| /* ==================================================================== | 
 |  * Copyright (c) 2010 The OpenSSL Project.  All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer.  | 
 |  * | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * 3. All advertising materials mentioning features or use of this | 
 |  *    software must display the following acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
 |  * | 
 |  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
 |  *    endorse or promote products derived from this software without | 
 |  *    prior written permission. For written permission, please contact | 
 |  *    openssl-core@openssl.org. | 
 |  * | 
 |  * 5. Products derived from this software may not be called "OpenSSL" | 
 |  *    nor may "OpenSSL" appear in their names without prior written | 
 |  *    permission of the OpenSSL Project. | 
 |  * | 
 |  * 6. Redistributions of any form whatsoever must retain the following | 
 |  *    acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
 |  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
 |  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
 |  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
 |  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 |  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
 |  * OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * ==================================================================== | 
 |  */ | 
 |  | 
 | #define OPENSSL_FIPSAPI | 
 |  | 
 | #include <openssl/crypto.h> | 
 | #include "modes_lcl.h" | 
 | #include <string.h> | 
 |  | 
 | #ifndef MODES_DEBUG | 
 | # ifndef NDEBUG | 
 | #  define NDEBUG | 
 | # endif | 
 | #endif | 
 | #include <assert.h> | 
 |  | 
 | #if defined(BSWAP4) && defined(STRICT_ALIGNMENT) | 
 | /* redefine, because alignment is ensured */ | 
 | #undef	GETU32 | 
 | #define	GETU32(p)	BSWAP4(*(const u32 *)(p)) | 
 | #undef	PUTU32 | 
 | #define	PUTU32(p,v)	*(u32 *)(p) = BSWAP4(v) | 
 | #endif | 
 |  | 
 | #define	PACK(s)		((size_t)(s)<<(sizeof(size_t)*8-16)) | 
 | #define REDUCE1BIT(V)	do { \ | 
 | 	if (sizeof(size_t)==8) { \ | 
 | 		u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \ | 
 | 		V.lo  = (V.hi<<63)|(V.lo>>1); \ | 
 | 		V.hi  = (V.hi>>1 )^T; \ | 
 | 	} \ | 
 | 	else { \ | 
 | 		u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \ | 
 | 		V.lo  = (V.hi<<63)|(V.lo>>1); \ | 
 | 		V.hi  = (V.hi>>1 )^((u64)T<<32); \ | 
 | 	} \ | 
 | } while(0) | 
 |  | 
 | /* | 
 |  * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should | 
 |  * never be set to 8. 8 is effectively reserved for testing purposes. | 
 |  * TABLE_BITS>1 are lookup-table-driven implementations referred to as | 
 |  * "Shoup's" in GCM specification. In other words OpenSSL does not cover | 
 |  * whole spectrum of possible table driven implementations. Why? In | 
 |  * non-"Shoup's" case memory access pattern is segmented in such manner, | 
 |  * that it's trivial to see that cache timing information can reveal | 
 |  * fair portion of intermediate hash value. Given that ciphertext is | 
 |  * always available to attacker, it's possible for him to attempt to | 
 |  * deduce secret parameter H and if successful, tamper with messages | 
 |  * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's | 
 |  * not as trivial, but there is no reason to believe that it's resistant | 
 |  * to cache-timing attack. And the thing about "8-bit" implementation is | 
 |  * that it consumes 16 (sixteen) times more memory, 4KB per individual | 
 |  * key + 1KB shared. Well, on pros side it should be twice as fast as | 
 |  * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version | 
 |  * was observed to run ~75% faster, closer to 100% for commercial | 
 |  * compilers... Yet "4-bit" procedure is preferred, because it's | 
 |  * believed to provide better security-performance balance and adequate | 
 |  * all-round performance. "All-round" refers to things like: | 
 |  * | 
 |  * - shorter setup time effectively improves overall timing for | 
 |  *   handling short messages; | 
 |  * - larger table allocation can become unbearable because of VM | 
 |  *   subsystem penalties (for example on Windows large enough free | 
 |  *   results in VM working set trimming, meaning that consequent | 
 |  *   malloc would immediately incur working set expansion); | 
 |  * - larger table has larger cache footprint, which can affect | 
 |  *   performance of other code paths (not necessarily even from same | 
 |  *   thread in Hyper-Threading world); | 
 |  * | 
 |  * Value of 1 is not appropriate for performance reasons. | 
 |  */ | 
 | #if	TABLE_BITS==8 | 
 |  | 
 | static void gcm_init_8bit(u128 Htable[256], u64 H[2]) | 
 | { | 
 | 	int  i, j; | 
 | 	u128 V; | 
 |  | 
 | 	Htable[0].hi = 0; | 
 | 	Htable[0].lo = 0; | 
 | 	V.hi = H[0]; | 
 | 	V.lo = H[1]; | 
 |  | 
 | 	for (Htable[128]=V, i=64; i>0; i>>=1) { | 
 | 		REDUCE1BIT(V); | 
 | 		Htable[i] = V; | 
 | 	} | 
 |  | 
 | 	for (i=2; i<256; i<<=1) { | 
 | 		u128 *Hi = Htable+i, H0 = *Hi; | 
 | 		for (j=1; j<i; ++j) { | 
 | 			Hi[j].hi = H0.hi^Htable[j].hi; | 
 | 			Hi[j].lo = H0.lo^Htable[j].lo; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256]) | 
 | { | 
 | 	u128 Z = { 0, 0}; | 
 | 	const u8 *xi = (const u8 *)Xi+15; | 
 | 	size_t rem, n = *xi; | 
 | 	const union { long one; char little; } is_endian = {1}; | 
 | 	__fips_constseg | 
 | 	static const size_t rem_8bit[256] = { | 
 | 		PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246), | 
 | 		PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E), | 
 | 		PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56), | 
 | 		PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E), | 
 | 		PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66), | 
 | 		PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E), | 
 | 		PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076), | 
 | 		PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E), | 
 | 		PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06), | 
 | 		PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E), | 
 | 		PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416), | 
 | 		PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E), | 
 | 		PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626), | 
 | 		PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E), | 
 | 		PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836), | 
 | 		PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E), | 
 | 		PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6), | 
 | 		PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE), | 
 | 		PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6), | 
 | 		PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE), | 
 | 		PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6), | 
 | 		PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE), | 
 | 		PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6), | 
 | 		PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE), | 
 | 		PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86), | 
 | 		PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E), | 
 | 		PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496), | 
 | 		PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E), | 
 | 		PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6), | 
 | 		PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE), | 
 | 		PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6), | 
 | 		PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE), | 
 | 		PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346), | 
 | 		PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E), | 
 | 		PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56), | 
 | 		PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E), | 
 | 		PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66), | 
 | 		PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E), | 
 | 		PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176), | 
 | 		PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E), | 
 | 		PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06), | 
 | 		PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E), | 
 | 		PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516), | 
 | 		PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E), | 
 | 		PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726), | 
 | 		PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E), | 
 | 		PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936), | 
 | 		PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E), | 
 | 		PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6), | 
 | 		PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE), | 
 | 		PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6), | 
 | 		PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE), | 
 | 		PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6), | 
 | 		PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE), | 
 | 		PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6), | 
 | 		PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE), | 
 | 		PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86), | 
 | 		PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E), | 
 | 		PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596), | 
 | 		PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E), | 
 | 		PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6), | 
 | 		PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE), | 
 | 		PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6), | 
 | 		PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE) }; | 
 |  | 
 | 	while (1) { | 
 | 		Z.hi ^= Htable[n].hi; | 
 | 		Z.lo ^= Htable[n].lo; | 
 |  | 
 | 		if ((u8 *)Xi==xi)	break; | 
 |  | 
 | 		n = *(--xi); | 
 |  | 
 | 		rem  = (size_t)Z.lo&0xff; | 
 | 		Z.lo = (Z.hi<<56)|(Z.lo>>8); | 
 | 		Z.hi = (Z.hi>>8); | 
 | 		if (sizeof(size_t)==8) | 
 | 			Z.hi ^= rem_8bit[rem]; | 
 | 		else | 
 | 			Z.hi ^= (u64)rem_8bit[rem]<<32; | 
 | 	} | 
 |  | 
 | 	if (is_endian.little) { | 
 | #ifdef BSWAP8 | 
 | 		Xi[0] = BSWAP8(Z.hi); | 
 | 		Xi[1] = BSWAP8(Z.lo); | 
 | #else | 
 | 		u8 *p = (u8 *)Xi; | 
 | 		u32 v; | 
 | 		v = (u32)(Z.hi>>32);	PUTU32(p,v); | 
 | 		v = (u32)(Z.hi);	PUTU32(p+4,v); | 
 | 		v = (u32)(Z.lo>>32);	PUTU32(p+8,v); | 
 | 		v = (u32)(Z.lo);	PUTU32(p+12,v); | 
 | #endif | 
 | 	} | 
 | 	else { | 
 | 		Xi[0] = Z.hi; | 
 | 		Xi[1] = Z.lo; | 
 | 	} | 
 | } | 
 | #define GCM_MUL(ctx,Xi)   gcm_gmult_8bit(ctx->Xi.u,ctx->Htable) | 
 |  | 
 | #elif	TABLE_BITS==4 | 
 |  | 
 | static void gcm_init_4bit(u128 Htable[16], u64 H[2]) | 
 | { | 
 | 	u128 V; | 
 | #if defined(OPENSSL_SMALL_FOOTPRINT) | 
 | 	int  i; | 
 | #endif | 
 |  | 
 | 	Htable[0].hi = 0; | 
 | 	Htable[0].lo = 0; | 
 | 	V.hi = H[0]; | 
 | 	V.lo = H[1]; | 
 |  | 
 | #if defined(OPENSSL_SMALL_FOOTPRINT) | 
 | 	for (Htable[8]=V, i=4; i>0; i>>=1) { | 
 | 		REDUCE1BIT(V); | 
 | 		Htable[i] = V; | 
 | 	} | 
 |  | 
 | 	for (i=2; i<16; i<<=1) { | 
 | 		u128 *Hi = Htable+i; | 
 | 		int   j; | 
 | 		for (V=*Hi, j=1; j<i; ++j) { | 
 | 			Hi[j].hi = V.hi^Htable[j].hi; | 
 | 			Hi[j].lo = V.lo^Htable[j].lo; | 
 | 		} | 
 | 	} | 
 | #else | 
 | 	Htable[8] = V; | 
 | 	REDUCE1BIT(V); | 
 | 	Htable[4] = V; | 
 | 	REDUCE1BIT(V); | 
 | 	Htable[2] = V; | 
 | 	REDUCE1BIT(V); | 
 | 	Htable[1] = V; | 
 | 	Htable[3].hi  = V.hi^Htable[2].hi, Htable[3].lo  = V.lo^Htable[2].lo; | 
 | 	V=Htable[4]; | 
 | 	Htable[5].hi  = V.hi^Htable[1].hi, Htable[5].lo  = V.lo^Htable[1].lo; | 
 | 	Htable[6].hi  = V.hi^Htable[2].hi, Htable[6].lo  = V.lo^Htable[2].lo; | 
 | 	Htable[7].hi  = V.hi^Htable[3].hi, Htable[7].lo  = V.lo^Htable[3].lo; | 
 | 	V=Htable[8]; | 
 | 	Htable[9].hi  = V.hi^Htable[1].hi, Htable[9].lo  = V.lo^Htable[1].lo; | 
 | 	Htable[10].hi = V.hi^Htable[2].hi, Htable[10].lo = V.lo^Htable[2].lo; | 
 | 	Htable[11].hi = V.hi^Htable[3].hi, Htable[11].lo = V.lo^Htable[3].lo; | 
 | 	Htable[12].hi = V.hi^Htable[4].hi, Htable[12].lo = V.lo^Htable[4].lo; | 
 | 	Htable[13].hi = V.hi^Htable[5].hi, Htable[13].lo = V.lo^Htable[5].lo; | 
 | 	Htable[14].hi = V.hi^Htable[6].hi, Htable[14].lo = V.lo^Htable[6].lo; | 
 | 	Htable[15].hi = V.hi^Htable[7].hi, Htable[15].lo = V.lo^Htable[7].lo; | 
 | #endif | 
 | #if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) | 
 | 	/* | 
 | 	 * ARM assembler expects specific dword order in Htable. | 
 | 	 */ | 
 | 	{ | 
 | 	int j; | 
 | 	const union { long one; char little; } is_endian = {1}; | 
 |  | 
 | 	if (is_endian.little) | 
 | 		for (j=0;j<16;++j) { | 
 | 			V = Htable[j]; | 
 | 			Htable[j].hi = V.lo; | 
 | 			Htable[j].lo = V.hi; | 
 | 		} | 
 | 	else | 
 | 		for (j=0;j<16;++j) { | 
 | 			V = Htable[j]; | 
 | 			Htable[j].hi = V.lo<<32|V.lo>>32; | 
 | 			Htable[j].lo = V.hi<<32|V.hi>>32; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | #ifndef GHASH_ASM | 
 | __fips_constseg | 
 | static const size_t rem_4bit[16] = { | 
 | 	PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), | 
 | 	PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), | 
 | 	PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), | 
 | 	PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) }; | 
 |  | 
 | static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) | 
 | { | 
 | 	u128 Z; | 
 | 	int cnt = 15; | 
 | 	size_t rem, nlo, nhi; | 
 | 	const union { long one; char little; } is_endian = {1}; | 
 |  | 
 | 	nlo  = ((const u8 *)Xi)[15]; | 
 | 	nhi  = nlo>>4; | 
 | 	nlo &= 0xf; | 
 |  | 
 | 	Z.hi = Htable[nlo].hi; | 
 | 	Z.lo = Htable[nlo].lo; | 
 |  | 
 | 	while (1) { | 
 | 		rem  = (size_t)Z.lo&0xf; | 
 | 		Z.lo = (Z.hi<<60)|(Z.lo>>4); | 
 | 		Z.hi = (Z.hi>>4); | 
 | 		if (sizeof(size_t)==8) | 
 | 			Z.hi ^= rem_4bit[rem]; | 
 | 		else | 
 | 			Z.hi ^= (u64)rem_4bit[rem]<<32; | 
 |  | 
 | 		Z.hi ^= Htable[nhi].hi; | 
 | 		Z.lo ^= Htable[nhi].lo; | 
 |  | 
 | 		if (--cnt<0)		break; | 
 |  | 
 | 		nlo  = ((const u8 *)Xi)[cnt]; | 
 | 		nhi  = nlo>>4; | 
 | 		nlo &= 0xf; | 
 |  | 
 | 		rem  = (size_t)Z.lo&0xf; | 
 | 		Z.lo = (Z.hi<<60)|(Z.lo>>4); | 
 | 		Z.hi = (Z.hi>>4); | 
 | 		if (sizeof(size_t)==8) | 
 | 			Z.hi ^= rem_4bit[rem]; | 
 | 		else | 
 | 			Z.hi ^= (u64)rem_4bit[rem]<<32; | 
 |  | 
 | 		Z.hi ^= Htable[nlo].hi; | 
 | 		Z.lo ^= Htable[nlo].lo; | 
 | 	} | 
 |  | 
 | 	if (is_endian.little) { | 
 | #ifdef BSWAP8 | 
 | 		Xi[0] = BSWAP8(Z.hi); | 
 | 		Xi[1] = BSWAP8(Z.lo); | 
 | #else | 
 | 		u8 *p = (u8 *)Xi; | 
 | 		u32 v; | 
 | 		v = (u32)(Z.hi>>32);	PUTU32(p,v); | 
 | 		v = (u32)(Z.hi);	PUTU32(p+4,v); | 
 | 		v = (u32)(Z.lo>>32);	PUTU32(p+8,v); | 
 | 		v = (u32)(Z.lo);	PUTU32(p+12,v); | 
 | #endif | 
 | 	} | 
 | 	else { | 
 | 		Xi[0] = Z.hi; | 
 | 		Xi[1] = Z.lo; | 
 | 	} | 
 | } | 
 |  | 
 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | 
 | /* | 
 |  * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for | 
 |  * details... Compiler-generated code doesn't seem to give any | 
 |  * performance improvement, at least not on x86[_64]. It's here | 
 |  * mostly as reference and a placeholder for possible future | 
 |  * non-trivial optimization[s]... | 
 |  */ | 
 | static void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16], | 
 | 				const u8 *inp,size_t len) | 
 | { | 
 |     u128 Z; | 
 |     int cnt; | 
 |     size_t rem, nlo, nhi; | 
 |     const union { long one; char little; } is_endian = {1}; | 
 |  | 
 | #if 1 | 
 |     do { | 
 | 	cnt  = 15; | 
 | 	nlo  = ((const u8 *)Xi)[15]; | 
 | 	nlo ^= inp[15]; | 
 | 	nhi  = nlo>>4; | 
 | 	nlo &= 0xf; | 
 |  | 
 | 	Z.hi = Htable[nlo].hi; | 
 | 	Z.lo = Htable[nlo].lo; | 
 |  | 
 | 	while (1) { | 
 | 		rem  = (size_t)Z.lo&0xf; | 
 | 		Z.lo = (Z.hi<<60)|(Z.lo>>4); | 
 | 		Z.hi = (Z.hi>>4); | 
 | 		if (sizeof(size_t)==8) | 
 | 			Z.hi ^= rem_4bit[rem]; | 
 | 		else | 
 | 			Z.hi ^= (u64)rem_4bit[rem]<<32; | 
 |  | 
 | 		Z.hi ^= Htable[nhi].hi; | 
 | 		Z.lo ^= Htable[nhi].lo; | 
 |  | 
 | 		if (--cnt<0)		break; | 
 |  | 
 | 		nlo  = ((const u8 *)Xi)[cnt]; | 
 | 		nlo ^= inp[cnt]; | 
 | 		nhi  = nlo>>4; | 
 | 		nlo &= 0xf; | 
 |  | 
 | 		rem  = (size_t)Z.lo&0xf; | 
 | 		Z.lo = (Z.hi<<60)|(Z.lo>>4); | 
 | 		Z.hi = (Z.hi>>4); | 
 | 		if (sizeof(size_t)==8) | 
 | 			Z.hi ^= rem_4bit[rem]; | 
 | 		else | 
 | 			Z.hi ^= (u64)rem_4bit[rem]<<32; | 
 |  | 
 | 		Z.hi ^= Htable[nlo].hi; | 
 | 		Z.lo ^= Htable[nlo].lo; | 
 | 	} | 
 | #else | 
 |     /* | 
 |      * Extra 256+16 bytes per-key plus 512 bytes shared tables | 
 |      * [should] give ~50% improvement... One could have PACK()-ed | 
 |      * the rem_8bit even here, but the priority is to minimize | 
 |      * cache footprint... | 
 |      */  | 
 |     u128 Hshr4[16];	/* Htable shifted right by 4 bits */ | 
 |     u8   Hshl4[16];	/* Htable shifted left  by 4 bits */ | 
 |     __fips_constseg | 
 |     static const unsigned short rem_8bit[256] = { | 
 | 	0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E, | 
 | 	0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E, | 
 | 	0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E, | 
 | 	0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E, | 
 | 	0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E, | 
 | 	0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E, | 
 | 	0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E, | 
 | 	0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E, | 
 | 	0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE, | 
 | 	0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE, | 
 | 	0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE, | 
 | 	0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE, | 
 | 	0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E, | 
 | 	0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E, | 
 | 	0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE, | 
 | 	0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE, | 
 | 	0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E, | 
 | 	0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E, | 
 | 	0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E, | 
 | 	0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E, | 
 | 	0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E, | 
 | 	0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E, | 
 | 	0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E, | 
 | 	0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E, | 
 | 	0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE, | 
 | 	0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE, | 
 | 	0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE, | 
 | 	0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE, | 
 | 	0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E, | 
 | 	0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E, | 
 | 	0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE, | 
 | 	0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE }; | 
 |     /* | 
 |      * This pre-processing phase slows down procedure by approximately | 
 |      * same time as it makes each loop spin faster. In other words | 
 |      * single block performance is approximately same as straightforward | 
 |      * "4-bit" implementation, and then it goes only faster... | 
 |      */ | 
 |     for (cnt=0; cnt<16; ++cnt) { | 
 | 	Z.hi = Htable[cnt].hi; | 
 | 	Z.lo = Htable[cnt].lo; | 
 | 	Hshr4[cnt].lo = (Z.hi<<60)|(Z.lo>>4); | 
 | 	Hshr4[cnt].hi = (Z.hi>>4); | 
 | 	Hshl4[cnt]    = (u8)(Z.lo<<4); | 
 |     } | 
 |  | 
 |     do { | 
 | 	for (Z.lo=0, Z.hi=0, cnt=15; cnt; --cnt) { | 
 | 		nlo  = ((const u8 *)Xi)[cnt]; | 
 | 		nlo ^= inp[cnt]; | 
 | 		nhi  = nlo>>4; | 
 | 		nlo &= 0xf; | 
 |  | 
 | 		Z.hi ^= Htable[nlo].hi; | 
 | 		Z.lo ^= Htable[nlo].lo; | 
 |  | 
 | 		rem = (size_t)Z.lo&0xff; | 
 |  | 
 | 		Z.lo = (Z.hi<<56)|(Z.lo>>8); | 
 | 		Z.hi = (Z.hi>>8); | 
 |  | 
 | 		Z.hi ^= Hshr4[nhi].hi; | 
 | 		Z.lo ^= Hshr4[nhi].lo; | 
 | 		Z.hi ^= (u64)rem_8bit[rem^Hshl4[nhi]]<<48; | 
 | 	} | 
 |  | 
 | 	nlo  = ((const u8 *)Xi)[0]; | 
 | 	nlo ^= inp[0]; | 
 | 	nhi  = nlo>>4; | 
 | 	nlo &= 0xf; | 
 |  | 
 | 	Z.hi ^= Htable[nlo].hi; | 
 | 	Z.lo ^= Htable[nlo].lo; | 
 |  | 
 | 	rem = (size_t)Z.lo&0xf; | 
 |  | 
 | 	Z.lo = (Z.hi<<60)|(Z.lo>>4); | 
 | 	Z.hi = (Z.hi>>4); | 
 |  | 
 | 	Z.hi ^= Htable[nhi].hi; | 
 | 	Z.lo ^= Htable[nhi].lo; | 
 | 	Z.hi ^= ((u64)rem_8bit[rem<<4])<<48; | 
 | #endif | 
 |  | 
 | 	if (is_endian.little) { | 
 | #ifdef BSWAP8 | 
 | 		Xi[0] = BSWAP8(Z.hi); | 
 | 		Xi[1] = BSWAP8(Z.lo); | 
 | #else | 
 | 		u8 *p = (u8 *)Xi; | 
 | 		u32 v; | 
 | 		v = (u32)(Z.hi>>32);	PUTU32(p,v); | 
 | 		v = (u32)(Z.hi);	PUTU32(p+4,v); | 
 | 		v = (u32)(Z.lo>>32);	PUTU32(p+8,v); | 
 | 		v = (u32)(Z.lo);	PUTU32(p+12,v); | 
 | #endif | 
 | 	} | 
 | 	else { | 
 | 		Xi[0] = Z.hi; | 
 | 		Xi[1] = Z.lo; | 
 | 	} | 
 |     } while (inp+=16, len-=16); | 
 | } | 
 | #endif | 
 | #else | 
 | void gcm_gmult_4bit(u64 Xi[2],const u128 Htable[16]); | 
 | void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | 
 | #endif | 
 |  | 
 | #define GCM_MUL(ctx,Xi)   gcm_gmult_4bit(ctx->Xi.u,ctx->Htable) | 
 | #if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) | 
 | #define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len) | 
 | /* GHASH_CHUNK is "stride parameter" missioned to mitigate cache | 
 |  * trashing effect. In other words idea is to hash data while it's | 
 |  * still in L1 cache after encryption pass... */ | 
 | #define GHASH_CHUNK       (3*1024) | 
 | #endif | 
 |  | 
 | #else	/* TABLE_BITS */ | 
 |  | 
 | static void gcm_gmult_1bit(u64 Xi[2],const u64 H[2]) | 
 | { | 
 | 	u128 V,Z = { 0,0 }; | 
 | 	long X; | 
 | 	int  i,j; | 
 | 	const long *xi = (const long *)Xi; | 
 | 	const union { long one; char little; } is_endian = {1}; | 
 |  | 
 | 	V.hi = H[0];	/* H is in host byte order, no byte swapping */ | 
 | 	V.lo = H[1]; | 
 |  | 
 | 	for (j=0; j<16/sizeof(long); ++j) { | 
 | 		if (is_endian.little) { | 
 | 			if (sizeof(long)==8) { | 
 | #ifdef BSWAP8 | 
 | 				X = (long)(BSWAP8(xi[j])); | 
 | #else | 
 | 				const u8 *p = (const u8 *)(xi+j); | 
 | 				X = (long)((u64)GETU32(p)<<32|GETU32(p+4)); | 
 | #endif | 
 | 			} | 
 | 			else { | 
 | 				const u8 *p = (const u8 *)(xi+j); | 
 | 				X = (long)GETU32(p); | 
 | 			} | 
 | 		} | 
 | 		else | 
 | 			X = xi[j]; | 
 |  | 
 | 		for (i=0; i<8*sizeof(long); ++i, X<<=1) { | 
 | 			u64 M = (u64)(X>>(8*sizeof(long)-1)); | 
 | 			Z.hi ^= V.hi&M; | 
 | 			Z.lo ^= V.lo&M; | 
 |  | 
 | 			REDUCE1BIT(V); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (is_endian.little) { | 
 | #ifdef BSWAP8 | 
 | 		Xi[0] = BSWAP8(Z.hi); | 
 | 		Xi[1] = BSWAP8(Z.lo); | 
 | #else | 
 | 		u8 *p = (u8 *)Xi; | 
 | 		u32 v; | 
 | 		v = (u32)(Z.hi>>32);	PUTU32(p,v); | 
 | 		v = (u32)(Z.hi);	PUTU32(p+4,v); | 
 | 		v = (u32)(Z.lo>>32);	PUTU32(p+8,v); | 
 | 		v = (u32)(Z.lo);	PUTU32(p+12,v); | 
 | #endif | 
 | 	} | 
 | 	else { | 
 | 		Xi[0] = Z.hi; | 
 | 		Xi[1] = Z.lo; | 
 | 	} | 
 | } | 
 | #define GCM_MUL(ctx,Xi)	  gcm_gmult_1bit(ctx->Xi.u,ctx->H.u) | 
 |  | 
 | #endif | 
 |  | 
 | #if	TABLE_BITS==4 && defined(GHASH_ASM) | 
 | # if	!defined(I386_ONLY) && \ | 
 | 	(defined(__i386)	|| defined(__i386__)	|| \ | 
 | 	 defined(__x86_64)	|| defined(__x86_64__)	|| \ | 
 | 	 defined(_M_IX86)	|| defined(_M_AMD64)	|| defined(_M_X64)) | 
 | #  define GHASH_ASM_X86_OR_64 | 
 | #  define GCM_FUNCREF_4BIT | 
 | extern unsigned int OPENSSL_ia32cap_P[2]; | 
 |  | 
 | void gcm_init_clmul(u128 Htable[16],const u64 Xi[2]); | 
 | void gcm_gmult_clmul(u64 Xi[2],const u128 Htable[16]); | 
 | void gcm_ghash_clmul(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | 
 |  | 
 | #if defined(__i386) || defined(__i386__) || defined(_M_IX86) | 
 | # define gcm_init_avx	gcm_init_clmul | 
 | # define gcm_gmult_avx	gcm_gmult_clmul | 
 | # define gcm_ghash_avx	gcm_ghash_clmul | 
 | #else | 
 | void gcm_init_avx(u128 Htable[16],const u64 Xi[2]); | 
 | void gcm_gmult_avx(u64 Xi[2],const u128 Htable[16]); | 
 | void gcm_ghash_avx(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | 
 | #endif | 
 |  | 
 | #  if	defined(__i386) || defined(__i386__) || defined(_M_IX86) | 
 | #   define GHASH_ASM_X86 | 
 | void gcm_gmult_4bit_mmx(u64 Xi[2],const u128 Htable[16]); | 
 | void gcm_ghash_4bit_mmx(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | 
 |  | 
 | void gcm_gmult_4bit_x86(u64 Xi[2],const u128 Htable[16]); | 
 | void gcm_ghash_4bit_x86(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | 
 | #  endif | 
 | # elif defined(__arm__) || defined(__arm) | 
 | #  include "arm_arch.h" | 
 | #  if __ARM_ARCH__>=7 | 
 | #   define GHASH_ASM_ARM | 
 | #   define GCM_FUNCREF_4BIT | 
 | void gcm_gmult_neon(u64 Xi[2],const u128 Htable[16]); | 
 | void gcm_ghash_neon(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | 
 | #  endif | 
 | # elif defined(__sparc__) || defined(__sparc) | 
 | #  include "sparc_arch.h" | 
 | #  define GHASH_ASM_SPARC | 
 | #  define GCM_FUNCREF_4BIT | 
 | extern unsigned int OPENSSL_sparcv9cap_P[]; | 
 | void gcm_init_vis3(u128 Htable[16],const u64 Xi[2]); | 
 | void gcm_gmult_vis3(u64 Xi[2],const u128 Htable[16]); | 
 | void gcm_ghash_vis3(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | 
 | # endif | 
 | #endif | 
 |  | 
 | #ifdef GCM_FUNCREF_4BIT | 
 | # undef  GCM_MUL | 
 | # define GCM_MUL(ctx,Xi)	(*gcm_gmult_p)(ctx->Xi.u,ctx->Htable) | 
 | # ifdef GHASH | 
 | #  undef  GHASH | 
 | #  define GHASH(ctx,in,len)	(*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len) | 
 | # endif | 
 | #endif | 
 |  | 
 | void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block) | 
 | { | 
 | 	const union { long one; char little; } is_endian = {1}; | 
 |  | 
 | 	memset(ctx,0,sizeof(*ctx)); | 
 | 	ctx->block = block; | 
 | 	ctx->key   = key; | 
 |  | 
 | 	(*block)(ctx->H.c,ctx->H.c,key); | 
 |  | 
 | 	if (is_endian.little) { | 
 | 		/* H is stored in host byte order */ | 
 | #ifdef BSWAP8 | 
 | 		ctx->H.u[0] = BSWAP8(ctx->H.u[0]); | 
 | 		ctx->H.u[1] = BSWAP8(ctx->H.u[1]); | 
 | #else | 
 | 		u8 *p = ctx->H.c; | 
 | 		u64 hi,lo; | 
 | 		hi = (u64)GETU32(p)  <<32|GETU32(p+4); | 
 | 		lo = (u64)GETU32(p+8)<<32|GETU32(p+12); | 
 | 		ctx->H.u[0] = hi; | 
 | 		ctx->H.u[1] = lo; | 
 | #endif | 
 | 	} | 
 |  | 
 | #if	TABLE_BITS==8 | 
 | 	gcm_init_8bit(ctx->Htable,ctx->H.u); | 
 | #elif	TABLE_BITS==4 | 
 | # if	defined(GHASH_ASM_X86_OR_64) | 
 | #  if	!defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) | 
 | 	if (OPENSSL_ia32cap_P[0]&(1<<24) &&	/* check FXSR bit */ | 
 | 	    OPENSSL_ia32cap_P[1]&(1<<1) ) {	/* check PCLMULQDQ bit */ | 
 | 		if (((OPENSSL_ia32cap_P[1]>>22)&0x41)==0x41) {	/* AVX+MOVBE */ | 
 | 			gcm_init_avx(ctx->Htable,ctx->H.u); | 
 | 			ctx->gmult = gcm_gmult_avx; | 
 | 			ctx->ghash = gcm_ghash_avx; | 
 | 		} else { | 
 | 			gcm_init_clmul(ctx->Htable,ctx->H.u); | 
 | 			ctx->gmult = gcm_gmult_clmul; | 
 | 			ctx->ghash = gcm_ghash_clmul; | 
 | 		} | 
 | 		return; | 
 | 	} | 
 | #  endif | 
 | 	gcm_init_4bit(ctx->Htable,ctx->H.u); | 
 | #  if	defined(GHASH_ASM_X86)			/* x86 only */ | 
 | #   if	defined(OPENSSL_IA32_SSE2) | 
 | 	if (OPENSSL_ia32cap_P[0]&(1<<25)) {	/* check SSE bit */ | 
 | #   else | 
 | 	if (OPENSSL_ia32cap_P[0]&(1<<23)) {	/* check MMX bit */ | 
 | #   endif | 
 | 		ctx->gmult = gcm_gmult_4bit_mmx; | 
 | 		ctx->ghash = gcm_ghash_4bit_mmx; | 
 | 	} else { | 
 | 		ctx->gmult = gcm_gmult_4bit_x86; | 
 | 		ctx->ghash = gcm_ghash_4bit_x86; | 
 | 	} | 
 | #  else | 
 | 	ctx->gmult = gcm_gmult_4bit; | 
 | 	ctx->ghash = gcm_ghash_4bit; | 
 | #  endif | 
 | # elif	defined(GHASH_ASM_ARM) | 
 | 	if (OPENSSL_armcap_P & ARMV7_NEON) { | 
 | 		ctx->gmult = gcm_gmult_neon; | 
 | 		ctx->ghash = gcm_ghash_neon; | 
 | 	} else { | 
 | 		gcm_init_4bit(ctx->Htable,ctx->H.u); | 
 | 		ctx->gmult = gcm_gmult_4bit; | 
 | 		ctx->ghash = gcm_ghash_4bit; | 
 | 	} | 
 | # elif	defined(GHASH_ASM_SPARC) | 
 | 	if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) { | 
 | 		gcm_init_vis3(ctx->Htable,ctx->H.u); | 
 | 		ctx->gmult = gcm_gmult_vis3; | 
 | 		ctx->ghash = gcm_ghash_vis3; | 
 | 	} else { | 
 | 		gcm_init_4bit(ctx->Htable,ctx->H.u); | 
 | 		ctx->gmult = gcm_gmult_4bit; | 
 | 		ctx->ghash = gcm_ghash_4bit; | 
 | 	} | 
 | # else | 
 | 	gcm_init_4bit(ctx->Htable,ctx->H.u); | 
 | # endif | 
 | #endif | 
 | } | 
 |  | 
 | void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx,const unsigned char *iv,size_t len) | 
 | { | 
 | 	const union { long one; char little; } is_endian = {1}; | 
 | 	unsigned int ctr; | 
 | #ifdef GCM_FUNCREF_4BIT | 
 | 	void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16])	= ctx->gmult; | 
 | #endif | 
 |  | 
 | 	ctx->Yi.u[0]  = 0; | 
 | 	ctx->Yi.u[1]  = 0; | 
 | 	ctx->Xi.u[0]  = 0; | 
 | 	ctx->Xi.u[1]  = 0; | 
 | 	ctx->len.u[0] = 0;	/* AAD length */ | 
 | 	ctx->len.u[1] = 0;	/* message length */ | 
 | 	ctx->ares = 0; | 
 | 	ctx->mres = 0; | 
 |  | 
 | 	if (len==12) { | 
 | 		memcpy(ctx->Yi.c,iv,12); | 
 | 		ctx->Yi.c[15]=1; | 
 | 		ctr=1; | 
 | 	} | 
 | 	else { | 
 | 		size_t i; | 
 | 		u64 len0 = len; | 
 |  | 
 | 		while (len>=16) { | 
 | 			for (i=0; i<16; ++i) ctx->Yi.c[i] ^= iv[i]; | 
 | 			GCM_MUL(ctx,Yi); | 
 | 			iv += 16; | 
 | 			len -= 16; | 
 | 		} | 
 | 		if (len) { | 
 | 			for (i=0; i<len; ++i) ctx->Yi.c[i] ^= iv[i]; | 
 | 			GCM_MUL(ctx,Yi); | 
 | 		} | 
 | 		len0 <<= 3; | 
 | 		if (is_endian.little) { | 
 | #ifdef BSWAP8 | 
 | 			ctx->Yi.u[1]  ^= BSWAP8(len0); | 
 | #else | 
 | 			ctx->Yi.c[8]  ^= (u8)(len0>>56); | 
 | 			ctx->Yi.c[9]  ^= (u8)(len0>>48); | 
 | 			ctx->Yi.c[10] ^= (u8)(len0>>40); | 
 | 			ctx->Yi.c[11] ^= (u8)(len0>>32); | 
 | 			ctx->Yi.c[12] ^= (u8)(len0>>24); | 
 | 			ctx->Yi.c[13] ^= (u8)(len0>>16); | 
 | 			ctx->Yi.c[14] ^= (u8)(len0>>8); | 
 | 			ctx->Yi.c[15] ^= (u8)(len0); | 
 | #endif | 
 | 		} | 
 | 		else | 
 | 			ctx->Yi.u[1]  ^= len0; | 
 |  | 
 | 		GCM_MUL(ctx,Yi); | 
 |  | 
 | 		if (is_endian.little) | 
 | 			ctr = GETU32(ctx->Yi.c+12); | 
 | 		else | 
 | 			ctr = ctx->Yi.d[3]; | 
 | 	} | 
 |  | 
 | 	(*ctx->block)(ctx->Yi.c,ctx->EK0.c,ctx->key); | 
 | 	++ctr; | 
 | 	if (is_endian.little) | 
 | 		PUTU32(ctx->Yi.c+12,ctr); | 
 | 	else | 
 | 		ctx->Yi.d[3] = ctr; | 
 | } | 
 |  | 
 | int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx,const unsigned char *aad,size_t len) | 
 | { | 
 | 	size_t i; | 
 | 	unsigned int n; | 
 | 	u64 alen = ctx->len.u[0]; | 
 | #ifdef GCM_FUNCREF_4BIT | 
 | 	void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16])	= ctx->gmult; | 
 | # ifdef GHASH | 
 | 	void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | 
 | 				const u8 *inp,size_t len)	= ctx->ghash; | 
 | # endif | 
 | #endif | 
 |  | 
 | 	if (ctx->len.u[1]) return -2; | 
 |  | 
 | 	alen += len; | 
 | 	if (alen>(U64(1)<<61) || (sizeof(len)==8 && alen<len)) | 
 | 		return -1; | 
 | 	ctx->len.u[0] = alen; | 
 |  | 
 | 	n = ctx->ares; | 
 | 	if (n) { | 
 | 		while (n && len) { | 
 | 			ctx->Xi.c[n] ^= *(aad++); | 
 | 			--len; | 
 | 			n = (n+1)%16; | 
 | 		} | 
 | 		if (n==0) GCM_MUL(ctx,Xi); | 
 | 		else { | 
 | 			ctx->ares = n; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef GHASH | 
 | 	if ((i = (len&(size_t)-16))) { | 
 | 		GHASH(ctx,aad,i); | 
 | 		aad += i; | 
 | 		len -= i; | 
 | 	} | 
 | #else | 
 | 	while (len>=16) { | 
 | 		for (i=0; i<16; ++i) ctx->Xi.c[i] ^= aad[i]; | 
 | 		GCM_MUL(ctx,Xi); | 
 | 		aad += 16; | 
 | 		len -= 16; | 
 | 	} | 
 | #endif | 
 | 	if (len) { | 
 | 		n = (unsigned int)len; | 
 | 		for (i=0; i<len; ++i) ctx->Xi.c[i] ^= aad[i]; | 
 | 	} | 
 |  | 
 | 	ctx->ares = n; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, | 
 | 		const unsigned char *in, unsigned char *out, | 
 | 		size_t len) | 
 | { | 
 | 	const union { long one; char little; } is_endian = {1}; | 
 | 	unsigned int n, ctr; | 
 | 	size_t i; | 
 | 	u64        mlen  = ctx->len.u[1]; | 
 | 	block128_f block = ctx->block; | 
 | 	void      *key   = ctx->key; | 
 | #ifdef GCM_FUNCREF_4BIT | 
 | 	void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16])	= ctx->gmult; | 
 | # ifdef GHASH | 
 | 	void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | 
 | 				const u8 *inp,size_t len)	= ctx->ghash; | 
 | # endif | 
 | #endif | 
 |  | 
 | #if 0 | 
 | 	n = (unsigned int)mlen%16; /* alternative to ctx->mres */ | 
 | #endif | 
 | 	mlen += len; | 
 | 	if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) | 
 | 		return -1; | 
 | 	ctx->len.u[1] = mlen; | 
 |  | 
 | 	if (ctx->ares) { | 
 | 		/* First call to encrypt finalizes GHASH(AAD) */ | 
 | 		GCM_MUL(ctx,Xi); | 
 | 		ctx->ares = 0; | 
 | 	} | 
 |  | 
 | 	if (is_endian.little) | 
 | 		ctr = GETU32(ctx->Yi.c+12); | 
 | 	else | 
 | 		ctr = ctx->Yi.d[3]; | 
 |  | 
 | 	n = ctx->mres; | 
 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | 
 | 	if (16%sizeof(size_t) == 0) do {	/* always true actually */ | 
 | 		if (n) { | 
 | 			while (n && len) { | 
 | 				ctx->Xi.c[n] ^= *(out++) = *(in++)^ctx->EKi.c[n]; | 
 | 				--len; | 
 | 				n = (n+1)%16; | 
 | 			} | 
 | 			if (n==0) GCM_MUL(ctx,Xi); | 
 | 			else { | 
 | 				ctx->mres = n; | 
 | 				return 0; | 
 | 			} | 
 | 		} | 
 | #if defined(STRICT_ALIGNMENT) | 
 | 		if (((size_t)in|(size_t)out)%sizeof(size_t) != 0) | 
 | 			break; | 
 | #endif | 
 | #if defined(GHASH) && defined(GHASH_CHUNK) | 
 | 		while (len>=GHASH_CHUNK) { | 
 | 		    size_t j=GHASH_CHUNK; | 
 |  | 
 | 		    while (j) { | 
 | 		    	size_t *out_t=(size_t *)out; | 
 | 		    	const size_t *in_t=(const size_t *)in; | 
 |  | 
 | 			(*block)(ctx->Yi.c,ctx->EKi.c,key); | 
 | 			++ctr; | 
 | 			if (is_endian.little) | 
 | 				PUTU32(ctx->Yi.c+12,ctr); | 
 | 			else | 
 | 				ctx->Yi.d[3] = ctr; | 
 | 			for (i=0; i<16/sizeof(size_t); ++i) | 
 | 				out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | 
 | 			out += 16; | 
 | 			in  += 16; | 
 | 			j   -= 16; | 
 | 		    } | 
 | 		    GHASH(ctx,out-GHASH_CHUNK,GHASH_CHUNK); | 
 | 		    len -= GHASH_CHUNK; | 
 | 		} | 
 | 		if ((i = (len&(size_t)-16))) { | 
 | 		    size_t j=i; | 
 |  | 
 | 		    while (len>=16) { | 
 | 		    	size_t *out_t=(size_t *)out; | 
 | 		    	const size_t *in_t=(const size_t *)in; | 
 |  | 
 | 			(*block)(ctx->Yi.c,ctx->EKi.c,key); | 
 | 			++ctr; | 
 | 			if (is_endian.little) | 
 | 				PUTU32(ctx->Yi.c+12,ctr); | 
 | 			else | 
 | 				ctx->Yi.d[3] = ctr; | 
 | 			for (i=0; i<16/sizeof(size_t); ++i) | 
 | 				out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | 
 | 			out += 16; | 
 | 			in  += 16; | 
 | 			len -= 16; | 
 | 		    } | 
 | 		    GHASH(ctx,out-j,j); | 
 | 		} | 
 | #else | 
 | 		while (len>=16) { | 
 | 		    	size_t *out_t=(size_t *)out; | 
 | 		    	const size_t *in_t=(const size_t *)in; | 
 |  | 
 | 			(*block)(ctx->Yi.c,ctx->EKi.c,key); | 
 | 			++ctr; | 
 | 			if (is_endian.little) | 
 | 				PUTU32(ctx->Yi.c+12,ctr); | 
 | 			else | 
 | 				ctx->Yi.d[3] = ctr; | 
 | 			for (i=0; i<16/sizeof(size_t); ++i) | 
 | 				ctx->Xi.t[i] ^= | 
 | 				out_t[i] = in_t[i]^ctx->EKi.t[i]; | 
 | 			GCM_MUL(ctx,Xi); | 
 | 			out += 16; | 
 | 			in  += 16; | 
 | 			len -= 16; | 
 | 		} | 
 | #endif | 
 | 		if (len) { | 
 | 			(*block)(ctx->Yi.c,ctx->EKi.c,key); | 
 | 			++ctr; | 
 | 			if (is_endian.little) | 
 | 				PUTU32(ctx->Yi.c+12,ctr); | 
 | 			else | 
 | 				ctx->Yi.d[3] = ctr; | 
 | 			while (len--) { | 
 | 				ctx->Xi.c[n] ^= out[n] = in[n]^ctx->EKi.c[n]; | 
 | 				++n; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		ctx->mres = n; | 
 | 		return 0; | 
 | 	} while(0); | 
 | #endif | 
 | 	for (i=0;i<len;++i) { | 
 | 		if (n==0) { | 
 | 			(*block)(ctx->Yi.c,ctx->EKi.c,key); | 
 | 			++ctr; | 
 | 			if (is_endian.little) | 
 | 				PUTU32(ctx->Yi.c+12,ctr); | 
 | 			else | 
 | 				ctx->Yi.d[3] = ctr; | 
 | 		} | 
 | 		ctx->Xi.c[n] ^= out[i] = in[i]^ctx->EKi.c[n]; | 
 | 		n = (n+1)%16; | 
 | 		if (n==0) | 
 | 			GCM_MUL(ctx,Xi); | 
 | 	} | 
 |  | 
 | 	ctx->mres = n; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, | 
 | 		const unsigned char *in, unsigned char *out, | 
 | 		size_t len) | 
 | { | 
 | 	const union { long one; char little; } is_endian = {1}; | 
 | 	unsigned int n, ctr; | 
 | 	size_t i; | 
 | 	u64        mlen  = ctx->len.u[1]; | 
 | 	block128_f block = ctx->block; | 
 | 	void      *key   = ctx->key; | 
 | #ifdef GCM_FUNCREF_4BIT | 
 | 	void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16])	= ctx->gmult; | 
 | # ifdef GHASH | 
 | 	void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | 
 | 				const u8 *inp,size_t len)	= ctx->ghash; | 
 | # endif | 
 | #endif | 
 |  | 
 | 	mlen += len; | 
 | 	if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) | 
 | 		return -1; | 
 | 	ctx->len.u[1] = mlen; | 
 |  | 
 | 	if (ctx->ares) { | 
 | 		/* First call to decrypt finalizes GHASH(AAD) */ | 
 | 		GCM_MUL(ctx,Xi); | 
 | 		ctx->ares = 0; | 
 | 	} | 
 |  | 
 | 	if (is_endian.little) | 
 | 		ctr = GETU32(ctx->Yi.c+12); | 
 | 	else | 
 | 		ctr = ctx->Yi.d[3]; | 
 |  | 
 | 	n = ctx->mres; | 
 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | 
 | 	if (16%sizeof(size_t) == 0) do {	/* always true actually */ | 
 | 		if (n) { | 
 | 			while (n && len) { | 
 | 				u8 c = *(in++); | 
 | 				*(out++) = c^ctx->EKi.c[n]; | 
 | 				ctx->Xi.c[n] ^= c; | 
 | 				--len; | 
 | 				n = (n+1)%16; | 
 | 			} | 
 | 			if (n==0) GCM_MUL (ctx,Xi); | 
 | 			else { | 
 | 				ctx->mres = n; | 
 | 				return 0; | 
 | 			} | 
 | 		} | 
 | #if defined(STRICT_ALIGNMENT) | 
 | 		if (((size_t)in|(size_t)out)%sizeof(size_t) != 0) | 
 | 			break; | 
 | #endif | 
 | #if defined(GHASH) && defined(GHASH_CHUNK) | 
 | 		while (len>=GHASH_CHUNK) { | 
 | 		    size_t j=GHASH_CHUNK; | 
 |  | 
 | 		    GHASH(ctx,in,GHASH_CHUNK); | 
 | 		    while (j) { | 
 | 		    	size_t *out_t=(size_t *)out; | 
 | 		    	const size_t *in_t=(const size_t *)in; | 
 |  | 
 | 			(*block)(ctx->Yi.c,ctx->EKi.c,key); | 
 | 			++ctr; | 
 | 			if (is_endian.little) | 
 | 				PUTU32(ctx->Yi.c+12,ctr); | 
 | 			else | 
 | 				ctx->Yi.d[3] = ctr; | 
 | 			for (i=0; i<16/sizeof(size_t); ++i) | 
 | 				out_t[i] = in_t[i]^ctx->EKi.t[i]; | 
 | 			out += 16; | 
 | 			in  += 16; | 
 | 			j   -= 16; | 
 | 		    } | 
 | 		    len -= GHASH_CHUNK; | 
 | 		} | 
 | 		if ((i = (len&(size_t)-16))) { | 
 | 		    GHASH(ctx,in,i); | 
 | 		    while (len>=16) { | 
 | 		    	size_t *out_t=(size_t *)out; | 
 | 		    	const size_t *in_t=(const size_t *)in; | 
 |  | 
 | 			(*block)(ctx->Yi.c,ctx->EKi.c,key); | 
 | 			++ctr; | 
 | 			if (is_endian.little) | 
 | 				PUTU32(ctx->Yi.c+12,ctr); | 
 | 			else | 
 | 				ctx->Yi.d[3] = ctr; | 
 | 			for (i=0; i<16/sizeof(size_t); ++i) | 
 | 				out_t[i] = in_t[i]^ctx->EKi.t[i]; | 
 | 			out += 16; | 
 | 			in  += 16; | 
 | 			len -= 16; | 
 | 		    } | 
 | 		} | 
 | #else | 
 | 		while (len>=16) { | 
 | 		    	size_t *out_t=(size_t *)out; | 
 | 		    	const size_t *in_t=(const size_t *)in; | 
 |  | 
 | 			(*block)(ctx->Yi.c,ctx->EKi.c,key); | 
 | 			++ctr; | 
 | 			if (is_endian.little) | 
 | 				PUTU32(ctx->Yi.c+12,ctr); | 
 | 			else | 
 | 				ctx->Yi.d[3] = ctr; | 
 | 			for (i=0; i<16/sizeof(size_t); ++i) { | 
 | 				size_t c = in[i]; | 
 | 				out[i] = c^ctx->EKi.t[i]; | 
 | 				ctx->Xi.t[i] ^= c; | 
 | 			} | 
 | 			GCM_MUL(ctx,Xi); | 
 | 			out += 16; | 
 | 			in  += 16; | 
 | 			len -= 16; | 
 | 		} | 
 | #endif | 
 | 		if (len) { | 
 | 			(*block)(ctx->Yi.c,ctx->EKi.c,key); | 
 | 			++ctr; | 
 | 			if (is_endian.little) | 
 | 				PUTU32(ctx->Yi.c+12,ctr); | 
 | 			else | 
 | 				ctx->Yi.d[3] = ctr; | 
 | 			while (len--) { | 
 | 				u8 c = in[n]; | 
 | 				ctx->Xi.c[n] ^= c; | 
 | 				out[n] = c^ctx->EKi.c[n]; | 
 | 				++n; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		ctx->mres = n; | 
 | 		return 0; | 
 | 	} while(0); | 
 | #endif | 
 | 	for (i=0;i<len;++i) { | 
 | 		u8 c; | 
 | 		if (n==0) { | 
 | 			(*block)(ctx->Yi.c,ctx->EKi.c,key); | 
 | 			++ctr; | 
 | 			if (is_endian.little) | 
 | 				PUTU32(ctx->Yi.c+12,ctr); | 
 | 			else | 
 | 				ctx->Yi.d[3] = ctr; | 
 | 		} | 
 | 		c = in[i]; | 
 | 		out[i] = c^ctx->EKi.c[n]; | 
 | 		ctx->Xi.c[n] ^= c; | 
 | 		n = (n+1)%16; | 
 | 		if (n==0) | 
 | 			GCM_MUL(ctx,Xi); | 
 | 	} | 
 |  | 
 | 	ctx->mres = n; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, | 
 | 		const unsigned char *in, unsigned char *out, | 
 | 		size_t len, ctr128_f stream) | 
 | { | 
 | 	const union { long one; char little; } is_endian = {1}; | 
 | 	unsigned int n, ctr; | 
 | 	size_t i; | 
 | 	u64   mlen = ctx->len.u[1]; | 
 | 	void *key  = ctx->key; | 
 | #ifdef GCM_FUNCREF_4BIT | 
 | 	void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16])	= ctx->gmult; | 
 | # ifdef GHASH | 
 | 	void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | 
 | 				const u8 *inp,size_t len)	= ctx->ghash; | 
 | # endif | 
 | #endif | 
 |  | 
 | 	mlen += len; | 
 | 	if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) | 
 | 		return -1; | 
 | 	ctx->len.u[1] = mlen; | 
 |  | 
 | 	if (ctx->ares) { | 
 | 		/* First call to encrypt finalizes GHASH(AAD) */ | 
 | 		GCM_MUL(ctx,Xi); | 
 | 		ctx->ares = 0; | 
 | 	} | 
 |  | 
 | 	if (is_endian.little) | 
 | 		ctr = GETU32(ctx->Yi.c+12); | 
 | 	else | 
 | 		ctr = ctx->Yi.d[3]; | 
 |  | 
 | 	n = ctx->mres; | 
 | 	if (n) { | 
 | 		while (n && len) { | 
 | 			ctx->Xi.c[n] ^= *(out++) = *(in++)^ctx->EKi.c[n]; | 
 | 			--len; | 
 | 			n = (n+1)%16; | 
 | 		} | 
 | 		if (n==0) GCM_MUL(ctx,Xi); | 
 | 		else { | 
 | 			ctx->mres = n; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
 | 	while (len>=GHASH_CHUNK) { | 
 | 		(*stream)(in,out,GHASH_CHUNK/16,key,ctx->Yi.c); | 
 | 		ctr += GHASH_CHUNK/16; | 
 | 		if (is_endian.little) | 
 | 			PUTU32(ctx->Yi.c+12,ctr); | 
 | 		else | 
 | 			ctx->Yi.d[3] = ctr; | 
 | 		GHASH(ctx,out,GHASH_CHUNK); | 
 | 		out += GHASH_CHUNK; | 
 | 		in  += GHASH_CHUNK; | 
 | 		len -= GHASH_CHUNK; | 
 | 	} | 
 | #endif | 
 | 	if ((i = (len&(size_t)-16))) { | 
 | 		size_t j=i/16; | 
 |  | 
 | 		(*stream)(in,out,j,key,ctx->Yi.c); | 
 | 		ctr += (unsigned int)j; | 
 | 		if (is_endian.little) | 
 | 			PUTU32(ctx->Yi.c+12,ctr); | 
 | 		else | 
 | 			ctx->Yi.d[3] = ctr; | 
 | 		in  += i; | 
 | 		len -= i; | 
 | #if defined(GHASH) | 
 | 		GHASH(ctx,out,i); | 
 | 		out += i; | 
 | #else | 
 | 		while (j--) { | 
 | 			for (i=0;i<16;++i) ctx->Xi.c[i] ^= out[i]; | 
 | 			GCM_MUL(ctx,Xi); | 
 | 			out += 16; | 
 | 		} | 
 | #endif | 
 | 	} | 
 | 	if (len) { | 
 | 		(*ctx->block)(ctx->Yi.c,ctx->EKi.c,key); | 
 | 		++ctr; | 
 | 		if (is_endian.little) | 
 | 			PUTU32(ctx->Yi.c+12,ctr); | 
 | 		else | 
 | 			ctx->Yi.d[3] = ctr; | 
 | 		while (len--) { | 
 | 			ctx->Xi.c[n] ^= out[n] = in[n]^ctx->EKi.c[n]; | 
 | 			++n; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ctx->mres = n; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, | 
 | 		const unsigned char *in, unsigned char *out, | 
 | 		size_t len,ctr128_f stream) | 
 | { | 
 | 	const union { long one; char little; } is_endian = {1}; | 
 | 	unsigned int n, ctr; | 
 | 	size_t i; | 
 | 	u64   mlen = ctx->len.u[1]; | 
 | 	void *key  = ctx->key; | 
 | #ifdef GCM_FUNCREF_4BIT | 
 | 	void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16])	= ctx->gmult; | 
 | # ifdef GHASH | 
 | 	void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | 
 | 				const u8 *inp,size_t len)	= ctx->ghash; | 
 | # endif | 
 | #endif | 
 |  | 
 | 	mlen += len; | 
 | 	if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) | 
 | 		return -1; | 
 | 	ctx->len.u[1] = mlen; | 
 |  | 
 | 	if (ctx->ares) { | 
 | 		/* First call to decrypt finalizes GHASH(AAD) */ | 
 | 		GCM_MUL(ctx,Xi); | 
 | 		ctx->ares = 0; | 
 | 	} | 
 |  | 
 | 	if (is_endian.little) | 
 | 		ctr = GETU32(ctx->Yi.c+12); | 
 | 	else | 
 | 		ctr = ctx->Yi.d[3]; | 
 |  | 
 | 	n = ctx->mres; | 
 | 	if (n) { | 
 | 		while (n && len) { | 
 | 			u8 c = *(in++); | 
 | 			*(out++) = c^ctx->EKi.c[n]; | 
 | 			ctx->Xi.c[n] ^= c; | 
 | 			--len; | 
 | 			n = (n+1)%16; | 
 | 		} | 
 | 		if (n==0) GCM_MUL (ctx,Xi); | 
 | 		else { | 
 | 			ctx->mres = n; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
 | 	while (len>=GHASH_CHUNK) { | 
 | 		GHASH(ctx,in,GHASH_CHUNK); | 
 | 		(*stream)(in,out,GHASH_CHUNK/16,key,ctx->Yi.c); | 
 | 		ctr += GHASH_CHUNK/16; | 
 | 		if (is_endian.little) | 
 | 			PUTU32(ctx->Yi.c+12,ctr); | 
 | 		else | 
 | 			ctx->Yi.d[3] = ctr; | 
 | 		out += GHASH_CHUNK; | 
 | 		in  += GHASH_CHUNK; | 
 | 		len -= GHASH_CHUNK; | 
 | 	} | 
 | #endif | 
 | 	if ((i = (len&(size_t)-16))) { | 
 | 		size_t j=i/16; | 
 |  | 
 | #if defined(GHASH) | 
 | 		GHASH(ctx,in,i); | 
 | #else | 
 | 		while (j--) { | 
 | 			size_t k; | 
 | 			for (k=0;k<16;++k) ctx->Xi.c[k] ^= in[k]; | 
 | 			GCM_MUL(ctx,Xi); | 
 | 			in += 16; | 
 | 		} | 
 | 		j   = i/16; | 
 | 		in -= i; | 
 | #endif | 
 | 		(*stream)(in,out,j,key,ctx->Yi.c); | 
 | 		ctr += (unsigned int)j; | 
 | 		if (is_endian.little) | 
 | 			PUTU32(ctx->Yi.c+12,ctr); | 
 | 		else | 
 | 			ctx->Yi.d[3] = ctr; | 
 | 		out += i; | 
 | 		in  += i; | 
 | 		len -= i; | 
 | 	} | 
 | 	if (len) { | 
 | 		(*ctx->block)(ctx->Yi.c,ctx->EKi.c,key); | 
 | 		++ctr; | 
 | 		if (is_endian.little) | 
 | 			PUTU32(ctx->Yi.c+12,ctr); | 
 | 		else | 
 | 			ctx->Yi.d[3] = ctr; | 
 | 		while (len--) { | 
 | 			u8 c = in[n]; | 
 | 			ctx->Xi.c[n] ^= c; | 
 | 			out[n] = c^ctx->EKi.c[n]; | 
 | 			++n; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ctx->mres = n; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx,const unsigned char *tag, | 
 | 			size_t len) | 
 | { | 
 | 	const union { long one; char little; } is_endian = {1}; | 
 | 	u64 alen = ctx->len.u[0]<<3; | 
 | 	u64 clen = ctx->len.u[1]<<3; | 
 | #ifdef GCM_FUNCREF_4BIT | 
 | 	void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16])	= ctx->gmult; | 
 | #endif | 
 |  | 
 | 	if (ctx->mres || ctx->ares) | 
 | 		GCM_MUL(ctx,Xi); | 
 |  | 
 | 	if (is_endian.little) { | 
 | #ifdef BSWAP8 | 
 | 		alen = BSWAP8(alen); | 
 | 		clen = BSWAP8(clen); | 
 | #else | 
 | 		u8 *p = ctx->len.c; | 
 |  | 
 | 		ctx->len.u[0] = alen; | 
 | 		ctx->len.u[1] = clen; | 
 |  | 
 | 		alen = (u64)GETU32(p)  <<32|GETU32(p+4); | 
 | 		clen = (u64)GETU32(p+8)<<32|GETU32(p+12); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	ctx->Xi.u[0] ^= alen; | 
 | 	ctx->Xi.u[1] ^= clen; | 
 | 	GCM_MUL(ctx,Xi); | 
 |  | 
 | 	ctx->Xi.u[0] ^= ctx->EK0.u[0]; | 
 | 	ctx->Xi.u[1] ^= ctx->EK0.u[1]; | 
 |  | 
 | 	if (tag && len<=sizeof(ctx->Xi)) | 
 | 		return memcmp(ctx->Xi.c,tag,len); | 
 | 	else | 
 | 		return -1; | 
 | } | 
 |  | 
 | void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) | 
 | { | 
 | 	CRYPTO_gcm128_finish(ctx, NULL, 0); | 
 | 	memcpy(tag, ctx->Xi.c, len<=sizeof(ctx->Xi.c)?len:sizeof(ctx->Xi.c)); | 
 | } | 
 |  | 
 | GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block) | 
 | { | 
 | 	GCM128_CONTEXT *ret; | 
 |  | 
 | 	if ((ret = (GCM128_CONTEXT *)OPENSSL_malloc(sizeof(GCM128_CONTEXT)))) | 
 | 		CRYPTO_gcm128_init(ret,key,block); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) | 
 | { | 
 | 	if (ctx) { | 
 | 		OPENSSL_cleanse(ctx,sizeof(*ctx)); | 
 | 		OPENSSL_free(ctx); | 
 | 	} | 
 | } | 
 |  | 
 | #if defined(SELFTEST) | 
 | #include <stdio.h> | 
 | #include <openssl/aes.h> | 
 |  | 
 | /* Test Case 1 */ | 
 | static const u8	K1[16], | 
 | 		*P1=NULL, | 
 | 		*A1=NULL, | 
 | 		IV1[12], | 
 | 		*C1=NULL, | 
 | 		T1[]=  {0x58,0xe2,0xfc,0xce,0xfa,0x7e,0x30,0x61,0x36,0x7f,0x1d,0x57,0xa4,0xe7,0x45,0x5a}; | 
 |  | 
 | /* Test Case 2 */ | 
 | #define K2 K1 | 
 | #define A2 A1 | 
 | #define IV2 IV1 | 
 | static const u8	P2[16], | 
 | 		C2[]=  {0x03,0x88,0xda,0xce,0x60,0xb6,0xa3,0x92,0xf3,0x28,0xc2,0xb9,0x71,0xb2,0xfe,0x78}, | 
 | 		T2[]=  {0xab,0x6e,0x47,0xd4,0x2c,0xec,0x13,0xbd,0xf5,0x3a,0x67,0xb2,0x12,0x57,0xbd,0xdf}; | 
 |  | 
 | /* Test Case 3 */ | 
 | #define A3 A2 | 
 | static const u8	K3[]=  {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08}, | 
 | 		P3[]=  {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, | 
 | 			0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, | 
 | 			0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, | 
 | 			0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55}, | 
 | 		IV3[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88}, | 
 | 		C3[]=  {0x42,0x83,0x1e,0xc2,0x21,0x77,0x74,0x24,0x4b,0x72,0x21,0xb7,0x84,0xd0,0xd4,0x9c, | 
 | 			0xe3,0xaa,0x21,0x2f,0x2c,0x02,0xa4,0xe0,0x35,0xc1,0x7e,0x23,0x29,0xac,0xa1,0x2e, | 
 | 			0x21,0xd5,0x14,0xb2,0x54,0x66,0x93,0x1c,0x7d,0x8f,0x6a,0x5a,0xac,0x84,0xaa,0x05, | 
 | 			0x1b,0xa3,0x0b,0x39,0x6a,0x0a,0xac,0x97,0x3d,0x58,0xe0,0x91,0x47,0x3f,0x59,0x85}, | 
 | 		T3[]=  {0x4d,0x5c,0x2a,0xf3,0x27,0xcd,0x64,0xa6,0x2c,0xf3,0x5a,0xbd,0x2b,0xa6,0xfa,0xb4}; | 
 |  | 
 | /* Test Case 4 */ | 
 | #define K4 K3 | 
 | #define IV4 IV3 | 
 | static const u8	P4[]=  {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, | 
 | 			0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, | 
 | 			0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, | 
 | 			0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39}, | 
 | 		A4[]=  {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef, | 
 | 			0xab,0xad,0xda,0xd2}, | 
 | 		C4[]=  {0x42,0x83,0x1e,0xc2,0x21,0x77,0x74,0x24,0x4b,0x72,0x21,0xb7,0x84,0xd0,0xd4,0x9c, | 
 | 			0xe3,0xaa,0x21,0x2f,0x2c,0x02,0xa4,0xe0,0x35,0xc1,0x7e,0x23,0x29,0xac,0xa1,0x2e, | 
 | 			0x21,0xd5,0x14,0xb2,0x54,0x66,0x93,0x1c,0x7d,0x8f,0x6a,0x5a,0xac,0x84,0xaa,0x05, | 
 | 			0x1b,0xa3,0x0b,0x39,0x6a,0x0a,0xac,0x97,0x3d,0x58,0xe0,0x91}, | 
 | 		T4[]=  {0x5b,0xc9,0x4f,0xbc,0x32,0x21,0xa5,0xdb,0x94,0xfa,0xe9,0x5a,0xe7,0x12,0x1a,0x47}; | 
 |  | 
 | /* Test Case 5 */ | 
 | #define K5 K4 | 
 | #define P5 P4 | 
 | #define A5 A4 | 
 | static const u8	IV5[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad}, | 
 | 		C5[]=  {0x61,0x35,0x3b,0x4c,0x28,0x06,0x93,0x4a,0x77,0x7f,0xf5,0x1f,0xa2,0x2a,0x47,0x55, | 
 | 			0x69,0x9b,0x2a,0x71,0x4f,0xcd,0xc6,0xf8,0x37,0x66,0xe5,0xf9,0x7b,0x6c,0x74,0x23, | 
 | 			0x73,0x80,0x69,0x00,0xe4,0x9f,0x24,0xb2,0x2b,0x09,0x75,0x44,0xd4,0x89,0x6b,0x42, | 
 | 			0x49,0x89,0xb5,0xe1,0xeb,0xac,0x0f,0x07,0xc2,0x3f,0x45,0x98}, | 
 | 		T5[]=  {0x36,0x12,0xd2,0xe7,0x9e,0x3b,0x07,0x85,0x56,0x1b,0xe1,0x4a,0xac,0xa2,0xfc,0xcb}; | 
 |  | 
 | /* Test Case 6 */ | 
 | #define K6 K5 | 
 | #define P6 P5 | 
 | #define A6 A5 | 
 | static const u8	IV6[]= {0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa, | 
 | 			0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28, | 
 | 			0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54, | 
 | 			0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b}, | 
 | 		C6[]=  {0x8c,0xe2,0x49,0x98,0x62,0x56,0x15,0xb6,0x03,0xa0,0x33,0xac,0xa1,0x3f,0xb8,0x94, | 
 | 			0xbe,0x91,0x12,0xa5,0xc3,0xa2,0x11,0xa8,0xba,0x26,0x2a,0x3c,0xca,0x7e,0x2c,0xa7, | 
 | 			0x01,0xe4,0xa9,0xa4,0xfb,0xa4,0x3c,0x90,0xcc,0xdc,0xb2,0x81,0xd4,0x8c,0x7c,0x6f, | 
 | 			0xd6,0x28,0x75,0xd2,0xac,0xa4,0x17,0x03,0x4c,0x34,0xae,0xe5}, | 
 | 		T6[]=  {0x61,0x9c,0xc5,0xae,0xff,0xfe,0x0b,0xfa,0x46,0x2a,0xf4,0x3c,0x16,0x99,0xd0,0x50}; | 
 |  | 
 | /* Test Case 7 */ | 
 | static const u8 K7[24], | 
 | 		*P7=NULL, | 
 | 		*A7=NULL, | 
 | 		IV7[12], | 
 | 		*C7=NULL, | 
 | 		T7[]=  {0xcd,0x33,0xb2,0x8a,0xc7,0x73,0xf7,0x4b,0xa0,0x0e,0xd1,0xf3,0x12,0x57,0x24,0x35}; | 
 |  | 
 | /* Test Case 8 */ | 
 | #define K8 K7 | 
 | #define IV8 IV7 | 
 | #define A8 A7 | 
 | static const u8	P8[16], | 
 | 		C8[]=  {0x98,0xe7,0x24,0x7c,0x07,0xf0,0xfe,0x41,0x1c,0x26,0x7e,0x43,0x84,0xb0,0xf6,0x00}, | 
 | 		T8[]=  {0x2f,0xf5,0x8d,0x80,0x03,0x39,0x27,0xab,0x8e,0xf4,0xd4,0x58,0x75,0x14,0xf0,0xfb}; | 
 |  | 
 | /* Test Case 9 */ | 
 | #define A9 A8 | 
 | static const u8	K9[]=  {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08, | 
 | 			0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c}, | 
 | 		P9[]=  {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, | 
 | 			0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, | 
 | 			0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, | 
 | 			0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55}, | 
 | 		IV9[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88}, | 
 | 		C9[]=  {0x39,0x80,0xca,0x0b,0x3c,0x00,0xe8,0x41,0xeb,0x06,0xfa,0xc4,0x87,0x2a,0x27,0x57, | 
 | 			0x85,0x9e,0x1c,0xea,0xa6,0xef,0xd9,0x84,0x62,0x85,0x93,0xb4,0x0c,0xa1,0xe1,0x9c, | 
 | 			0x7d,0x77,0x3d,0x00,0xc1,0x44,0xc5,0x25,0xac,0x61,0x9d,0x18,0xc8,0x4a,0x3f,0x47, | 
 | 			0x18,0xe2,0x44,0x8b,0x2f,0xe3,0x24,0xd9,0xcc,0xda,0x27,0x10,0xac,0xad,0xe2,0x56}, | 
 | 		T9[]=  {0x99,0x24,0xa7,0xc8,0x58,0x73,0x36,0xbf,0xb1,0x18,0x02,0x4d,0xb8,0x67,0x4a,0x14}; | 
 |  | 
 | /* Test Case 10 */ | 
 | #define K10 K9 | 
 | #define IV10 IV9 | 
 | static const u8	P10[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, | 
 | 			0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, | 
 | 			0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, | 
 | 			0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39}, | 
 | 		A10[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef, | 
 | 			0xab,0xad,0xda,0xd2}, | 
 | 		C10[]= {0x39,0x80,0xca,0x0b,0x3c,0x00,0xe8,0x41,0xeb,0x06,0xfa,0xc4,0x87,0x2a,0x27,0x57, | 
 | 			0x85,0x9e,0x1c,0xea,0xa6,0xef,0xd9,0x84,0x62,0x85,0x93,0xb4,0x0c,0xa1,0xe1,0x9c, | 
 | 			0x7d,0x77,0x3d,0x00,0xc1,0x44,0xc5,0x25,0xac,0x61,0x9d,0x18,0xc8,0x4a,0x3f,0x47, | 
 | 			0x18,0xe2,0x44,0x8b,0x2f,0xe3,0x24,0xd9,0xcc,0xda,0x27,0x10}, | 
 | 		T10[]= {0x25,0x19,0x49,0x8e,0x80,0xf1,0x47,0x8f,0x37,0xba,0x55,0xbd,0x6d,0x27,0x61,0x8c}; | 
 |  | 
 | /* Test Case 11 */ | 
 | #define K11 K10 | 
 | #define P11 P10 | 
 | #define A11 A10 | 
 | static const u8	IV11[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad}, | 
 | 		C11[]= {0x0f,0x10,0xf5,0x99,0xae,0x14,0xa1,0x54,0xed,0x24,0xb3,0x6e,0x25,0x32,0x4d,0xb8, | 
 | 			0xc5,0x66,0x63,0x2e,0xf2,0xbb,0xb3,0x4f,0x83,0x47,0x28,0x0f,0xc4,0x50,0x70,0x57, | 
 | 			0xfd,0xdc,0x29,0xdf,0x9a,0x47,0x1f,0x75,0xc6,0x65,0x41,0xd4,0xd4,0xda,0xd1,0xc9, | 
 | 			0xe9,0x3a,0x19,0xa5,0x8e,0x8b,0x47,0x3f,0xa0,0xf0,0x62,0xf7}, | 
 | 		T11[]= {0x65,0xdc,0xc5,0x7f,0xcf,0x62,0x3a,0x24,0x09,0x4f,0xcc,0xa4,0x0d,0x35,0x33,0xf8}; | 
 |  | 
 | /* Test Case 12 */ | 
 | #define K12 K11 | 
 | #define P12 P11 | 
 | #define A12 A11 | 
 | static const u8	IV12[]={0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa, | 
 | 			0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28, | 
 | 			0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54, | 
 | 			0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b}, | 
 | 		C12[]= {0xd2,0x7e,0x88,0x68,0x1c,0xe3,0x24,0x3c,0x48,0x30,0x16,0x5a,0x8f,0xdc,0xf9,0xff, | 
 | 			0x1d,0xe9,0xa1,0xd8,0xe6,0xb4,0x47,0xef,0x6e,0xf7,0xb7,0x98,0x28,0x66,0x6e,0x45, | 
 | 			0x81,0xe7,0x90,0x12,0xaf,0x34,0xdd,0xd9,0xe2,0xf0,0x37,0x58,0x9b,0x29,0x2d,0xb3, | 
 | 			0xe6,0x7c,0x03,0x67,0x45,0xfa,0x22,0xe7,0xe9,0xb7,0x37,0x3b}, | 
 | 		T12[]= {0xdc,0xf5,0x66,0xff,0x29,0x1c,0x25,0xbb,0xb8,0x56,0x8f,0xc3,0xd3,0x76,0xa6,0xd9}; | 
 |  | 
 | /* Test Case 13 */ | 
 | static const u8	K13[32], | 
 | 		*P13=NULL, | 
 | 		*A13=NULL, | 
 | 		IV13[12], | 
 | 		*C13=NULL, | 
 | 		T13[]={0x53,0x0f,0x8a,0xfb,0xc7,0x45,0x36,0xb9,0xa9,0x63,0xb4,0xf1,0xc4,0xcb,0x73,0x8b}; | 
 |  | 
 | /* Test Case 14 */ | 
 | #define K14 K13 | 
 | #define A14 A13 | 
 | static const u8	P14[16], | 
 | 		IV14[12], | 
 | 		C14[]= {0xce,0xa7,0x40,0x3d,0x4d,0x60,0x6b,0x6e,0x07,0x4e,0xc5,0xd3,0xba,0xf3,0x9d,0x18}, | 
 | 		T14[]= {0xd0,0xd1,0xc8,0xa7,0x99,0x99,0x6b,0xf0,0x26,0x5b,0x98,0xb5,0xd4,0x8a,0xb9,0x19}; | 
 |  | 
 | /* Test Case 15 */ | 
 | #define A15 A14 | 
 | static const u8	K15[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08, | 
 | 			0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08}, | 
 | 		P15[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, | 
 | 			0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, | 
 | 			0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, | 
 | 			0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55}, | 
 | 		IV15[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88}, | 
 | 		C15[]= {0x52,0x2d,0xc1,0xf0,0x99,0x56,0x7d,0x07,0xf4,0x7f,0x37,0xa3,0x2a,0x84,0x42,0x7d, | 
 | 			0x64,0x3a,0x8c,0xdc,0xbf,0xe5,0xc0,0xc9,0x75,0x98,0xa2,0xbd,0x25,0x55,0xd1,0xaa, | 
 | 			0x8c,0xb0,0x8e,0x48,0x59,0x0d,0xbb,0x3d,0xa7,0xb0,0x8b,0x10,0x56,0x82,0x88,0x38, | 
 | 			0xc5,0xf6,0x1e,0x63,0x93,0xba,0x7a,0x0a,0xbc,0xc9,0xf6,0x62,0x89,0x80,0x15,0xad}, | 
 | 		T15[]= {0xb0,0x94,0xda,0xc5,0xd9,0x34,0x71,0xbd,0xec,0x1a,0x50,0x22,0x70,0xe3,0xcc,0x6c}; | 
 |  | 
 | /* Test Case 16 */ | 
 | #define K16 K15 | 
 | #define IV16 IV15 | 
 | static const u8	P16[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, | 
 | 			0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, | 
 | 			0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, | 
 | 			0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39}, | 
 | 		A16[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef, | 
 | 			0xab,0xad,0xda,0xd2}, | 
 | 		C16[]= {0x52,0x2d,0xc1,0xf0,0x99,0x56,0x7d,0x07,0xf4,0x7f,0x37,0xa3,0x2a,0x84,0x42,0x7d, | 
 | 			0x64,0x3a,0x8c,0xdc,0xbf,0xe5,0xc0,0xc9,0x75,0x98,0xa2,0xbd,0x25,0x55,0xd1,0xaa, | 
 | 			0x8c,0xb0,0x8e,0x48,0x59,0x0d,0xbb,0x3d,0xa7,0xb0,0x8b,0x10,0x56,0x82,0x88,0x38, | 
 | 			0xc5,0xf6,0x1e,0x63,0x93,0xba,0x7a,0x0a,0xbc,0xc9,0xf6,0x62}, | 
 | 		T16[]= {0x76,0xfc,0x6e,0xce,0x0f,0x4e,0x17,0x68,0xcd,0xdf,0x88,0x53,0xbb,0x2d,0x55,0x1b}; | 
 |  | 
 | /* Test Case 17 */ | 
 | #define K17 K16 | 
 | #define P17 P16 | 
 | #define A17 A16 | 
 | static const u8	IV17[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad}, | 
 | 		C17[]= {0xc3,0x76,0x2d,0xf1,0xca,0x78,0x7d,0x32,0xae,0x47,0xc1,0x3b,0xf1,0x98,0x44,0xcb, | 
 | 			0xaf,0x1a,0xe1,0x4d,0x0b,0x97,0x6a,0xfa,0xc5,0x2f,0xf7,0xd7,0x9b,0xba,0x9d,0xe0, | 
 | 			0xfe,0xb5,0x82,0xd3,0x39,0x34,0xa4,0xf0,0x95,0x4c,0xc2,0x36,0x3b,0xc7,0x3f,0x78, | 
 | 			0x62,0xac,0x43,0x0e,0x64,0xab,0xe4,0x99,0xf4,0x7c,0x9b,0x1f}, | 
 | 		T17[]= {0x3a,0x33,0x7d,0xbf,0x46,0xa7,0x92,0xc4,0x5e,0x45,0x49,0x13,0xfe,0x2e,0xa8,0xf2}; | 
 |  | 
 | /* Test Case 18 */ | 
 | #define K18 K17 | 
 | #define P18 P17 | 
 | #define A18 A17 | 
 | static const u8	IV18[]={0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa, | 
 | 			0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28, | 
 | 			0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54, | 
 | 			0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b}, | 
 | 		C18[]= {0x5a,0x8d,0xef,0x2f,0x0c,0x9e,0x53,0xf1,0xf7,0x5d,0x78,0x53,0x65,0x9e,0x2a,0x20, | 
 | 			0xee,0xb2,0xb2,0x2a,0xaf,0xde,0x64,0x19,0xa0,0x58,0xab,0x4f,0x6f,0x74,0x6b,0xf4, | 
 | 			0x0f,0xc0,0xc3,0xb7,0x80,0xf2,0x44,0x45,0x2d,0xa3,0xeb,0xf1,0xc5,0xd8,0x2c,0xde, | 
 | 			0xa2,0x41,0x89,0x97,0x20,0x0e,0xf8,0x2e,0x44,0xae,0x7e,0x3f}, | 
 | 		T18[]= {0xa4,0x4a,0x82,0x66,0xee,0x1c,0x8e,0xb0,0xc8,0xb5,0xd4,0xcf,0x5a,0xe9,0xf1,0x9a}; | 
 |  | 
 | /* Test Case 19 */ | 
 | #define K19 K1 | 
 | #define P19 P1 | 
 | #define IV19 IV1 | 
 | #define C19 C1 | 
 | static const u8 A19[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, | 
 | 			0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, | 
 | 			0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, | 
 | 			0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55, | 
 | 			0x52,0x2d,0xc1,0xf0,0x99,0x56,0x7d,0x07,0xf4,0x7f,0x37,0xa3,0x2a,0x84,0x42,0x7d, | 
 | 			0x64,0x3a,0x8c,0xdc,0xbf,0xe5,0xc0,0xc9,0x75,0x98,0xa2,0xbd,0x25,0x55,0xd1,0xaa, | 
 | 			0x8c,0xb0,0x8e,0x48,0x59,0x0d,0xbb,0x3d,0xa7,0xb0,0x8b,0x10,0x56,0x82,0x88,0x38, | 
 | 			0xc5,0xf6,0x1e,0x63,0x93,0xba,0x7a,0x0a,0xbc,0xc9,0xf6,0x62,0x89,0x80,0x15,0xad}, | 
 | 		T19[]= {0x5f,0xea,0x79,0x3a,0x2d,0x6f,0x97,0x4d,0x37,0xe6,0x8e,0x0c,0xb8,0xff,0x94,0x92}; | 
 |  | 
 | /* Test Case 20 */ | 
 | #define K20 K1 | 
 | #define A20 A1 | 
 | static const u8 IV20[64]={0xff,0xff,0xff,0xff},	/* this results in 0xff in counter LSB */ | 
 | 		P20[288], | 
 | 		C20[]= {0x56,0xb3,0x37,0x3c,0xa9,0xef,0x6e,0x4a,0x2b,0x64,0xfe,0x1e,0x9a,0x17,0xb6,0x14, | 
 | 			0x25,0xf1,0x0d,0x47,0xa7,0x5a,0x5f,0xce,0x13,0xef,0xc6,0xbc,0x78,0x4a,0xf2,0x4f, | 
 | 			0x41,0x41,0xbd,0xd4,0x8c,0xf7,0xc7,0x70,0x88,0x7a,0xfd,0x57,0x3c,0xca,0x54,0x18, | 
 | 			0xa9,0xae,0xff,0xcd,0x7c,0x5c,0xed,0xdf,0xc6,0xa7,0x83,0x97,0xb9,0xa8,0x5b,0x49, | 
 | 			0x9d,0xa5,0x58,0x25,0x72,0x67,0xca,0xab,0x2a,0xd0,0xb2,0x3c,0xa4,0x76,0xa5,0x3c, | 
 | 			0xb1,0x7f,0xb4,0x1c,0x4b,0x8b,0x47,0x5c,0xb4,0xf3,0xf7,0x16,0x50,0x94,0xc2,0x29, | 
 | 			0xc9,0xe8,0xc4,0xdc,0x0a,0x2a,0x5f,0xf1,0x90,0x3e,0x50,0x15,0x11,0x22,0x13,0x76, | 
 | 			0xa1,0xcd,0xb8,0x36,0x4c,0x50,0x61,0xa2,0x0c,0xae,0x74,0xbc,0x4a,0xcd,0x76,0xce, | 
 | 			0xb0,0xab,0xc9,0xfd,0x32,0x17,0xef,0x9f,0x8c,0x90,0xbe,0x40,0x2d,0xdf,0x6d,0x86, | 
 | 			0x97,0xf4,0xf8,0x80,0xdf,0xf1,0x5b,0xfb,0x7a,0x6b,0x28,0x24,0x1e,0xc8,0xfe,0x18, | 
 | 			0x3c,0x2d,0x59,0xe3,0xf9,0xdf,0xff,0x65,0x3c,0x71,0x26,0xf0,0xac,0xb9,0xe6,0x42, | 
 | 			0x11,0xf4,0x2b,0xae,0x12,0xaf,0x46,0x2b,0x10,0x70,0xbe,0xf1,0xab,0x5e,0x36,0x06, | 
 | 			0x87,0x2c,0xa1,0x0d,0xee,0x15,0xb3,0x24,0x9b,0x1a,0x1b,0x95,0x8f,0x23,0x13,0x4c, | 
 | 			0x4b,0xcc,0xb7,0xd0,0x32,0x00,0xbc,0xe4,0x20,0xa2,0xf8,0xeb,0x66,0xdc,0xf3,0x64, | 
 | 			0x4d,0x14,0x23,0xc1,0xb5,0x69,0x90,0x03,0xc1,0x3e,0xce,0xf4,0xbf,0x38,0xa3,0xb6, | 
 | 			0x0e,0xed,0xc3,0x40,0x33,0xba,0xc1,0x90,0x27,0x83,0xdc,0x6d,0x89,0xe2,0xe7,0x74, | 
 | 			0x18,0x8a,0x43,0x9c,0x7e,0xbc,0xc0,0x67,0x2d,0xbd,0xa4,0xdd,0xcf,0xb2,0x79,0x46, | 
 | 			0x13,0xb0,0xbe,0x41,0x31,0x5e,0xf7,0x78,0x70,0x8a,0x70,0xee,0x7d,0x75,0x16,0x5c}, | 
 | 		T20[]= {0x8b,0x30,0x7f,0x6b,0x33,0x28,0x6d,0x0a,0xb0,0x26,0xa9,0xed,0x3f,0xe1,0xe8,0x5f}; | 
 |  | 
 | #define TEST_CASE(n)	do {					\ | 
 | 	u8 out[sizeof(P##n)];					\ | 
 | 	AES_set_encrypt_key(K##n,sizeof(K##n)*8,&key);		\ | 
 | 	CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt);	\ | 
 | 	CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n));		\ | 
 | 	memset(out,0,sizeof(out));				\ | 
 | 	if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n));	\ | 
 | 	if (P##n) CRYPTO_gcm128_encrypt(&ctx,P##n,out,sizeof(out));	\ | 
 | 	if (CRYPTO_gcm128_finish(&ctx,T##n,16) ||		\ | 
 | 	    (C##n && memcmp(out,C##n,sizeof(out))))		\ | 
 | 		ret++, printf ("encrypt test#%d failed.\n",n);	\ | 
 | 	CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n));		\ | 
 | 	memset(out,0,sizeof(out));				\ | 
 | 	if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n));	\ | 
 | 	if (C##n) CRYPTO_gcm128_decrypt(&ctx,C##n,out,sizeof(out));	\ | 
 | 	if (CRYPTO_gcm128_finish(&ctx,T##n,16) ||		\ | 
 | 	    (P##n && memcmp(out,P##n,sizeof(out))))		\ | 
 | 		ret++, printf ("decrypt test#%d failed.\n",n);	\ | 
 | 	} while(0) | 
 |  | 
 | int main() | 
 | { | 
 | 	GCM128_CONTEXT ctx; | 
 | 	AES_KEY key; | 
 | 	int ret=0; | 
 |  | 
 | 	TEST_CASE(1); | 
 | 	TEST_CASE(2); | 
 | 	TEST_CASE(3); | 
 | 	TEST_CASE(4); | 
 | 	TEST_CASE(5); | 
 | 	TEST_CASE(6); | 
 | 	TEST_CASE(7); | 
 | 	TEST_CASE(8); | 
 | 	TEST_CASE(9); | 
 | 	TEST_CASE(10); | 
 | 	TEST_CASE(11); | 
 | 	TEST_CASE(12); | 
 | 	TEST_CASE(13); | 
 | 	TEST_CASE(14); | 
 | 	TEST_CASE(15); | 
 | 	TEST_CASE(16); | 
 | 	TEST_CASE(17); | 
 | 	TEST_CASE(18); | 
 | 	TEST_CASE(19); | 
 | 	TEST_CASE(20); | 
 |  | 
 | #ifdef OPENSSL_CPUID_OBJ | 
 | 	{ | 
 | 	size_t start,stop,gcm_t,ctr_t,OPENSSL_rdtsc(); | 
 | 	union { u64 u; u8 c[1024]; } buf; | 
 | 	int i; | 
 |  | 
 | 	AES_set_encrypt_key(K1,sizeof(K1)*8,&key); | 
 | 	CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt); | 
 | 	CRYPTO_gcm128_setiv(&ctx,IV1,sizeof(IV1)); | 
 |  | 
 | 	CRYPTO_gcm128_encrypt(&ctx,buf.c,buf.c,sizeof(buf)); | 
 | 	start = OPENSSL_rdtsc(); | 
 | 	CRYPTO_gcm128_encrypt(&ctx,buf.c,buf.c,sizeof(buf)); | 
 | 	gcm_t = OPENSSL_rdtsc() - start; | 
 |  | 
 | 	CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf), | 
 | 			&key,ctx.Yi.c,ctx.EKi.c,&ctx.mres, | 
 | 			(block128_f)AES_encrypt); | 
 | 	start = OPENSSL_rdtsc(); | 
 | 	CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf), | 
 | 			&key,ctx.Yi.c,ctx.EKi.c,&ctx.mres, | 
 | 			(block128_f)AES_encrypt); | 
 | 	ctr_t = OPENSSL_rdtsc() - start; | 
 |  | 
 | 	printf("%.2f-%.2f=%.2f\n", | 
 | 			gcm_t/(double)sizeof(buf), | 
 | 			ctr_t/(double)sizeof(buf), | 
 | 			(gcm_t-ctr_t)/(double)sizeof(buf)); | 
 | #ifdef GHASH | 
 | 	{ | 
 | 	void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | 
 | 				const u8 *inp,size_t len)	= ctx.ghash; | 
 |  | 
 | 	GHASH((&ctx),buf.c,sizeof(buf)); | 
 | 	start = OPENSSL_rdtsc(); | 
 | 	for (i=0;i<100;++i) GHASH((&ctx),buf.c,sizeof(buf)); | 
 | 	gcm_t = OPENSSL_rdtsc() - start; | 
 | 	printf("%.2f\n",gcm_t/(double)sizeof(buf)/(double)i); | 
 | 	} | 
 | #endif | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return ret; | 
 | } | 
 | #endif |