|  | /* | 
|  | * Copyright 2001-2017 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved | 
|  | * | 
|  | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/symhacks.h> | 
|  |  | 
|  | #include "ec_lcl.h" | 
|  |  | 
|  | const EC_METHOD *EC_GFp_simple_method(void) | 
|  | { | 
|  | static const EC_METHOD ret = { | 
|  | EC_FLAGS_DEFAULT_OCT, | 
|  | NID_X9_62_prime_field, | 
|  | ec_GFp_simple_group_init, | 
|  | ec_GFp_simple_group_finish, | 
|  | ec_GFp_simple_group_clear_finish, | 
|  | ec_GFp_simple_group_copy, | 
|  | ec_GFp_simple_group_set_curve, | 
|  | ec_GFp_simple_group_get_curve, | 
|  | ec_GFp_simple_group_get_degree, | 
|  | ec_group_simple_order_bits, | 
|  | ec_GFp_simple_group_check_discriminant, | 
|  | ec_GFp_simple_point_init, | 
|  | ec_GFp_simple_point_finish, | 
|  | ec_GFp_simple_point_clear_finish, | 
|  | ec_GFp_simple_point_copy, | 
|  | ec_GFp_simple_point_set_to_infinity, | 
|  | ec_GFp_simple_set_Jprojective_coordinates_GFp, | 
|  | ec_GFp_simple_get_Jprojective_coordinates_GFp, | 
|  | ec_GFp_simple_point_set_affine_coordinates, | 
|  | ec_GFp_simple_point_get_affine_coordinates, | 
|  | 0, 0, 0, | 
|  | ec_GFp_simple_add, | 
|  | ec_GFp_simple_dbl, | 
|  | ec_GFp_simple_invert, | 
|  | ec_GFp_simple_is_at_infinity, | 
|  | ec_GFp_simple_is_on_curve, | 
|  | ec_GFp_simple_cmp, | 
|  | ec_GFp_simple_make_affine, | 
|  | ec_GFp_simple_points_make_affine, | 
|  | 0 /* mul */ , | 
|  | 0 /* precompute_mult */ , | 
|  | 0 /* have_precompute_mult */ , | 
|  | ec_GFp_simple_field_mul, | 
|  | ec_GFp_simple_field_sqr, | 
|  | 0 /* field_div */ , | 
|  | 0 /* field_encode */ , | 
|  | 0 /* field_decode */ , | 
|  | 0,                      /* field_set_to_one */ | 
|  | ec_key_simple_priv2oct, | 
|  | ec_key_simple_oct2priv, | 
|  | 0, /* set private */ | 
|  | ec_key_simple_generate_key, | 
|  | ec_key_simple_check_key, | 
|  | ec_key_simple_generate_public_key, | 
|  | 0, /* keycopy */ | 
|  | 0, /* keyfinish */ | 
|  | ecdh_simple_compute_key | 
|  | }; | 
|  |  | 
|  | return &ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Most method functions in this file are designed to work with | 
|  | * non-trivial representations of field elements if necessary | 
|  | * (see ecp_mont.c): while standard modular addition and subtraction | 
|  | * are used, the field_mul and field_sqr methods will be used for | 
|  | * multiplication, and field_encode and field_decode (if defined) | 
|  | * will be used for converting between representations. | 
|  | * | 
|  | * Functions ec_GFp_simple_points_make_affine() and | 
|  | * ec_GFp_simple_point_get_affine_coordinates() specifically assume | 
|  | * that if a non-trivial representation is used, it is a Montgomery | 
|  | * representation (i.e. 'encoding' means multiplying by some factor R). | 
|  | */ | 
|  |  | 
|  | int ec_GFp_simple_group_init(EC_GROUP *group) | 
|  | { | 
|  | group->field = BN_new(); | 
|  | group->a = BN_new(); | 
|  | group->b = BN_new(); | 
|  | if (group->field == NULL || group->a == NULL || group->b == NULL) { | 
|  | BN_free(group->field); | 
|  | BN_free(group->a); | 
|  | BN_free(group->b); | 
|  | return 0; | 
|  | } | 
|  | group->a_is_minus3 = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void ec_GFp_simple_group_finish(EC_GROUP *group) | 
|  | { | 
|  | BN_free(group->field); | 
|  | BN_free(group->a); | 
|  | BN_free(group->b); | 
|  | } | 
|  |  | 
|  | void ec_GFp_simple_group_clear_finish(EC_GROUP *group) | 
|  | { | 
|  | BN_clear_free(group->field); | 
|  | BN_clear_free(group->a); | 
|  | BN_clear_free(group->b); | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) | 
|  | { | 
|  | if (!BN_copy(dest->field, src->field)) | 
|  | return 0; | 
|  | if (!BN_copy(dest->a, src->a)) | 
|  | return 0; | 
|  | if (!BN_copy(dest->b, src->b)) | 
|  | return 0; | 
|  |  | 
|  | dest->a_is_minus3 = src->a_is_minus3; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_group_set_curve(EC_GROUP *group, | 
|  | const BIGNUM *p, const BIGNUM *a, | 
|  | const BIGNUM *b, BN_CTX *ctx) | 
|  | { | 
|  | int ret = 0; | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *tmp_a; | 
|  |  | 
|  | /* p must be a prime > 3 */ | 
|  | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { | 
|  | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | tmp_a = BN_CTX_get(ctx); | 
|  | if (tmp_a == NULL) | 
|  | goto err; | 
|  |  | 
|  | /* group->field */ | 
|  | if (!BN_copy(group->field, p)) | 
|  | goto err; | 
|  | BN_set_negative(group->field, 0); | 
|  |  | 
|  | /* group->a */ | 
|  | if (!BN_nnmod(tmp_a, a, p, ctx)) | 
|  | goto err; | 
|  | if (group->meth->field_encode) { | 
|  | if (!group->meth->field_encode(group, group->a, tmp_a, ctx)) | 
|  | goto err; | 
|  | } else if (!BN_copy(group->a, tmp_a)) | 
|  | goto err; | 
|  |  | 
|  | /* group->b */ | 
|  | if (!BN_nnmod(group->b, b, p, ctx)) | 
|  | goto err; | 
|  | if (group->meth->field_encode) | 
|  | if (!group->meth->field_encode(group, group->b, group->b, ctx)) | 
|  | goto err; | 
|  |  | 
|  | /* group->a_is_minus3 */ | 
|  | if (!BN_add_word(tmp_a, 3)) | 
|  | goto err; | 
|  | group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field)); | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, | 
|  | BIGNUM *b, BN_CTX *ctx) | 
|  | { | 
|  | int ret = 0; | 
|  | BN_CTX *new_ctx = NULL; | 
|  |  | 
|  | if (p != NULL) { | 
|  | if (!BN_copy(p, group->field)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (a != NULL || b != NULL) { | 
|  | if (group->meth->field_decode) { | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  | if (a != NULL) { | 
|  | if (!group->meth->field_decode(group, a, group->a, ctx)) | 
|  | goto err; | 
|  | } | 
|  | if (b != NULL) { | 
|  | if (!group->meth->field_decode(group, b, group->b, ctx)) | 
|  | goto err; | 
|  | } | 
|  | } else { | 
|  | if (a != NULL) { | 
|  | if (!BN_copy(a, group->a)) | 
|  | goto err; | 
|  | } | 
|  | if (b != NULL) { | 
|  | if (!BN_copy(b, group->b)) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_group_get_degree(const EC_GROUP *group) | 
|  | { | 
|  | return BN_num_bits(group->field); | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) | 
|  | { | 
|  | int ret = 0; | 
|  | BIGNUM *a, *b, *order, *tmp_1, *tmp_2; | 
|  | const BIGNUM *p = group->field; | 
|  | BN_CTX *new_ctx = NULL; | 
|  |  | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) { | 
|  | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, | 
|  | ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | BN_CTX_start(ctx); | 
|  | a = BN_CTX_get(ctx); | 
|  | b = BN_CTX_get(ctx); | 
|  | tmp_1 = BN_CTX_get(ctx); | 
|  | tmp_2 = BN_CTX_get(ctx); | 
|  | order = BN_CTX_get(ctx); | 
|  | if (order == NULL) | 
|  | goto err; | 
|  |  | 
|  | if (group->meth->field_decode) { | 
|  | if (!group->meth->field_decode(group, a, group->a, ctx)) | 
|  | goto err; | 
|  | if (!group->meth->field_decode(group, b, group->b, ctx)) | 
|  | goto err; | 
|  | } else { | 
|  | if (!BN_copy(a, group->a)) | 
|  | goto err; | 
|  | if (!BN_copy(b, group->b)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /*- | 
|  | * check the discriminant: | 
|  | * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p) | 
|  | * 0 =< a, b < p | 
|  | */ | 
|  | if (BN_is_zero(a)) { | 
|  | if (BN_is_zero(b)) | 
|  | goto err; | 
|  | } else if (!BN_is_zero(b)) { | 
|  | if (!BN_mod_sqr(tmp_1, a, p, ctx)) | 
|  | goto err; | 
|  | if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) | 
|  | goto err; | 
|  | if (!BN_lshift(tmp_1, tmp_2, 2)) | 
|  | goto err; | 
|  | /* tmp_1 = 4*a^3 */ | 
|  |  | 
|  | if (!BN_mod_sqr(tmp_2, b, p, ctx)) | 
|  | goto err; | 
|  | if (!BN_mul_word(tmp_2, 27)) | 
|  | goto err; | 
|  | /* tmp_2 = 27*b^2 */ | 
|  |  | 
|  | if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) | 
|  | goto err; | 
|  | if (BN_is_zero(a)) | 
|  | goto err; | 
|  | } | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | if (ctx != NULL) | 
|  | BN_CTX_end(ctx); | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_point_init(EC_POINT *point) | 
|  | { | 
|  | point->X = BN_new(); | 
|  | point->Y = BN_new(); | 
|  | point->Z = BN_new(); | 
|  | point->Z_is_one = 0; | 
|  |  | 
|  | if (point->X == NULL || point->Y == NULL || point->Z == NULL) { | 
|  | BN_free(point->X); | 
|  | BN_free(point->Y); | 
|  | BN_free(point->Z); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void ec_GFp_simple_point_finish(EC_POINT *point) | 
|  | { | 
|  | BN_free(point->X); | 
|  | BN_free(point->Y); | 
|  | BN_free(point->Z); | 
|  | } | 
|  |  | 
|  | void ec_GFp_simple_point_clear_finish(EC_POINT *point) | 
|  | { | 
|  | BN_clear_free(point->X); | 
|  | BN_clear_free(point->Y); | 
|  | BN_clear_free(point->Z); | 
|  | point->Z_is_one = 0; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) | 
|  | { | 
|  | if (!BN_copy(dest->X, src->X)) | 
|  | return 0; | 
|  | if (!BN_copy(dest->Y, src->Y)) | 
|  | return 0; | 
|  | if (!BN_copy(dest->Z, src->Z)) | 
|  | return 0; | 
|  | dest->Z_is_one = src->Z_is_one; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, | 
|  | EC_POINT *point) | 
|  | { | 
|  | point->Z_is_one = 0; | 
|  | BN_zero(point->Z); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group, | 
|  | EC_POINT *point, | 
|  | const BIGNUM *x, | 
|  | const BIGNUM *y, | 
|  | const BIGNUM *z, | 
|  | BN_CTX *ctx) | 
|  | { | 
|  | BN_CTX *new_ctx = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (x != NULL) { | 
|  | if (!BN_nnmod(point->X, x, group->field, ctx)) | 
|  | goto err; | 
|  | if (group->meth->field_encode) { | 
|  | if (!group->meth->field_encode(group, point->X, point->X, ctx)) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (y != NULL) { | 
|  | if (!BN_nnmod(point->Y, y, group->field, ctx)) | 
|  | goto err; | 
|  | if (group->meth->field_encode) { | 
|  | if (!group->meth->field_encode(group, point->Y, point->Y, ctx)) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (z != NULL) { | 
|  | int Z_is_one; | 
|  |  | 
|  | if (!BN_nnmod(point->Z, z, group->field, ctx)) | 
|  | goto err; | 
|  | Z_is_one = BN_is_one(point->Z); | 
|  | if (group->meth->field_encode) { | 
|  | if (Z_is_one && (group->meth->field_set_to_one != 0)) { | 
|  | if (!group->meth->field_set_to_one(group, point->Z, ctx)) | 
|  | goto err; | 
|  | } else { | 
|  | if (!group-> | 
|  | meth->field_encode(group, point->Z, point->Z, ctx)) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | point->Z_is_one = Z_is_one; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, | 
|  | const EC_POINT *point, | 
|  | BIGNUM *x, BIGNUM *y, | 
|  | BIGNUM *z, BN_CTX *ctx) | 
|  | { | 
|  | BN_CTX *new_ctx = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | if (group->meth->field_decode != 0) { | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (x != NULL) { | 
|  | if (!group->meth->field_decode(group, x, point->X, ctx)) | 
|  | goto err; | 
|  | } | 
|  | if (y != NULL) { | 
|  | if (!group->meth->field_decode(group, y, point->Y, ctx)) | 
|  | goto err; | 
|  | } | 
|  | if (z != NULL) { | 
|  | if (!group->meth->field_decode(group, z, point->Z, ctx)) | 
|  | goto err; | 
|  | } | 
|  | } else { | 
|  | if (x != NULL) { | 
|  | if (!BN_copy(x, point->X)) | 
|  | goto err; | 
|  | } | 
|  | if (y != NULL) { | 
|  | if (!BN_copy(y, point->Y)) | 
|  | goto err; | 
|  | } | 
|  | if (z != NULL) { | 
|  | if (!BN_copy(z, point->Z)) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, | 
|  | EC_POINT *point, | 
|  | const BIGNUM *x, | 
|  | const BIGNUM *y, BN_CTX *ctx) | 
|  | { | 
|  | if (x == NULL || y == NULL) { | 
|  | /* | 
|  | * unlike for projective coordinates, we do not tolerate this | 
|  | */ | 
|  | ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, | 
|  | ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, | 
|  | BN_value_one(), ctx); | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, | 
|  | const EC_POINT *point, | 
|  | BIGNUM *x, BIGNUM *y, | 
|  | BN_CTX *ctx) | 
|  | { | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *Z, *Z_1, *Z_2, *Z_3; | 
|  | const BIGNUM *Z_; | 
|  | int ret = 0; | 
|  |  | 
|  | if (EC_POINT_is_at_infinity(group, point)) { | 
|  | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, | 
|  | EC_R_POINT_AT_INFINITY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | Z = BN_CTX_get(ctx); | 
|  | Z_1 = BN_CTX_get(ctx); | 
|  | Z_2 = BN_CTX_get(ctx); | 
|  | Z_3 = BN_CTX_get(ctx); | 
|  | if (Z_3 == NULL) | 
|  | goto err; | 
|  |  | 
|  | /* transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3) */ | 
|  |  | 
|  | if (group->meth->field_decode) { | 
|  | if (!group->meth->field_decode(group, Z, point->Z, ctx)) | 
|  | goto err; | 
|  | Z_ = Z; | 
|  | } else { | 
|  | Z_ = point->Z; | 
|  | } | 
|  |  | 
|  | if (BN_is_one(Z_)) { | 
|  | if (group->meth->field_decode) { | 
|  | if (x != NULL) { | 
|  | if (!group->meth->field_decode(group, x, point->X, ctx)) | 
|  | goto err; | 
|  | } | 
|  | if (y != NULL) { | 
|  | if (!group->meth->field_decode(group, y, point->Y, ctx)) | 
|  | goto err; | 
|  | } | 
|  | } else { | 
|  | if (x != NULL) { | 
|  | if (!BN_copy(x, point->X)) | 
|  | goto err; | 
|  | } | 
|  | if (y != NULL) { | 
|  | if (!BN_copy(y, point->Y)) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (!BN_mod_inverse(Z_1, Z_, group->field, ctx)) { | 
|  | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, | 
|  | ERR_R_BN_LIB); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (group->meth->field_encode == 0) { | 
|  | /* field_sqr works on standard representation */ | 
|  | if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) | 
|  | goto err; | 
|  | } else { | 
|  | if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (x != NULL) { | 
|  | /* | 
|  | * in the Montgomery case, field_mul will cancel out Montgomery | 
|  | * factor in X: | 
|  | */ | 
|  | if (!group->meth->field_mul(group, x, point->X, Z_2, ctx)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (y != NULL) { | 
|  | if (group->meth->field_encode == 0) { | 
|  | /* | 
|  | * field_mul works on standard representation | 
|  | */ | 
|  | if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) | 
|  | goto err; | 
|  | } else { | 
|  | if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * in the Montgomery case, field_mul will cancel out Montgomery | 
|  | * factor in Y: | 
|  | */ | 
|  | if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx)) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | 
|  | const EC_POINT *b, BN_CTX *ctx) | 
|  | { | 
|  | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, | 
|  | const BIGNUM *, BN_CTX *); | 
|  | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | 
|  | const BIGNUM *p; | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; | 
|  | int ret = 0; | 
|  |  | 
|  | if (a == b) | 
|  | return EC_POINT_dbl(group, r, a, ctx); | 
|  | if (EC_POINT_is_at_infinity(group, a)) | 
|  | return EC_POINT_copy(r, b); | 
|  | if (EC_POINT_is_at_infinity(group, b)) | 
|  | return EC_POINT_copy(r, a); | 
|  |  | 
|  | field_mul = group->meth->field_mul; | 
|  | field_sqr = group->meth->field_sqr; | 
|  | p = group->field; | 
|  |  | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | n0 = BN_CTX_get(ctx); | 
|  | n1 = BN_CTX_get(ctx); | 
|  | n2 = BN_CTX_get(ctx); | 
|  | n3 = BN_CTX_get(ctx); | 
|  | n4 = BN_CTX_get(ctx); | 
|  | n5 = BN_CTX_get(ctx); | 
|  | n6 = BN_CTX_get(ctx); | 
|  | if (n6 == NULL) | 
|  | goto end; | 
|  |  | 
|  | /* | 
|  | * Note that in this function we must not read components of 'a' or 'b' | 
|  | * once we have written the corresponding components of 'r'. ('r' might | 
|  | * be one of 'a' or 'b'.) | 
|  | */ | 
|  |  | 
|  | /* n1, n2 */ | 
|  | if (b->Z_is_one) { | 
|  | if (!BN_copy(n1, a->X)) | 
|  | goto end; | 
|  | if (!BN_copy(n2, a->Y)) | 
|  | goto end; | 
|  | /* n1 = X_a */ | 
|  | /* n2 = Y_a */ | 
|  | } else { | 
|  | if (!field_sqr(group, n0, b->Z, ctx)) | 
|  | goto end; | 
|  | if (!field_mul(group, n1, a->X, n0, ctx)) | 
|  | goto end; | 
|  | /* n1 = X_a * Z_b^2 */ | 
|  |  | 
|  | if (!field_mul(group, n0, n0, b->Z, ctx)) | 
|  | goto end; | 
|  | if (!field_mul(group, n2, a->Y, n0, ctx)) | 
|  | goto end; | 
|  | /* n2 = Y_a * Z_b^3 */ | 
|  | } | 
|  |  | 
|  | /* n3, n4 */ | 
|  | if (a->Z_is_one) { | 
|  | if (!BN_copy(n3, b->X)) | 
|  | goto end; | 
|  | if (!BN_copy(n4, b->Y)) | 
|  | goto end; | 
|  | /* n3 = X_b */ | 
|  | /* n4 = Y_b */ | 
|  | } else { | 
|  | if (!field_sqr(group, n0, a->Z, ctx)) | 
|  | goto end; | 
|  | if (!field_mul(group, n3, b->X, n0, ctx)) | 
|  | goto end; | 
|  | /* n3 = X_b * Z_a^2 */ | 
|  |  | 
|  | if (!field_mul(group, n0, n0, a->Z, ctx)) | 
|  | goto end; | 
|  | if (!field_mul(group, n4, b->Y, n0, ctx)) | 
|  | goto end; | 
|  | /* n4 = Y_b * Z_a^3 */ | 
|  | } | 
|  |  | 
|  | /* n5, n6 */ | 
|  | if (!BN_mod_sub_quick(n5, n1, n3, p)) | 
|  | goto end; | 
|  | if (!BN_mod_sub_quick(n6, n2, n4, p)) | 
|  | goto end; | 
|  | /* n5 = n1 - n3 */ | 
|  | /* n6 = n2 - n4 */ | 
|  |  | 
|  | if (BN_is_zero(n5)) { | 
|  | if (BN_is_zero(n6)) { | 
|  | /* a is the same point as b */ | 
|  | BN_CTX_end(ctx); | 
|  | ret = EC_POINT_dbl(group, r, a, ctx); | 
|  | ctx = NULL; | 
|  | goto end; | 
|  | } else { | 
|  | /* a is the inverse of b */ | 
|  | BN_zero(r->Z); | 
|  | r->Z_is_one = 0; | 
|  | ret = 1; | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* 'n7', 'n8' */ | 
|  | if (!BN_mod_add_quick(n1, n1, n3, p)) | 
|  | goto end; | 
|  | if (!BN_mod_add_quick(n2, n2, n4, p)) | 
|  | goto end; | 
|  | /* 'n7' = n1 + n3 */ | 
|  | /* 'n8' = n2 + n4 */ | 
|  |  | 
|  | /* Z_r */ | 
|  | if (a->Z_is_one && b->Z_is_one) { | 
|  | if (!BN_copy(r->Z, n5)) | 
|  | goto end; | 
|  | } else { | 
|  | if (a->Z_is_one) { | 
|  | if (!BN_copy(n0, b->Z)) | 
|  | goto end; | 
|  | } else if (b->Z_is_one) { | 
|  | if (!BN_copy(n0, a->Z)) | 
|  | goto end; | 
|  | } else { | 
|  | if (!field_mul(group, n0, a->Z, b->Z, ctx)) | 
|  | goto end; | 
|  | } | 
|  | if (!field_mul(group, r->Z, n0, n5, ctx)) | 
|  | goto end; | 
|  | } | 
|  | r->Z_is_one = 0; | 
|  | /* Z_r = Z_a * Z_b * n5 */ | 
|  |  | 
|  | /* X_r */ | 
|  | if (!field_sqr(group, n0, n6, ctx)) | 
|  | goto end; | 
|  | if (!field_sqr(group, n4, n5, ctx)) | 
|  | goto end; | 
|  | if (!field_mul(group, n3, n1, n4, ctx)) | 
|  | goto end; | 
|  | if (!BN_mod_sub_quick(r->X, n0, n3, p)) | 
|  | goto end; | 
|  | /* X_r = n6^2 - n5^2 * 'n7' */ | 
|  |  | 
|  | /* 'n9' */ | 
|  | if (!BN_mod_lshift1_quick(n0, r->X, p)) | 
|  | goto end; | 
|  | if (!BN_mod_sub_quick(n0, n3, n0, p)) | 
|  | goto end; | 
|  | /* n9 = n5^2 * 'n7' - 2 * X_r */ | 
|  |  | 
|  | /* Y_r */ | 
|  | if (!field_mul(group, n0, n0, n6, ctx)) | 
|  | goto end; | 
|  | if (!field_mul(group, n5, n4, n5, ctx)) | 
|  | goto end;               /* now n5 is n5^3 */ | 
|  | if (!field_mul(group, n1, n2, n5, ctx)) | 
|  | goto end; | 
|  | if (!BN_mod_sub_quick(n0, n0, n1, p)) | 
|  | goto end; | 
|  | if (BN_is_odd(n0)) | 
|  | if (!BN_add(n0, n0, p)) | 
|  | goto end; | 
|  | /* now  0 <= n0 < 2*p,  and n0 is even */ | 
|  | if (!BN_rshift1(r->Y, n0)) | 
|  | goto end; | 
|  | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | end: | 
|  | if (ctx)                    /* otherwise we already called BN_CTX_end */ | 
|  | BN_CTX_end(ctx); | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | 
|  | BN_CTX *ctx) | 
|  | { | 
|  | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, | 
|  | const BIGNUM *, BN_CTX *); | 
|  | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | 
|  | const BIGNUM *p; | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *n0, *n1, *n2, *n3; | 
|  | int ret = 0; | 
|  |  | 
|  | if (EC_POINT_is_at_infinity(group, a)) { | 
|  | BN_zero(r->Z); | 
|  | r->Z_is_one = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | field_mul = group->meth->field_mul; | 
|  | field_sqr = group->meth->field_sqr; | 
|  | p = group->field; | 
|  |  | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | n0 = BN_CTX_get(ctx); | 
|  | n1 = BN_CTX_get(ctx); | 
|  | n2 = BN_CTX_get(ctx); | 
|  | n3 = BN_CTX_get(ctx); | 
|  | if (n3 == NULL) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * Note that in this function we must not read components of 'a' once we | 
|  | * have written the corresponding components of 'r'. ('r' might the same | 
|  | * as 'a'.) | 
|  | */ | 
|  |  | 
|  | /* n1 */ | 
|  | if (a->Z_is_one) { | 
|  | if (!field_sqr(group, n0, a->X, ctx)) | 
|  | goto err; | 
|  | if (!BN_mod_lshift1_quick(n1, n0, p)) | 
|  | goto err; | 
|  | if (!BN_mod_add_quick(n0, n0, n1, p)) | 
|  | goto err; | 
|  | if (!BN_mod_add_quick(n1, n0, group->a, p)) | 
|  | goto err; | 
|  | /* n1 = 3 * X_a^2 + a_curve */ | 
|  | } else if (group->a_is_minus3) { | 
|  | if (!field_sqr(group, n1, a->Z, ctx)) | 
|  | goto err; | 
|  | if (!BN_mod_add_quick(n0, a->X, n1, p)) | 
|  | goto err; | 
|  | if (!BN_mod_sub_quick(n2, a->X, n1, p)) | 
|  | goto err; | 
|  | if (!field_mul(group, n1, n0, n2, ctx)) | 
|  | goto err; | 
|  | if (!BN_mod_lshift1_quick(n0, n1, p)) | 
|  | goto err; | 
|  | if (!BN_mod_add_quick(n1, n0, n1, p)) | 
|  | goto err; | 
|  | /*- | 
|  | * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) | 
|  | *    = 3 * X_a^2 - 3 * Z_a^4 | 
|  | */ | 
|  | } else { | 
|  | if (!field_sqr(group, n0, a->X, ctx)) | 
|  | goto err; | 
|  | if (!BN_mod_lshift1_quick(n1, n0, p)) | 
|  | goto err; | 
|  | if (!BN_mod_add_quick(n0, n0, n1, p)) | 
|  | goto err; | 
|  | if (!field_sqr(group, n1, a->Z, ctx)) | 
|  | goto err; | 
|  | if (!field_sqr(group, n1, n1, ctx)) | 
|  | goto err; | 
|  | if (!field_mul(group, n1, n1, group->a, ctx)) | 
|  | goto err; | 
|  | if (!BN_mod_add_quick(n1, n1, n0, p)) | 
|  | goto err; | 
|  | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ | 
|  | } | 
|  |  | 
|  | /* Z_r */ | 
|  | if (a->Z_is_one) { | 
|  | if (!BN_copy(n0, a->Y)) | 
|  | goto err; | 
|  | } else { | 
|  | if (!field_mul(group, n0, a->Y, a->Z, ctx)) | 
|  | goto err; | 
|  | } | 
|  | if (!BN_mod_lshift1_quick(r->Z, n0, p)) | 
|  | goto err; | 
|  | r->Z_is_one = 0; | 
|  | /* Z_r = 2 * Y_a * Z_a */ | 
|  |  | 
|  | /* n2 */ | 
|  | if (!field_sqr(group, n3, a->Y, ctx)) | 
|  | goto err; | 
|  | if (!field_mul(group, n2, a->X, n3, ctx)) | 
|  | goto err; | 
|  | if (!BN_mod_lshift_quick(n2, n2, 2, p)) | 
|  | goto err; | 
|  | /* n2 = 4 * X_a * Y_a^2 */ | 
|  |  | 
|  | /* X_r */ | 
|  | if (!BN_mod_lshift1_quick(n0, n2, p)) | 
|  | goto err; | 
|  | if (!field_sqr(group, r->X, n1, ctx)) | 
|  | goto err; | 
|  | if (!BN_mod_sub_quick(r->X, r->X, n0, p)) | 
|  | goto err; | 
|  | /* X_r = n1^2 - 2 * n2 */ | 
|  |  | 
|  | /* n3 */ | 
|  | if (!field_sqr(group, n0, n3, ctx)) | 
|  | goto err; | 
|  | if (!BN_mod_lshift_quick(n3, n0, 3, p)) | 
|  | goto err; | 
|  | /* n3 = 8 * Y_a^4 */ | 
|  |  | 
|  | /* Y_r */ | 
|  | if (!BN_mod_sub_quick(n0, n2, r->X, p)) | 
|  | goto err; | 
|  | if (!field_mul(group, n0, n1, n0, ctx)) | 
|  | goto err; | 
|  | if (!BN_mod_sub_quick(r->Y, n0, n3, p)) | 
|  | goto err; | 
|  | /* Y_r = n1 * (n2 - X_r) - n3 */ | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | 
|  | { | 
|  | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y)) | 
|  | /* point is its own inverse */ | 
|  | return 1; | 
|  |  | 
|  | return BN_usub(point->Y, group->field, point->Y); | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | 
|  | { | 
|  | return BN_is_zero(point->Z); | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, | 
|  | BN_CTX *ctx) | 
|  | { | 
|  | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, | 
|  | const BIGNUM *, BN_CTX *); | 
|  | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | 
|  | const BIGNUM *p; | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *rh, *tmp, *Z4, *Z6; | 
|  | int ret = -1; | 
|  |  | 
|  | if (EC_POINT_is_at_infinity(group, point)) | 
|  | return 1; | 
|  |  | 
|  | field_mul = group->meth->field_mul; | 
|  | field_sqr = group->meth->field_sqr; | 
|  | p = group->field; | 
|  |  | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | rh = BN_CTX_get(ctx); | 
|  | tmp = BN_CTX_get(ctx); | 
|  | Z4 = BN_CTX_get(ctx); | 
|  | Z6 = BN_CTX_get(ctx); | 
|  | if (Z6 == NULL) | 
|  | goto err; | 
|  |  | 
|  | /*- | 
|  | * We have a curve defined by a Weierstrass equation | 
|  | *      y^2 = x^3 + a*x + b. | 
|  | * The point to consider is given in Jacobian projective coordinates | 
|  | * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3). | 
|  | * Substituting this and multiplying by  Z^6  transforms the above equation into | 
|  | *      Y^2 = X^3 + a*X*Z^4 + b*Z^6. | 
|  | * To test this, we add up the right-hand side in 'rh'. | 
|  | */ | 
|  |  | 
|  | /* rh := X^2 */ | 
|  | if (!field_sqr(group, rh, point->X, ctx)) | 
|  | goto err; | 
|  |  | 
|  | if (!point->Z_is_one) { | 
|  | if (!field_sqr(group, tmp, point->Z, ctx)) | 
|  | goto err; | 
|  | if (!field_sqr(group, Z4, tmp, ctx)) | 
|  | goto err; | 
|  | if (!field_mul(group, Z6, Z4, tmp, ctx)) | 
|  | goto err; | 
|  |  | 
|  | /* rh := (rh + a*Z^4)*X */ | 
|  | if (group->a_is_minus3) { | 
|  | if (!BN_mod_lshift1_quick(tmp, Z4, p)) | 
|  | goto err; | 
|  | if (!BN_mod_add_quick(tmp, tmp, Z4, p)) | 
|  | goto err; | 
|  | if (!BN_mod_sub_quick(rh, rh, tmp, p)) | 
|  | goto err; | 
|  | if (!field_mul(group, rh, rh, point->X, ctx)) | 
|  | goto err; | 
|  | } else { | 
|  | if (!field_mul(group, tmp, Z4, group->a, ctx)) | 
|  | goto err; | 
|  | if (!BN_mod_add_quick(rh, rh, tmp, p)) | 
|  | goto err; | 
|  | if (!field_mul(group, rh, rh, point->X, ctx)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* rh := rh + b*Z^6 */ | 
|  | if (!field_mul(group, tmp, group->b, Z6, ctx)) | 
|  | goto err; | 
|  | if (!BN_mod_add_quick(rh, rh, tmp, p)) | 
|  | goto err; | 
|  | } else { | 
|  | /* point->Z_is_one */ | 
|  |  | 
|  | /* rh := (rh + a)*X */ | 
|  | if (!BN_mod_add_quick(rh, rh, group->a, p)) | 
|  | goto err; | 
|  | if (!field_mul(group, rh, rh, point->X, ctx)) | 
|  | goto err; | 
|  | /* rh := rh + b */ | 
|  | if (!BN_mod_add_quick(rh, rh, group->b, p)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* 'lh' := Y^2 */ | 
|  | if (!field_sqr(group, tmp, point->Y, ctx)) | 
|  | goto err; | 
|  |  | 
|  | ret = (0 == BN_ucmp(tmp, rh)); | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, | 
|  | const EC_POINT *b, BN_CTX *ctx) | 
|  | { | 
|  | /*- | 
|  | * return values: | 
|  | *  -1   error | 
|  | *   0   equal (in affine coordinates) | 
|  | *   1   not equal | 
|  | */ | 
|  |  | 
|  | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, | 
|  | const BIGNUM *, BN_CTX *); | 
|  | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *tmp1, *tmp2, *Za23, *Zb23; | 
|  | const BIGNUM *tmp1_, *tmp2_; | 
|  | int ret = -1; | 
|  |  | 
|  | if (EC_POINT_is_at_infinity(group, a)) { | 
|  | return EC_POINT_is_at_infinity(group, b) ? 0 : 1; | 
|  | } | 
|  |  | 
|  | if (EC_POINT_is_at_infinity(group, b)) | 
|  | return 1; | 
|  |  | 
|  | if (a->Z_is_one && b->Z_is_one) { | 
|  | return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1; | 
|  | } | 
|  |  | 
|  | field_mul = group->meth->field_mul; | 
|  | field_sqr = group->meth->field_sqr; | 
|  |  | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | tmp1 = BN_CTX_get(ctx); | 
|  | tmp2 = BN_CTX_get(ctx); | 
|  | Za23 = BN_CTX_get(ctx); | 
|  | Zb23 = BN_CTX_get(ctx); | 
|  | if (Zb23 == NULL) | 
|  | goto end; | 
|  |  | 
|  | /*- | 
|  | * We have to decide whether | 
|  | *     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), | 
|  | * or equivalently, whether | 
|  | *     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). | 
|  | */ | 
|  |  | 
|  | if (!b->Z_is_one) { | 
|  | if (!field_sqr(group, Zb23, b->Z, ctx)) | 
|  | goto end; | 
|  | if (!field_mul(group, tmp1, a->X, Zb23, ctx)) | 
|  | goto end; | 
|  | tmp1_ = tmp1; | 
|  | } else | 
|  | tmp1_ = a->X; | 
|  | if (!a->Z_is_one) { | 
|  | if (!field_sqr(group, Za23, a->Z, ctx)) | 
|  | goto end; | 
|  | if (!field_mul(group, tmp2, b->X, Za23, ctx)) | 
|  | goto end; | 
|  | tmp2_ = tmp2; | 
|  | } else | 
|  | tmp2_ = b->X; | 
|  |  | 
|  | /* compare  X_a*Z_b^2  with  X_b*Z_a^2 */ | 
|  | if (BN_cmp(tmp1_, tmp2_) != 0) { | 
|  | ret = 1;                /* points differ */ | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | if (!b->Z_is_one) { | 
|  | if (!field_mul(group, Zb23, Zb23, b->Z, ctx)) | 
|  | goto end; | 
|  | if (!field_mul(group, tmp1, a->Y, Zb23, ctx)) | 
|  | goto end; | 
|  | /* tmp1_ = tmp1 */ | 
|  | } else | 
|  | tmp1_ = a->Y; | 
|  | if (!a->Z_is_one) { | 
|  | if (!field_mul(group, Za23, Za23, a->Z, ctx)) | 
|  | goto end; | 
|  | if (!field_mul(group, tmp2, b->Y, Za23, ctx)) | 
|  | goto end; | 
|  | /* tmp2_ = tmp2 */ | 
|  | } else | 
|  | tmp2_ = b->Y; | 
|  |  | 
|  | /* compare  Y_a*Z_b^3  with  Y_b*Z_a^3 */ | 
|  | if (BN_cmp(tmp1_, tmp2_) != 0) { | 
|  | ret = 1;                /* points differ */ | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* points are equal */ | 
|  | ret = 0; | 
|  |  | 
|  | end: | 
|  | BN_CTX_end(ctx); | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, | 
|  | BN_CTX *ctx) | 
|  | { | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *x, *y; | 
|  | int ret = 0; | 
|  |  | 
|  | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) | 
|  | return 1; | 
|  |  | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | x = BN_CTX_get(ctx); | 
|  | y = BN_CTX_get(ctx); | 
|  | if (y == NULL) | 
|  | goto err; | 
|  |  | 
|  | if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx)) | 
|  | goto err; | 
|  | if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) | 
|  | goto err; | 
|  | if (!point->Z_is_one) { | 
|  | ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, | 
|  | EC_POINT *points[], BN_CTX *ctx) | 
|  | { | 
|  | BN_CTX *new_ctx = NULL; | 
|  | BIGNUM *tmp, *tmp_Z; | 
|  | BIGNUM **prod_Z = NULL; | 
|  | size_t i; | 
|  | int ret = 0; | 
|  |  | 
|  | if (num == 0) | 
|  | return 1; | 
|  |  | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | tmp = BN_CTX_get(ctx); | 
|  | tmp_Z = BN_CTX_get(ctx); | 
|  | if (tmp_Z == NULL) | 
|  | goto err; | 
|  |  | 
|  | prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0])); | 
|  | if (prod_Z == NULL) | 
|  | goto err; | 
|  | for (i = 0; i < num; i++) { | 
|  | prod_Z[i] = BN_new(); | 
|  | if (prod_Z[i] == NULL) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z, | 
|  | * skipping any zero-valued inputs (pretend that they're 1). | 
|  | */ | 
|  |  | 
|  | if (!BN_is_zero(points[0]->Z)) { | 
|  | if (!BN_copy(prod_Z[0], points[0]->Z)) | 
|  | goto err; | 
|  | } else { | 
|  | if (group->meth->field_set_to_one != 0) { | 
|  | if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) | 
|  | goto err; | 
|  | } else { | 
|  | if (!BN_one(prod_Z[0])) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 1; i < num; i++) { | 
|  | if (!BN_is_zero(points[i]->Z)) { | 
|  | if (!group-> | 
|  | meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z, | 
|  | ctx)) | 
|  | goto err; | 
|  | } else { | 
|  | if (!BN_copy(prod_Z[i], prod_Z[i - 1])) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now use a single explicit inversion to replace every non-zero | 
|  | * points[i]->Z by its inverse. | 
|  | */ | 
|  |  | 
|  | if (!BN_mod_inverse(tmp, prod_Z[num - 1], group->field, ctx)) { | 
|  | ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB); | 
|  | goto err; | 
|  | } | 
|  | if (group->meth->field_encode != 0) { | 
|  | /* | 
|  | * In the Montgomery case, we just turned R*H (representing H) into | 
|  | * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to | 
|  | * multiply by the Montgomery factor twice. | 
|  | */ | 
|  | if (!group->meth->field_encode(group, tmp, tmp, ctx)) | 
|  | goto err; | 
|  | if (!group->meth->field_encode(group, tmp, tmp, ctx)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | for (i = num - 1; i > 0; --i) { | 
|  | /* | 
|  | * Loop invariant: tmp is the product of the inverses of points[0]->Z | 
|  | * .. points[i]->Z (zero-valued inputs skipped). | 
|  | */ | 
|  | if (!BN_is_zero(points[i]->Z)) { | 
|  | /* | 
|  | * Set tmp_Z to the inverse of points[i]->Z (as product of Z | 
|  | * inverses 0 .. i, Z values 0 .. i - 1). | 
|  | */ | 
|  | if (!group-> | 
|  | meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx)) | 
|  | goto err; | 
|  | /* | 
|  | * Update tmp to satisfy the loop invariant for i - 1. | 
|  | */ | 
|  | if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx)) | 
|  | goto err; | 
|  | /* Replace points[i]->Z by its inverse. */ | 
|  | if (!BN_copy(points[i]->Z, tmp_Z)) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!BN_is_zero(points[0]->Z)) { | 
|  | /* Replace points[0]->Z by its inverse. */ | 
|  | if (!BN_copy(points[0]->Z, tmp)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* Finally, fix up the X and Y coordinates for all points. */ | 
|  |  | 
|  | for (i = 0; i < num; i++) { | 
|  | EC_POINT *p = points[i]; | 
|  |  | 
|  | if (!BN_is_zero(p->Z)) { | 
|  | /* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */ | 
|  |  | 
|  | if (!group->meth->field_sqr(group, tmp, p->Z, ctx)) | 
|  | goto err; | 
|  | if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx)) | 
|  | goto err; | 
|  |  | 
|  | if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx)) | 
|  | goto err; | 
|  | if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx)) | 
|  | goto err; | 
|  |  | 
|  | if (group->meth->field_set_to_one != 0) { | 
|  | if (!group->meth->field_set_to_one(group, p->Z, ctx)) | 
|  | goto err; | 
|  | } else { | 
|  | if (!BN_one(p->Z)) | 
|  | goto err; | 
|  | } | 
|  | p->Z_is_one = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | BN_CTX_free(new_ctx); | 
|  | if (prod_Z != NULL) { | 
|  | for (i = 0; i < num; i++) { | 
|  | if (prod_Z[i] == NULL) | 
|  | break; | 
|  | BN_clear_free(prod_Z[i]); | 
|  | } | 
|  | OPENSSL_free(prod_Z); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | 
|  | const BIGNUM *b, BN_CTX *ctx) | 
|  | { | 
|  | return BN_mod_mul(r, a, b, group->field, ctx); | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, | 
|  | BN_CTX *ctx) | 
|  | { | 
|  | return BN_mod_sqr(r, a, group->field, ctx); | 
|  | } |