char)buf;
count--;
}
OPENSSL_cleanse(&buf, sizeof(buf));
return 1;
}
/* Dummy but necessary function */
static int padlock_rand_status(void)
{
return 1;
}
/* Prepare structure for registration */
static RAND_METHOD padlock_rand = {
NULL, /* seed */
padlock_rand_bytes, /* bytes */
NULL, /* cleanup */
NULL, /* add */
padlock_rand_bytes, /* pseudorand */
padlock_rand_status, /* rand status */
};
# endif /* COMPILE_PADLOCKENG */
#endif /* !OPENSSL_NO_PADLOCKENG */
#if defined(OPENSSL_NO_PADLOCKENG) || !defined(COMPILE_PADLOCKENG)
# ifndef OPENSSL_NO_DYNAMIC_ENGINE
OPENSSL_EXPORT
int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns);
OPENSSL_EXPORT
int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns)
{
return 0;
}
IMPLEMENT_DYNAMIC_CHECK_FN()
# endif
#endif