|  | /* | 
|  | * Copyright 2015-2019 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the Apache License 2.0 (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <string.h> | 
|  | #include <stdlib.h> | 
|  | #include <ctype.h> | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/pem.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/x509v3.h> | 
|  | #include <openssl/pkcs12.h> | 
|  | #include <openssl/kdf.h> | 
|  | #include "internal/numbers.h" | 
|  | #include "testutil.h" | 
|  | #include "evp_test.h" | 
|  |  | 
|  | #define AAD_NUM 4 | 
|  |  | 
|  | typedef struct evp_test_method_st EVP_TEST_METHOD; | 
|  |  | 
|  | /* | 
|  | * Structure holding test information | 
|  | */ | 
|  | typedef struct evp_test_st { | 
|  | STANZA s;                     /* Common test stanza */ | 
|  | char *name; | 
|  | int skip;                     /* Current test should be skipped */ | 
|  | const EVP_TEST_METHOD *meth;  /* method for this test */ | 
|  | const char *err, *aux_err;    /* Error string for test */ | 
|  | char *expected_err;           /* Expected error value of test */ | 
|  | char *func;                   /* Expected error function string */ | 
|  | char *reason;                 /* Expected error reason string */ | 
|  | void *data;                   /* test specific data */ | 
|  | } EVP_TEST; | 
|  |  | 
|  | /* | 
|  | * Test method structure | 
|  | */ | 
|  | struct evp_test_method_st { | 
|  | /* Name of test as it appears in file */ | 
|  | const char *name; | 
|  | /* Initialise test for "alg" */ | 
|  | int (*init) (EVP_TEST * t, const char *alg); | 
|  | /* Clean up method */ | 
|  | void (*cleanup) (EVP_TEST * t); | 
|  | /* Test specific name value pair processing */ | 
|  | int (*parse) (EVP_TEST * t, const char *name, const char *value); | 
|  | /* Run the test itself */ | 
|  | int (*run_test) (EVP_TEST * t); | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Linked list of named keys. | 
|  | */ | 
|  | typedef struct key_list_st { | 
|  | char *name; | 
|  | EVP_PKEY *key; | 
|  | struct key_list_st *next; | 
|  | } KEY_LIST; | 
|  |  | 
|  | /* | 
|  | * List of public and private keys | 
|  | */ | 
|  | static KEY_LIST *private_keys; | 
|  | static KEY_LIST *public_keys; | 
|  | static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst); | 
|  |  | 
|  | static int parse_bin(const char *value, unsigned char **buf, size_t *buflen); | 
|  |  | 
|  | /* | 
|  | * Compare two memory regions for equality, returning zero if they differ. | 
|  | * However, if there is expected to be an error and the actual error | 
|  | * matches then the memory is expected to be different so handle this | 
|  | * case without producing unnecessary test framework output. | 
|  | */ | 
|  | static int memory_err_compare(EVP_TEST *t, const char *err, | 
|  | const void *expected, size_t expected_len, | 
|  | const void *got, size_t got_len) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | if (t->expected_err != NULL && strcmp(t->expected_err, err) == 0) | 
|  | r = !TEST_mem_ne(expected, expected_len, got, got_len); | 
|  | else | 
|  | r = TEST_mem_eq(expected, expected_len, got, got_len); | 
|  | if (!r) | 
|  | t->err = err; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Structure used to hold a list of blocks of memory to test | 
|  | * calls to "update" like functions. | 
|  | */ | 
|  | struct evp_test_buffer_st { | 
|  | unsigned char *buf; | 
|  | size_t buflen; | 
|  | size_t count; | 
|  | int count_set; | 
|  | }; | 
|  |  | 
|  | static void evp_test_buffer_free(EVP_TEST_BUFFER *db) | 
|  | { | 
|  | if (db != NULL) { | 
|  | OPENSSL_free(db->buf); | 
|  | OPENSSL_free(db); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * append buffer to a list | 
|  | */ | 
|  | static int evp_test_buffer_append(const char *value, | 
|  | STACK_OF(EVP_TEST_BUFFER) **sk) | 
|  | { | 
|  | EVP_TEST_BUFFER *db = NULL; | 
|  |  | 
|  | if (!TEST_ptr(db = OPENSSL_malloc(sizeof(*db)))) | 
|  | goto err; | 
|  |  | 
|  | if (!parse_bin(value, &db->buf, &db->buflen)) | 
|  | goto err; | 
|  | db->count = 1; | 
|  | db->count_set = 0; | 
|  |  | 
|  | if (*sk == NULL && !TEST_ptr(*sk = sk_EVP_TEST_BUFFER_new_null())) | 
|  | goto err; | 
|  | if (!sk_EVP_TEST_BUFFER_push(*sk, db)) | 
|  | goto err; | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | err: | 
|  | evp_test_buffer_free(db); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * replace last buffer in list with copies of itself | 
|  | */ | 
|  | static int evp_test_buffer_ncopy(const char *value, | 
|  | STACK_OF(EVP_TEST_BUFFER) *sk) | 
|  | { | 
|  | EVP_TEST_BUFFER *db; | 
|  | unsigned char *tbuf, *p; | 
|  | size_t tbuflen; | 
|  | int ncopy = atoi(value); | 
|  | int i; | 
|  |  | 
|  | if (ncopy <= 0) | 
|  | return 0; | 
|  | if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0) | 
|  | return 0; | 
|  | db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1); | 
|  |  | 
|  | tbuflen = db->buflen * ncopy; | 
|  | if (!TEST_ptr(tbuf = OPENSSL_malloc(tbuflen))) | 
|  | return 0; | 
|  | for (i = 0, p = tbuf; i < ncopy; i++, p += db->buflen) | 
|  | memcpy(p, db->buf, db->buflen); | 
|  |  | 
|  | OPENSSL_free(db->buf); | 
|  | db->buf = tbuf; | 
|  | db->buflen = tbuflen; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set repeat count for last buffer in list | 
|  | */ | 
|  | static int evp_test_buffer_set_count(const char *value, | 
|  | STACK_OF(EVP_TEST_BUFFER) *sk) | 
|  | { | 
|  | EVP_TEST_BUFFER *db; | 
|  | int count = atoi(value); | 
|  |  | 
|  | if (count <= 0) | 
|  | return 0; | 
|  |  | 
|  | if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0) | 
|  | return 0; | 
|  |  | 
|  | db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1); | 
|  | if (db->count_set != 0) | 
|  | return 0; | 
|  |  | 
|  | db->count = (size_t)count; | 
|  | db->count_set = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * call "fn" with each element of the list in turn | 
|  | */ | 
|  | static int evp_test_buffer_do(STACK_OF(EVP_TEST_BUFFER) *sk, | 
|  | int (*fn)(void *ctx, | 
|  | const unsigned char *buf, | 
|  | size_t buflen), | 
|  | void *ctx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < sk_EVP_TEST_BUFFER_num(sk); i++) { | 
|  | EVP_TEST_BUFFER *tb = sk_EVP_TEST_BUFFER_value(sk, i); | 
|  | size_t j; | 
|  |  | 
|  | for (j = 0; j < tb->count; j++) { | 
|  | if (fn(ctx, tb->buf, tb->buflen) <= 0) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unescape some sequences in string literals (only \n for now). | 
|  | * Return an allocated buffer, set |out_len|.  If |input_len| | 
|  | * is zero, get an empty buffer but set length to zero. | 
|  | */ | 
|  | static unsigned char* unescape(const char *input, size_t input_len, | 
|  | size_t *out_len) | 
|  | { | 
|  | unsigned char *ret, *p; | 
|  | size_t i; | 
|  |  | 
|  | if (input_len == 0) { | 
|  | *out_len = 0; | 
|  | return OPENSSL_zalloc(1); | 
|  | } | 
|  |  | 
|  | /* Escaping is non-expanding; over-allocate original size for simplicity. */ | 
|  | if (!TEST_ptr(ret = p = OPENSSL_malloc(input_len))) | 
|  | return NULL; | 
|  |  | 
|  | for (i = 0; i < input_len; i++) { | 
|  | if (*input == '\\') { | 
|  | if (i == input_len - 1 || *++input != 'n') { | 
|  | TEST_error("Bad escape sequence in file"); | 
|  | goto err; | 
|  | } | 
|  | *p++ = '\n'; | 
|  | i++; | 
|  | input++; | 
|  | } else { | 
|  | *p++ = *input++; | 
|  | } | 
|  | } | 
|  |  | 
|  | *out_len = p - ret; | 
|  | return ret; | 
|  |  | 
|  | err: | 
|  | OPENSSL_free(ret); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For a hex string "value" convert to a binary allocated buffer. | 
|  | * Return 1 on success or 0 on failure. | 
|  | */ | 
|  | static int parse_bin(const char *value, unsigned char **buf, size_t *buflen) | 
|  | { | 
|  | long len; | 
|  |  | 
|  | /* Check for NULL literal */ | 
|  | if (strcmp(value, "NULL") == 0) { | 
|  | *buf = NULL; | 
|  | *buflen = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Check for empty value */ | 
|  | if (*value == '\0') { | 
|  | /* | 
|  | * Don't return NULL for zero length buffer. This is needed for | 
|  | * some tests with empty keys: HMAC_Init_ex() expects a non-NULL key | 
|  | * buffer even if the key length is 0, in order to detect key reset. | 
|  | */ | 
|  | *buf = OPENSSL_malloc(1); | 
|  | if (*buf == NULL) | 
|  | return 0; | 
|  | **buf = 0; | 
|  | *buflen = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Check for string literal */ | 
|  | if (value[0] == '"') { | 
|  | size_t vlen = strlen(++value); | 
|  |  | 
|  | if (vlen == 0 || value[vlen - 1] != '"') | 
|  | return 0; | 
|  | vlen--; | 
|  | *buf = unescape(value, vlen, buflen); | 
|  | return *buf == NULL ? 0 : 1; | 
|  | } | 
|  |  | 
|  | /* Otherwise assume as hex literal and convert it to binary buffer */ | 
|  | if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) { | 
|  | TEST_info("Can't convert %s", value); | 
|  | TEST_openssl_errors(); | 
|  | return -1; | 
|  | } | 
|  | /* Size of input buffer means we'll never overflow */ | 
|  | *buflen = len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | ***  MESSAGE DIGEST TESTS | 
|  | **/ | 
|  |  | 
|  | typedef struct digest_data_st { | 
|  | /* Digest this test is for */ | 
|  | const EVP_MD *digest; | 
|  | /* Input to digest */ | 
|  | STACK_OF(EVP_TEST_BUFFER) *input; | 
|  | /* Expected output */ | 
|  | unsigned char *output; | 
|  | size_t output_len; | 
|  | } DIGEST_DATA; | 
|  |  | 
|  | static int digest_test_init(EVP_TEST *t, const char *alg) | 
|  | { | 
|  | DIGEST_DATA *mdat; | 
|  | const EVP_MD *digest; | 
|  |  | 
|  | if ((digest = EVP_get_digestbyname(alg)) == NULL) { | 
|  | /* If alg has an OID assume disabled algorithm */ | 
|  | if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { | 
|  | t->skip = 1; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat)))) | 
|  | return 0; | 
|  | t->data = mdat; | 
|  | mdat->digest = digest; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void digest_test_cleanup(EVP_TEST *t) | 
|  | { | 
|  | DIGEST_DATA *mdat = t->data; | 
|  |  | 
|  | sk_EVP_TEST_BUFFER_pop_free(mdat->input, evp_test_buffer_free); | 
|  | OPENSSL_free(mdat->output); | 
|  | } | 
|  |  | 
|  | static int digest_test_parse(EVP_TEST *t, | 
|  | const char *keyword, const char *value) | 
|  | { | 
|  | DIGEST_DATA *mdata = t->data; | 
|  |  | 
|  | if (strcmp(keyword, "Input") == 0) | 
|  | return evp_test_buffer_append(value, &mdata->input); | 
|  | if (strcmp(keyword, "Output") == 0) | 
|  | return parse_bin(value, &mdata->output, &mdata->output_len); | 
|  | if (strcmp(keyword, "Count") == 0) | 
|  | return evp_test_buffer_set_count(value, mdata->input); | 
|  | if (strcmp(keyword, "Ncopy") == 0) | 
|  | return evp_test_buffer_ncopy(value, mdata->input); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int digest_update_fn(void *ctx, const unsigned char *buf, size_t buflen) | 
|  | { | 
|  | return EVP_DigestUpdate(ctx, buf, buflen); | 
|  | } | 
|  |  | 
|  | static int digest_test_run(EVP_TEST *t) | 
|  | { | 
|  | DIGEST_DATA *expected = t->data; | 
|  | EVP_MD_CTX *mctx; | 
|  | unsigned char *got = NULL; | 
|  | unsigned int got_len; | 
|  |  | 
|  | t->err = "TEST_FAILURE"; | 
|  | if (!TEST_ptr(mctx = EVP_MD_CTX_new())) | 
|  | goto err; | 
|  |  | 
|  | got = OPENSSL_malloc(expected->output_len > EVP_MAX_MD_SIZE ? | 
|  | expected->output_len : EVP_MAX_MD_SIZE); | 
|  | if (!TEST_ptr(got)) | 
|  | goto err; | 
|  |  | 
|  | if (!EVP_DigestInit_ex(mctx, expected->digest, NULL)) { | 
|  | t->err = "DIGESTINIT_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!evp_test_buffer_do(expected->input, digest_update_fn, mctx)) { | 
|  | t->err = "DIGESTUPDATE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (EVP_MD_flags(expected->digest) & EVP_MD_FLAG_XOF) { | 
|  | got_len = expected->output_len; | 
|  | if (!EVP_DigestFinalXOF(mctx, got, got_len)) { | 
|  | t->err = "DIGESTFINALXOF_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | } else { | 
|  | if (!EVP_DigestFinal(mctx, got, &got_len)) { | 
|  | t->err = "DIGESTFINAL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | if (!TEST_int_eq(expected->output_len, got_len)) { | 
|  | t->err = "DIGEST_LENGTH_MISMATCH"; | 
|  | goto err; | 
|  | } | 
|  | if (!memory_err_compare(t, "DIGEST_MISMATCH", | 
|  | expected->output, expected->output_len, | 
|  | got, got_len)) | 
|  | goto err; | 
|  |  | 
|  | t->err = NULL; | 
|  |  | 
|  | err: | 
|  | OPENSSL_free(got); | 
|  | EVP_MD_CTX_free(mctx); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD digest_test_method = { | 
|  | "Digest", | 
|  | digest_test_init, | 
|  | digest_test_cleanup, | 
|  | digest_test_parse, | 
|  | digest_test_run | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | ***  CIPHER TESTS | 
|  | **/ | 
|  |  | 
|  | typedef struct cipher_data_st { | 
|  | const EVP_CIPHER *cipher; | 
|  | int enc; | 
|  | /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */ | 
|  | int aead; | 
|  | unsigned char *key; | 
|  | size_t key_len; | 
|  | unsigned char *iv; | 
|  | size_t iv_len; | 
|  | unsigned char *plaintext; | 
|  | size_t plaintext_len; | 
|  | unsigned char *ciphertext; | 
|  | size_t ciphertext_len; | 
|  | /* GCM, CCM, OCB and SIV only */ | 
|  | unsigned char *aad[AAD_NUM]; | 
|  | size_t aad_len[AAD_NUM]; | 
|  | unsigned char *tag; | 
|  | size_t tag_len; | 
|  | } CIPHER_DATA; | 
|  |  | 
|  | static int cipher_test_init(EVP_TEST *t, const char *alg) | 
|  | { | 
|  | const EVP_CIPHER *cipher; | 
|  | CIPHER_DATA *cdat; | 
|  | int m; | 
|  |  | 
|  | if ((cipher = EVP_get_cipherbyname(alg)) == NULL) { | 
|  | /* If alg has an OID assume disabled algorithm */ | 
|  | if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { | 
|  | t->skip = 1; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | cdat = OPENSSL_zalloc(sizeof(*cdat)); | 
|  | cdat->cipher = cipher; | 
|  | cdat->enc = -1; | 
|  | m = EVP_CIPHER_mode(cipher); | 
|  | if (m == EVP_CIPH_GCM_MODE | 
|  | || m == EVP_CIPH_OCB_MODE | 
|  | || m == EVP_CIPH_SIV_MODE | 
|  | || m == EVP_CIPH_CCM_MODE) | 
|  | cdat->aead = m; | 
|  | else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) | 
|  | cdat->aead = -1; | 
|  | else | 
|  | cdat->aead = 0; | 
|  |  | 
|  | t->data = cdat; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void cipher_test_cleanup(EVP_TEST *t) | 
|  | { | 
|  | int i; | 
|  | CIPHER_DATA *cdat = t->data; | 
|  |  | 
|  | OPENSSL_free(cdat->key); | 
|  | OPENSSL_free(cdat->iv); | 
|  | OPENSSL_free(cdat->ciphertext); | 
|  | OPENSSL_free(cdat->plaintext); | 
|  | for (i = 0; i < AAD_NUM; i++) | 
|  | OPENSSL_free(cdat->aad[i]); | 
|  | OPENSSL_free(cdat->tag); | 
|  | } | 
|  |  | 
|  | static int cipher_test_parse(EVP_TEST *t, const char *keyword, | 
|  | const char *value) | 
|  | { | 
|  | CIPHER_DATA *cdat = t->data; | 
|  | int i; | 
|  |  | 
|  | if (strcmp(keyword, "Key") == 0) | 
|  | return parse_bin(value, &cdat->key, &cdat->key_len); | 
|  | if (strcmp(keyword, "IV") == 0) | 
|  | return parse_bin(value, &cdat->iv, &cdat->iv_len); | 
|  | if (strcmp(keyword, "Plaintext") == 0) | 
|  | return parse_bin(value, &cdat->plaintext, &cdat->plaintext_len); | 
|  | if (strcmp(keyword, "Ciphertext") == 0) | 
|  | return parse_bin(value, &cdat->ciphertext, &cdat->ciphertext_len); | 
|  | if (cdat->aead) { | 
|  | if (strcmp(keyword, "AAD") == 0) { | 
|  | for (i = 0; i < AAD_NUM; i++) { | 
|  | if (cdat->aad[i] == NULL) | 
|  | return parse_bin(value, &cdat->aad[i], &cdat->aad_len[i]); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | if (strcmp(keyword, "Tag") == 0) | 
|  | return parse_bin(value, &cdat->tag, &cdat->tag_len); | 
|  | } | 
|  |  | 
|  | if (strcmp(keyword, "Operation") == 0) { | 
|  | if (strcmp(value, "ENCRYPT") == 0) | 
|  | cdat->enc = 1; | 
|  | else if (strcmp(value, "DECRYPT") == 0) | 
|  | cdat->enc = 0; | 
|  | else | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cipher_test_enc(EVP_TEST *t, int enc, | 
|  | size_t out_misalign, size_t inp_misalign, int frag) | 
|  | { | 
|  | CIPHER_DATA *expected = t->data; | 
|  | unsigned char *in, *expected_out, *tmp = NULL; | 
|  | size_t in_len, out_len, donelen = 0; | 
|  | int ok = 0, tmplen, chunklen, tmpflen, i; | 
|  | EVP_CIPHER_CTX *ctx = NULL; | 
|  |  | 
|  | t->err = "TEST_FAILURE"; | 
|  | if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new())) | 
|  | goto err; | 
|  | EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW); | 
|  | if (enc) { | 
|  | in = expected->plaintext; | 
|  | in_len = expected->plaintext_len; | 
|  | expected_out = expected->ciphertext; | 
|  | out_len = expected->ciphertext_len; | 
|  | } else { | 
|  | in = expected->ciphertext; | 
|  | in_len = expected->ciphertext_len; | 
|  | expected_out = expected->plaintext; | 
|  | out_len = expected->plaintext_len; | 
|  | } | 
|  | if (inp_misalign == (size_t)-1) { | 
|  | /* | 
|  | * Exercise in-place encryption | 
|  | */ | 
|  | tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH); | 
|  | if (!tmp) | 
|  | goto err; | 
|  | in = memcpy(tmp + out_misalign, in, in_len); | 
|  | } else { | 
|  | inp_misalign += 16 - ((out_misalign + in_len) & 15); | 
|  | /* | 
|  | * 'tmp' will store both output and copy of input. We make the copy | 
|  | * of input to specifically aligned part of 'tmp'. So we just | 
|  | * figured out how much padding would ensure the required alignment, | 
|  | * now we allocate extended buffer and finally copy the input just | 
|  | * past inp_misalign in expression below. Output will be written | 
|  | * past out_misalign... | 
|  | */ | 
|  | tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH + | 
|  | inp_misalign + in_len); | 
|  | if (!tmp) | 
|  | goto err; | 
|  | in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH + | 
|  | inp_misalign, in, in_len); | 
|  | } | 
|  | if (!EVP_CipherInit_ex(ctx, expected->cipher, NULL, NULL, NULL, enc)) { | 
|  | t->err = "CIPHERINIT_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (expected->iv) { | 
|  | if (expected->aead) { | 
|  | if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, | 
|  | expected->iv_len, 0)) { | 
|  | t->err = "INVALID_IV_LENGTH"; | 
|  | goto err; | 
|  | } | 
|  | } else if (expected->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx)) { | 
|  | t->err = "INVALID_IV_LENGTH"; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | if (expected->aead) { | 
|  | unsigned char *tag; | 
|  | /* | 
|  | * If encrypting or OCB just set tag length initially, otherwise | 
|  | * set tag length and value. | 
|  | */ | 
|  | if (enc || expected->aead == EVP_CIPH_OCB_MODE) { | 
|  | t->err = "TAG_LENGTH_SET_ERROR"; | 
|  | tag = NULL; | 
|  | } else { | 
|  | t->err = "TAG_SET_ERROR"; | 
|  | tag = expected->tag; | 
|  | } | 
|  | if (tag || expected->aead != EVP_CIPH_GCM_MODE) { | 
|  | if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, | 
|  | expected->tag_len, tag)) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!EVP_CIPHER_CTX_set_key_length(ctx, expected->key_len)) { | 
|  | t->err = "INVALID_KEY_LENGTH"; | 
|  | goto err; | 
|  | } | 
|  | if (!EVP_CipherInit_ex(ctx, NULL, NULL, expected->key, expected->iv, -1)) { | 
|  | t->err = "KEY_SET_ERROR"; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!enc && expected->aead == EVP_CIPH_OCB_MODE) { | 
|  | if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, | 
|  | expected->tag_len, expected->tag)) { | 
|  | t->err = "TAG_SET_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (expected->aead == EVP_CIPH_CCM_MODE) { | 
|  | if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) { | 
|  | t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | if (expected->aad[0] != NULL) { | 
|  | t->err = "AAD_SET_ERROR"; | 
|  | if (!frag) { | 
|  | for (i = 0; expected->aad[i] != NULL; i++) { | 
|  | if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i], | 
|  | expected->aad_len[i])) | 
|  | goto err; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Supply the AAD in chunks less than the block size where possible | 
|  | */ | 
|  | for (i = 0; expected->aad[i] != NULL; i++) { | 
|  | if (expected->aad_len[i] > 0) { | 
|  | if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i], 1)) | 
|  | goto err; | 
|  | donelen++; | 
|  | } | 
|  | if (expected->aad_len[i] > 2) { | 
|  | if (!EVP_CipherUpdate(ctx, NULL, &chunklen, | 
|  | expected->aad[i] + donelen, | 
|  | expected->aad_len[i] - 2)) | 
|  | goto err; | 
|  | donelen += expected->aad_len[i] - 2; | 
|  | } | 
|  | if (expected->aad_len[i] > 1 | 
|  | && !EVP_CipherUpdate(ctx, NULL, &chunklen, | 
|  | expected->aad[i] + donelen, 1)) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | } | 
|  | EVP_CIPHER_CTX_set_padding(ctx, 0); | 
|  | t->err = "CIPHERUPDATE_ERROR"; | 
|  | tmplen = 0; | 
|  | if (!frag) { | 
|  | /* We supply the data all in one go */ | 
|  | if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len)) | 
|  | goto err; | 
|  | } else { | 
|  | /* Supply the data in chunks less than the block size where possible */ | 
|  | if (in_len > 0) { | 
|  | if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1)) | 
|  | goto err; | 
|  | tmplen += chunklen; | 
|  | in++; | 
|  | in_len--; | 
|  | } | 
|  | if (in_len > 1) { | 
|  | if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen, | 
|  | in, in_len - 1)) | 
|  | goto err; | 
|  | tmplen += chunklen; | 
|  | in += in_len - 1; | 
|  | in_len = 1; | 
|  | } | 
|  | if (in_len > 0 ) { | 
|  | if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen, | 
|  | in, 1)) | 
|  | goto err; | 
|  | tmplen += chunklen; | 
|  | } | 
|  | } | 
|  | if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) { | 
|  | t->err = "CIPHERFINAL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!memory_err_compare(t, "VALUE_MISMATCH", expected_out, out_len, | 
|  | tmp + out_misalign, tmplen + tmpflen)) | 
|  | goto err; | 
|  | if (enc && expected->aead) { | 
|  | unsigned char rtag[16]; | 
|  |  | 
|  | if (!TEST_size_t_le(expected->tag_len, sizeof(rtag))) { | 
|  | t->err = "TAG_LENGTH_INTERNAL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, | 
|  | expected->tag_len, rtag)) { | 
|  | t->err = "TAG_RETRIEVE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!memory_err_compare(t, "TAG_VALUE_MISMATCH", | 
|  | expected->tag, expected->tag_len, | 
|  | rtag, expected->tag_len)) | 
|  | goto err; | 
|  | } | 
|  | t->err = NULL; | 
|  | ok = 1; | 
|  | err: | 
|  | OPENSSL_free(tmp); | 
|  | EVP_CIPHER_CTX_free(ctx); | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | static int cipher_test_run(EVP_TEST *t) | 
|  | { | 
|  | CIPHER_DATA *cdat = t->data; | 
|  | int rv, frag = 0; | 
|  | size_t out_misalign, inp_misalign; | 
|  |  | 
|  | if (!cdat->key) { | 
|  | t->err = "NO_KEY"; | 
|  | return 0; | 
|  | } | 
|  | if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) { | 
|  | /* IV is optional and usually omitted in wrap mode */ | 
|  | if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) { | 
|  | t->err = "NO_IV"; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if (cdat->aead && !cdat->tag) { | 
|  | t->err = "NO_TAG"; | 
|  | return 0; | 
|  | } | 
|  | for (out_misalign = 0; out_misalign <= 1;) { | 
|  | static char aux_err[64]; | 
|  | t->aux_err = aux_err; | 
|  | for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) { | 
|  | if (inp_misalign == (size_t)-1) { | 
|  | /* kludge: inp_misalign == -1 means "exercise in-place" */ | 
|  | BIO_snprintf(aux_err, sizeof(aux_err), | 
|  | "%s in-place, %sfragmented", | 
|  | out_misalign ? "misaligned" : "aligned", | 
|  | frag ? "" : "not "); | 
|  | } else { | 
|  | BIO_snprintf(aux_err, sizeof(aux_err), | 
|  | "%s output and %s input, %sfragmented", | 
|  | out_misalign ? "misaligned" : "aligned", | 
|  | inp_misalign ? "misaligned" : "aligned", | 
|  | frag ? "" : "not "); | 
|  | } | 
|  | if (cdat->enc) { | 
|  | rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag); | 
|  | /* Not fatal errors: return */ | 
|  | if (rv != 1) { | 
|  | if (rv < 0) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | if (cdat->enc != 1) { | 
|  | rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag); | 
|  | /* Not fatal errors: return */ | 
|  | if (rv != 1) { | 
|  | if (rv < 0) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (out_misalign == 1 && frag == 0) { | 
|  | /* | 
|  | * XTS, SIV, CCM and Wrap modes have special requirements about input | 
|  | * lengths so we don't fragment for those | 
|  | */ | 
|  | if (cdat->aead == EVP_CIPH_CCM_MODE | 
|  | || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_SIV_MODE | 
|  | || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE | 
|  | || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE) | 
|  | break; | 
|  | out_misalign = 0; | 
|  | frag++; | 
|  | } else { | 
|  | out_misalign++; | 
|  | } | 
|  | } | 
|  | t->aux_err = NULL; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD cipher_test_method = { | 
|  | "Cipher", | 
|  | cipher_test_init, | 
|  | cipher_test_cleanup, | 
|  | cipher_test_parse, | 
|  | cipher_test_run | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | ***  MAC TESTS | 
|  | **/ | 
|  |  | 
|  | typedef struct mac_data_st { | 
|  | /* MAC type in one form or another */ | 
|  | const EVP_MAC *mac;          /* for mac_test_run_mac */ | 
|  | int type;                    /* for mac_test_run_pkey */ | 
|  | /* Algorithm string for this MAC */ | 
|  | char *alg; | 
|  | /* MAC key */ | 
|  | unsigned char *key; | 
|  | size_t key_len; | 
|  | /* MAC IV (GMAC) */ | 
|  | unsigned char *iv; | 
|  | size_t iv_len; | 
|  | /* Input to MAC */ | 
|  | unsigned char *input; | 
|  | size_t input_len; | 
|  | /* Expected output */ | 
|  | unsigned char *output; | 
|  | size_t output_len; | 
|  | unsigned char *custom; | 
|  | size_t custom_len; | 
|  | /* MAC salt (blake2) */ | 
|  | unsigned char *salt; | 
|  | size_t salt_len; | 
|  | /* Collection of controls */ | 
|  | STACK_OF(OPENSSL_STRING) *controls; | 
|  | } MAC_DATA; | 
|  |  | 
|  | static int mac_test_init(EVP_TEST *t, const char *alg) | 
|  | { | 
|  | const EVP_MAC *mac = NULL; | 
|  | int type = NID_undef; | 
|  | MAC_DATA *mdat; | 
|  |  | 
|  | if ((mac = EVP_get_macbyname(alg)) == NULL) { | 
|  | /* | 
|  | * Since we didn't find an EVP_MAC, we check for known EVP_PKEY methods | 
|  | * For debugging purposes, we allow 'NNNN by EVP_PKEY' to force running | 
|  | * the EVP_PKEY method. | 
|  | */ | 
|  | size_t sz = strlen(alg); | 
|  | static const char epilogue[] = " by EVP_PKEY"; | 
|  |  | 
|  | if (sz >= sizeof(epilogue) | 
|  | && strcmp(alg + sz - (sizeof(epilogue) - 1), epilogue) == 0) | 
|  | sz -= sizeof(epilogue) - 1; | 
|  |  | 
|  | if (strncmp(alg, "HMAC", sz) == 0) { | 
|  | type = EVP_PKEY_HMAC; | 
|  | } else if (strncmp(alg, "CMAC", sz) == 0) { | 
|  | #ifndef OPENSSL_NO_CMAC | 
|  | type = EVP_PKEY_CMAC; | 
|  | #else | 
|  | t->skip = 1; | 
|  | return 1; | 
|  | #endif | 
|  | } else if (strncmp(alg, "Poly1305", sz) == 0) { | 
|  | #ifndef OPENSSL_NO_POLY1305 | 
|  | type = EVP_PKEY_POLY1305; | 
|  | #else | 
|  | t->skip = 1; | 
|  | return 1; | 
|  | #endif | 
|  | } else if (strncmp(alg, "SipHash", sz) == 0) { | 
|  | #ifndef OPENSSL_NO_SIPHASH | 
|  | type = EVP_PKEY_SIPHASH; | 
|  | #else | 
|  | t->skip = 1; | 
|  | return 1; | 
|  | #endif | 
|  | } else { | 
|  | /* | 
|  | * Not a known EVP_PKEY method either.  If it's a known OID, then | 
|  | * assume it's been disabled. | 
|  | */ | 
|  | if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { | 
|  | t->skip = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | mdat = OPENSSL_zalloc(sizeof(*mdat)); | 
|  | mdat->type = type; | 
|  | mdat->mac = mac; | 
|  | mdat->controls = sk_OPENSSL_STRING_new_null(); | 
|  | t->data = mdat; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Because OPENSSL_free is a macro, it can't be passed as a function pointer */ | 
|  | static void openssl_free(char *m) | 
|  | { | 
|  | OPENSSL_free(m); | 
|  | } | 
|  |  | 
|  | static void mac_test_cleanup(EVP_TEST *t) | 
|  | { | 
|  | MAC_DATA *mdat = t->data; | 
|  |  | 
|  | sk_OPENSSL_STRING_pop_free(mdat->controls, openssl_free); | 
|  | OPENSSL_free(mdat->alg); | 
|  | OPENSSL_free(mdat->key); | 
|  | OPENSSL_free(mdat->iv); | 
|  | OPENSSL_free(mdat->custom); | 
|  | OPENSSL_free(mdat->salt); | 
|  | OPENSSL_free(mdat->input); | 
|  | OPENSSL_free(mdat->output); | 
|  | } | 
|  |  | 
|  | static int mac_test_parse(EVP_TEST *t, | 
|  | const char *keyword, const char *value) | 
|  | { | 
|  | MAC_DATA *mdata = t->data; | 
|  |  | 
|  | if (strcmp(keyword, "Key") == 0) | 
|  | return parse_bin(value, &mdata->key, &mdata->key_len); | 
|  | if (strcmp(keyword, "IV") == 0) | 
|  | return parse_bin(value, &mdata->iv, &mdata->iv_len); | 
|  | if (strcmp(keyword, "Custom") == 0) | 
|  | return parse_bin(value, &mdata->custom, &mdata->custom_len); | 
|  | if (strcmp(keyword, "Salt") == 0) | 
|  | return parse_bin(value, &mdata->salt, &mdata->salt_len); | 
|  | if (strcmp(keyword, "Algorithm") == 0) { | 
|  | mdata->alg = OPENSSL_strdup(value); | 
|  | if (!mdata->alg) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  | if (strcmp(keyword, "Input") == 0) | 
|  | return parse_bin(value, &mdata->input, &mdata->input_len); | 
|  | if (strcmp(keyword, "Output") == 0) | 
|  | return parse_bin(value, &mdata->output, &mdata->output_len); | 
|  | if (strcmp(keyword, "Ctrl") == 0) | 
|  | return sk_OPENSSL_STRING_push(mdata->controls, | 
|  | OPENSSL_strdup(value)) != 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mac_test_ctrl_pkey(EVP_TEST *t, EVP_PKEY_CTX *pctx, | 
|  | const char *value) | 
|  | { | 
|  | int rv; | 
|  | char *p, *tmpval; | 
|  |  | 
|  | if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) | 
|  | return 0; | 
|  | p = strchr(tmpval, ':'); | 
|  | if (p != NULL) | 
|  | *p++ = '\0'; | 
|  | rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p); | 
|  | if (rv == -2) | 
|  | t->err = "PKEY_CTRL_INVALID"; | 
|  | else if (rv <= 0) | 
|  | t->err = "PKEY_CTRL_ERROR"; | 
|  | else | 
|  | rv = 1; | 
|  | OPENSSL_free(tmpval); | 
|  | return rv > 0; | 
|  | } | 
|  |  | 
|  | static int mac_test_run_pkey(EVP_TEST *t) | 
|  | { | 
|  | MAC_DATA *expected = t->data; | 
|  | EVP_MD_CTX *mctx = NULL; | 
|  | EVP_PKEY_CTX *pctx = NULL, *genctx = NULL; | 
|  | EVP_PKEY *key = NULL; | 
|  | const EVP_MD *md = NULL; | 
|  | unsigned char *got = NULL; | 
|  | size_t got_len; | 
|  | int i; | 
|  |  | 
|  | if (expected->alg == NULL) | 
|  | TEST_info("Trying the EVP_PKEY %s test", OBJ_nid2sn(expected->type)); | 
|  | else | 
|  | TEST_info("Trying the EVP_PKEY %s test with %s", | 
|  | OBJ_nid2sn(expected->type), expected->alg); | 
|  |  | 
|  | #ifdef OPENSSL_NO_DES | 
|  | if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) { | 
|  | /* Skip DES */ | 
|  | t->err = NULL; | 
|  | goto err; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (expected->type == EVP_PKEY_CMAC) | 
|  | key = EVP_PKEY_new_CMAC_key(NULL, expected->key, expected->key_len, | 
|  | EVP_get_cipherbyname(expected->alg)); | 
|  | else | 
|  | key = EVP_PKEY_new_raw_private_key(expected->type, NULL, expected->key, | 
|  | expected->key_len); | 
|  | if (key == NULL) { | 
|  | t->err = "MAC_KEY_CREATE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (expected->type == EVP_PKEY_HMAC) { | 
|  | if (!TEST_ptr(md = EVP_get_digestbyname(expected->alg))) { | 
|  | t->err = "MAC_ALGORITHM_SET_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | if (!TEST_ptr(mctx = EVP_MD_CTX_new())) { | 
|  | t->err = "INTERNAL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key)) { | 
|  | t->err = "DIGESTSIGNINIT_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++) | 
|  | if (!mac_test_ctrl_pkey(t, pctx, | 
|  | sk_OPENSSL_STRING_value(expected->controls, | 
|  | i))) { | 
|  | t->err = "EVPPKEYCTXCTRL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!EVP_DigestSignUpdate(mctx, expected->input, expected->input_len)) { | 
|  | t->err = "DIGESTSIGNUPDATE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!EVP_DigestSignFinal(mctx, NULL, &got_len)) { | 
|  | t->err = "DIGESTSIGNFINAL_LENGTH_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { | 
|  | t->err = "TEST_FAILURE"; | 
|  | goto err; | 
|  | } | 
|  | if (!EVP_DigestSignFinal(mctx, got, &got_len) | 
|  | || !memory_err_compare(t, "TEST_MAC_ERR", | 
|  | expected->output, expected->output_len, | 
|  | got, got_len)) { | 
|  | t->err = "TEST_MAC_ERR"; | 
|  | goto err; | 
|  | } | 
|  | t->err = NULL; | 
|  | err: | 
|  | EVP_MD_CTX_free(mctx); | 
|  | OPENSSL_free(got); | 
|  | EVP_PKEY_CTX_free(genctx); | 
|  | EVP_PKEY_free(key); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int mac_test_run_mac(EVP_TEST *t) | 
|  | { | 
|  | MAC_DATA *expected = t->data; | 
|  | EVP_MAC_CTX *ctx = NULL; | 
|  | const void *algo = NULL; | 
|  | int algo_ctrl = 0; | 
|  | unsigned char *got = NULL; | 
|  | size_t got_len; | 
|  | int rv, i; | 
|  |  | 
|  | if (expected->alg == NULL) | 
|  | TEST_info("Trying the EVP_MAC %s test", EVP_MAC_name(expected->mac)); | 
|  | else | 
|  | TEST_info("Trying the EVP_MAC %s test with %s", | 
|  | EVP_MAC_name(expected->mac), expected->alg); | 
|  |  | 
|  | #ifdef OPENSSL_NO_DES | 
|  | if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) { | 
|  | /* Skip DES */ | 
|  | t->err = NULL; | 
|  | goto err; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if ((ctx = EVP_MAC_CTX_new(expected->mac)) == NULL) { | 
|  | t->err = "MAC_CREATE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (expected->alg != NULL | 
|  | && ((algo_ctrl = EVP_MAC_CTRL_SET_CIPHER, | 
|  | algo = EVP_get_cipherbyname(expected->alg)) == NULL | 
|  | && (algo_ctrl = EVP_MAC_CTRL_SET_MD, | 
|  | algo = EVP_get_digestbyname(expected->alg)) == NULL)) { | 
|  | t->err = "MAC_BAD_ALGORITHM"; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (algo_ctrl != 0) { | 
|  | rv = EVP_MAC_ctrl(ctx, algo_ctrl, algo); | 
|  | if (rv == -2) { | 
|  | t->err = "MAC_CTRL_INVALID"; | 
|  | goto err; | 
|  | } else if (rv <= 0) { | 
|  | t->err = "MAC_CTRL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | rv = EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_KEY, | 
|  | expected->key, expected->key_len); | 
|  | if (rv == -2) { | 
|  | t->err = "MAC_CTRL_INVALID"; | 
|  | goto err; | 
|  | } else if (rv <= 0) { | 
|  | t->err = "MAC_CTRL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (expected->custom != NULL) { | 
|  | rv = EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_CUSTOM, | 
|  | expected->custom, expected->custom_len); | 
|  | if (rv == -2) { | 
|  | t->err = "MAC_CTRL_INVALID"; | 
|  | goto err; | 
|  | } else if (rv <= 0) { | 
|  | t->err = "MAC_CTRL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (expected->salt != NULL) { | 
|  | rv = EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_SALT, | 
|  | expected->salt, expected->salt_len); | 
|  | if (rv == -2) { | 
|  | t->err = "MAC_CTRL_INVALID"; | 
|  | goto err; | 
|  | } else if (rv <= 0) { | 
|  | t->err = "MAC_CTRL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (expected->iv != NULL) { | 
|  | rv = EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_IV, | 
|  | expected->iv, expected->iv_len); | 
|  | if (rv == -2) { | 
|  | t->err = "MAC_CTRL_INVALID"; | 
|  | goto err; | 
|  | } else if (rv <= 0) { | 
|  | t->err = "MAC_CTRL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++) { | 
|  | char *p, *tmpval; | 
|  | char *value = sk_OPENSSL_STRING_value(expected->controls, i); | 
|  |  | 
|  | if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) { | 
|  | t->err = "MAC_CTRL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | p = strchr(tmpval, ':'); | 
|  | if (p != NULL) | 
|  | *p++ = '\0'; | 
|  | rv = EVP_MAC_ctrl_str(ctx, tmpval, p); | 
|  | OPENSSL_free(tmpval); | 
|  | if (rv == -2) { | 
|  | t->err = "MAC_CTRL_INVALID"; | 
|  | goto err; | 
|  | } else if (rv <= 0) { | 
|  | t->err = "MAC_CTRL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | if (!EVP_MAC_init(ctx)) { | 
|  | t->err = "MAC_INIT_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!EVP_MAC_update(ctx, expected->input, expected->input_len)) { | 
|  | t->err = "MAC_UPDATE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!EVP_MAC_final(ctx, NULL, &got_len)) { | 
|  | t->err = "MAC_FINAL_LENGTH_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { | 
|  | t->err = "TEST_FAILURE"; | 
|  | goto err; | 
|  | } | 
|  | if (!EVP_MAC_final(ctx, got, &got_len) | 
|  | || !memory_err_compare(t, "TEST_MAC_ERR", | 
|  | expected->output, expected->output_len, | 
|  | got, got_len)) { | 
|  | t->err = "TEST_MAC_ERR"; | 
|  | goto err; | 
|  | } | 
|  | t->err = NULL; | 
|  | err: | 
|  | EVP_MAC_CTX_free(ctx); | 
|  | OPENSSL_free(got); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int mac_test_run(EVP_TEST *t) | 
|  | { | 
|  | MAC_DATA *expected = t->data; | 
|  |  | 
|  | if (expected->mac != NULL) | 
|  | return mac_test_run_mac(t); | 
|  | return mac_test_run_pkey(t); | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD mac_test_method = { | 
|  | "MAC", | 
|  | mac_test_init, | 
|  | mac_test_cleanup, | 
|  | mac_test_parse, | 
|  | mac_test_run | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | ***  PUBLIC KEY TESTS | 
|  | ***  These are all very similar and share much common code. | 
|  | **/ | 
|  |  | 
|  | typedef struct pkey_data_st { | 
|  | /* Context for this operation */ | 
|  | EVP_PKEY_CTX *ctx; | 
|  | /* Key operation to perform */ | 
|  | int (*keyop) (EVP_PKEY_CTX *ctx, | 
|  | unsigned char *sig, size_t *siglen, | 
|  | const unsigned char *tbs, size_t tbslen); | 
|  | /* Input to MAC */ | 
|  | unsigned char *input; | 
|  | size_t input_len; | 
|  | /* Expected output */ | 
|  | unsigned char *output; | 
|  | size_t output_len; | 
|  | } PKEY_DATA; | 
|  |  | 
|  | /* | 
|  | * Perform public key operation setup: lookup key, allocated ctx and call | 
|  | * the appropriate initialisation function | 
|  | */ | 
|  | static int pkey_test_init(EVP_TEST *t, const char *name, | 
|  | int use_public, | 
|  | int (*keyopinit) (EVP_PKEY_CTX *ctx), | 
|  | int (*keyop)(EVP_PKEY_CTX *ctx, | 
|  | unsigned char *sig, size_t *siglen, | 
|  | const unsigned char *tbs, | 
|  | size_t tbslen)) | 
|  | { | 
|  | PKEY_DATA *kdata; | 
|  | EVP_PKEY *pkey = NULL; | 
|  | int rv = 0; | 
|  |  | 
|  | if (use_public) | 
|  | rv = find_key(&pkey, name, public_keys); | 
|  | if (rv == 0) | 
|  | rv = find_key(&pkey, name, private_keys); | 
|  | if (rv == 0 || pkey == NULL) { | 
|  | t->skip = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) { | 
|  | EVP_PKEY_free(pkey); | 
|  | return 0; | 
|  | } | 
|  | kdata->keyop = keyop; | 
|  | if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL))) { | 
|  | EVP_PKEY_free(pkey); | 
|  | OPENSSL_free(kdata); | 
|  | return 0; | 
|  | } | 
|  | if (keyopinit(kdata->ctx) <= 0) | 
|  | t->err = "KEYOP_INIT_ERROR"; | 
|  | t->data = kdata; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void pkey_test_cleanup(EVP_TEST *t) | 
|  | { | 
|  | PKEY_DATA *kdata = t->data; | 
|  |  | 
|  | OPENSSL_free(kdata->input); | 
|  | OPENSSL_free(kdata->output); | 
|  | EVP_PKEY_CTX_free(kdata->ctx); | 
|  | } | 
|  |  | 
|  | static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx, | 
|  | const char *value) | 
|  | { | 
|  | int rv; | 
|  | char *p, *tmpval; | 
|  |  | 
|  | if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) | 
|  | return 0; | 
|  | p = strchr(tmpval, ':'); | 
|  | if (p != NULL) | 
|  | *p++ = '\0'; | 
|  | rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p); | 
|  | if (rv == -2) { | 
|  | t->err = "PKEY_CTRL_INVALID"; | 
|  | rv = 1; | 
|  | } else if (p != NULL && rv <= 0) { | 
|  | /* If p has an OID and lookup fails assume disabled algorithm */ | 
|  | int nid = OBJ_sn2nid(p); | 
|  |  | 
|  | if (nid == NID_undef) | 
|  | nid = OBJ_ln2nid(p); | 
|  | if (nid != NID_undef | 
|  | && EVP_get_digestbynid(nid) == NULL | 
|  | && EVP_get_cipherbynid(nid) == NULL) { | 
|  | t->skip = 1; | 
|  | rv = 1; | 
|  | } else { | 
|  | t->err = "PKEY_CTRL_ERROR"; | 
|  | rv = 1; | 
|  | } | 
|  | } | 
|  | OPENSSL_free(tmpval); | 
|  | return rv > 0; | 
|  | } | 
|  |  | 
|  | static int pkey_test_parse(EVP_TEST *t, | 
|  | const char *keyword, const char *value) | 
|  | { | 
|  | PKEY_DATA *kdata = t->data; | 
|  | if (strcmp(keyword, "Input") == 0) | 
|  | return parse_bin(value, &kdata->input, &kdata->input_len); | 
|  | if (strcmp(keyword, "Output") == 0) | 
|  | return parse_bin(value, &kdata->output, &kdata->output_len); | 
|  | if (strcmp(keyword, "Ctrl") == 0) | 
|  | return pkey_test_ctrl(t, kdata->ctx, value); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pkey_test_run(EVP_TEST *t) | 
|  | { | 
|  | PKEY_DATA *expected = t->data; | 
|  | unsigned char *got = NULL; | 
|  | size_t got_len; | 
|  |  | 
|  | if (expected->keyop(expected->ctx, NULL, &got_len, | 
|  | expected->input, expected->input_len) <= 0 | 
|  | || !TEST_ptr(got = OPENSSL_malloc(got_len))) { | 
|  | t->err = "KEYOP_LENGTH_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (expected->keyop(expected->ctx, got, &got_len, | 
|  | expected->input, expected->input_len) <= 0) { | 
|  | t->err = "KEYOP_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!memory_err_compare(t, "KEYOP_MISMATCH", | 
|  | expected->output, expected->output_len, | 
|  | got, got_len)) | 
|  | goto err; | 
|  |  | 
|  | t->err = NULL; | 
|  | err: | 
|  | OPENSSL_free(got); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int sign_test_init(EVP_TEST *t, const char *name) | 
|  | { | 
|  | return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign); | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD psign_test_method = { | 
|  | "Sign", | 
|  | sign_test_init, | 
|  | pkey_test_cleanup, | 
|  | pkey_test_parse, | 
|  | pkey_test_run | 
|  | }; | 
|  |  | 
|  | static int verify_recover_test_init(EVP_TEST *t, const char *name) | 
|  | { | 
|  | return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init, | 
|  | EVP_PKEY_verify_recover); | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD pverify_recover_test_method = { | 
|  | "VerifyRecover", | 
|  | verify_recover_test_init, | 
|  | pkey_test_cleanup, | 
|  | pkey_test_parse, | 
|  | pkey_test_run | 
|  | }; | 
|  |  | 
|  | static int decrypt_test_init(EVP_TEST *t, const char *name) | 
|  | { | 
|  | return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init, | 
|  | EVP_PKEY_decrypt); | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD pdecrypt_test_method = { | 
|  | "Decrypt", | 
|  | decrypt_test_init, | 
|  | pkey_test_cleanup, | 
|  | pkey_test_parse, | 
|  | pkey_test_run | 
|  | }; | 
|  |  | 
|  | static int verify_test_init(EVP_TEST *t, const char *name) | 
|  | { | 
|  | return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0); | 
|  | } | 
|  |  | 
|  | static int verify_test_run(EVP_TEST *t) | 
|  | { | 
|  | PKEY_DATA *kdata = t->data; | 
|  |  | 
|  | if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len, | 
|  | kdata->input, kdata->input_len) <= 0) | 
|  | t->err = "VERIFY_ERROR"; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD pverify_test_method = { | 
|  | "Verify", | 
|  | verify_test_init, | 
|  | pkey_test_cleanup, | 
|  | pkey_test_parse, | 
|  | verify_test_run | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int pderive_test_init(EVP_TEST *t, const char *name) | 
|  | { | 
|  | return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0); | 
|  | } | 
|  |  | 
|  | static int pderive_test_parse(EVP_TEST *t, | 
|  | const char *keyword, const char *value) | 
|  | { | 
|  | PKEY_DATA *kdata = t->data; | 
|  |  | 
|  | if (strcmp(keyword, "PeerKey") == 0) { | 
|  | EVP_PKEY *peer; | 
|  | if (find_key(&peer, value, public_keys) == 0) | 
|  | return 0; | 
|  | if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  | if (strcmp(keyword, "SharedSecret") == 0) | 
|  | return parse_bin(value, &kdata->output, &kdata->output_len); | 
|  | if (strcmp(keyword, "Ctrl") == 0) | 
|  | return pkey_test_ctrl(t, kdata->ctx, value); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pderive_test_run(EVP_TEST *t) | 
|  | { | 
|  | PKEY_DATA *expected = t->data; | 
|  | unsigned char *got = NULL; | 
|  | size_t got_len; | 
|  |  | 
|  | if (EVP_PKEY_derive(expected->ctx, NULL, &got_len) <= 0) { | 
|  | t->err = "DERIVE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { | 
|  | t->err = "DERIVE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) { | 
|  | t->err = "DERIVE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!memory_err_compare(t, "SHARED_SECRET_MISMATCH", | 
|  | expected->output, expected->output_len, | 
|  | got, got_len)) | 
|  | goto err; | 
|  |  | 
|  | t->err = NULL; | 
|  | err: | 
|  | OPENSSL_free(got); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD pderive_test_method = { | 
|  | "Derive", | 
|  | pderive_test_init, | 
|  | pkey_test_cleanup, | 
|  | pderive_test_parse, | 
|  | pderive_test_run | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | ***  PBE TESTS | 
|  | **/ | 
|  |  | 
|  | typedef enum pbe_type_enum { | 
|  | PBE_TYPE_INVALID = 0, | 
|  | PBE_TYPE_SCRYPT, PBE_TYPE_PBKDF2, PBE_TYPE_PKCS12 | 
|  | } PBE_TYPE; | 
|  |  | 
|  | typedef struct pbe_data_st { | 
|  | PBE_TYPE pbe_type; | 
|  | /* scrypt parameters */ | 
|  | uint64_t N, r, p, maxmem; | 
|  | /* PKCS#12 parameters */ | 
|  | int id, iter; | 
|  | const EVP_MD *md; | 
|  | /* password */ | 
|  | unsigned char *pass; | 
|  | size_t pass_len; | 
|  | /* salt */ | 
|  | unsigned char *salt; | 
|  | size_t salt_len; | 
|  | /* Expected output */ | 
|  | unsigned char *key; | 
|  | size_t key_len; | 
|  | } PBE_DATA; | 
|  |  | 
|  | #ifndef OPENSSL_NO_SCRYPT | 
|  | /* | 
|  | * Parse unsigned decimal 64 bit integer value | 
|  | */ | 
|  | static int parse_uint64(const char *value, uint64_t *pr) | 
|  | { | 
|  | const char *p = value; | 
|  |  | 
|  | if (!TEST_true(*p)) { | 
|  | TEST_info("Invalid empty integer value"); | 
|  | return -1; | 
|  | } | 
|  | for (*pr = 0; *p; ) { | 
|  | if (*pr > UINT64_MAX / 10) { | 
|  | TEST_error("Integer overflow in string %s", value); | 
|  | return -1; | 
|  | } | 
|  | *pr *= 10; | 
|  | if (!TEST_true(isdigit((unsigned char)*p))) { | 
|  | TEST_error("Invalid character in string %s", value); | 
|  | return -1; | 
|  | } | 
|  | *pr += *p - '0'; | 
|  | p++; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int scrypt_test_parse(EVP_TEST *t, | 
|  | const char *keyword, const char *value) | 
|  | { | 
|  | PBE_DATA *pdata = t->data; | 
|  |  | 
|  | if (strcmp(keyword, "N") == 0) | 
|  | return parse_uint64(value, &pdata->N); | 
|  | if (strcmp(keyword, "p") == 0) | 
|  | return parse_uint64(value, &pdata->p); | 
|  | if (strcmp(keyword, "r") == 0) | 
|  | return parse_uint64(value, &pdata->r); | 
|  | if (strcmp(keyword, "maxmem") == 0) | 
|  | return parse_uint64(value, &pdata->maxmem); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int pbkdf2_test_parse(EVP_TEST *t, | 
|  | const char *keyword, const char *value) | 
|  | { | 
|  | PBE_DATA *pdata = t->data; | 
|  |  | 
|  | if (strcmp(keyword, "iter") == 0) { | 
|  | pdata->iter = atoi(value); | 
|  | if (pdata->iter <= 0) | 
|  | return -1; | 
|  | return 1; | 
|  | } | 
|  | if (strcmp(keyword, "MD") == 0) { | 
|  | pdata->md = EVP_get_digestbyname(value); | 
|  | if (pdata->md == NULL) | 
|  | return -1; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pkcs12_test_parse(EVP_TEST *t, | 
|  | const char *keyword, const char *value) | 
|  | { | 
|  | PBE_DATA *pdata = t->data; | 
|  |  | 
|  | if (strcmp(keyword, "id") == 0) { | 
|  | pdata->id = atoi(value); | 
|  | if (pdata->id <= 0) | 
|  | return -1; | 
|  | return 1; | 
|  | } | 
|  | return pbkdf2_test_parse(t, keyword, value); | 
|  | } | 
|  |  | 
|  | static int pbe_test_init(EVP_TEST *t, const char *alg) | 
|  | { | 
|  | PBE_DATA *pdat; | 
|  | PBE_TYPE pbe_type = PBE_TYPE_INVALID; | 
|  |  | 
|  | if (strcmp(alg, "scrypt") == 0) { | 
|  | #ifndef OPENSSL_NO_SCRYPT | 
|  | pbe_type = PBE_TYPE_SCRYPT; | 
|  | #else | 
|  | t->skip = 1; | 
|  | return 1; | 
|  | #endif | 
|  | } else if (strcmp(alg, "pbkdf2") == 0) { | 
|  | pbe_type = PBE_TYPE_PBKDF2; | 
|  | } else if (strcmp(alg, "pkcs12") == 0) { | 
|  | pbe_type = PBE_TYPE_PKCS12; | 
|  | } else { | 
|  | TEST_error("Unknown pbe algorithm %s", alg); | 
|  | } | 
|  | pdat = OPENSSL_zalloc(sizeof(*pdat)); | 
|  | pdat->pbe_type = pbe_type; | 
|  | t->data = pdat; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void pbe_test_cleanup(EVP_TEST *t) | 
|  | { | 
|  | PBE_DATA *pdat = t->data; | 
|  |  | 
|  | OPENSSL_free(pdat->pass); | 
|  | OPENSSL_free(pdat->salt); | 
|  | OPENSSL_free(pdat->key); | 
|  | } | 
|  |  | 
|  | static int pbe_test_parse(EVP_TEST *t, | 
|  | const char *keyword, const char *value) | 
|  | { | 
|  | PBE_DATA *pdata = t->data; | 
|  |  | 
|  | if (strcmp(keyword, "Password") == 0) | 
|  | return parse_bin(value, &pdata->pass, &pdata->pass_len); | 
|  | if (strcmp(keyword, "Salt") == 0) | 
|  | return parse_bin(value, &pdata->salt, &pdata->salt_len); | 
|  | if (strcmp(keyword, "Key") == 0) | 
|  | return parse_bin(value, &pdata->key, &pdata->key_len); | 
|  | if (pdata->pbe_type == PBE_TYPE_PBKDF2) | 
|  | return pbkdf2_test_parse(t, keyword, value); | 
|  | else if (pdata->pbe_type == PBE_TYPE_PKCS12) | 
|  | return pkcs12_test_parse(t, keyword, value); | 
|  | #ifndef OPENSSL_NO_SCRYPT | 
|  | else if (pdata->pbe_type == PBE_TYPE_SCRYPT) | 
|  | return scrypt_test_parse(t, keyword, value); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pbe_test_run(EVP_TEST *t) | 
|  | { | 
|  | PBE_DATA *expected = t->data; | 
|  | unsigned char *key; | 
|  |  | 
|  | if (!TEST_ptr(key = OPENSSL_malloc(expected->key_len))) { | 
|  | t->err = "INTERNAL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (expected->pbe_type == PBE_TYPE_PBKDF2) { | 
|  | if (PKCS5_PBKDF2_HMAC((char *)expected->pass, expected->pass_len, | 
|  | expected->salt, expected->salt_len, | 
|  | expected->iter, expected->md, | 
|  | expected->key_len, key) == 0) { | 
|  | t->err = "PBKDF2_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | #ifndef OPENSSL_NO_SCRYPT | 
|  | } else if (expected->pbe_type == PBE_TYPE_SCRYPT) { | 
|  | if (EVP_PBE_scrypt((const char *)expected->pass, expected->pass_len, | 
|  | expected->salt, expected->salt_len, expected->N, | 
|  | expected->r, expected->p, expected->maxmem, | 
|  | key, expected->key_len) == 0) { | 
|  | t->err = "SCRYPT_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | #endif | 
|  | } else if (expected->pbe_type == PBE_TYPE_PKCS12) { | 
|  | if (PKCS12_key_gen_uni(expected->pass, expected->pass_len, | 
|  | expected->salt, expected->salt_len, | 
|  | expected->id, expected->iter, expected->key_len, | 
|  | key, expected->md) == 0) { | 
|  | t->err = "PKCS12_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | if (!memory_err_compare(t, "KEY_MISMATCH", expected->key, expected->key_len, | 
|  | key, expected->key_len)) | 
|  | goto err; | 
|  |  | 
|  | t->err = NULL; | 
|  | err: | 
|  | OPENSSL_free(key); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD pbe_test_method = { | 
|  | "PBE", | 
|  | pbe_test_init, | 
|  | pbe_test_cleanup, | 
|  | pbe_test_parse, | 
|  | pbe_test_run | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | ***  BASE64 TESTS | 
|  | **/ | 
|  |  | 
|  | typedef enum { | 
|  | BASE64_CANONICAL_ENCODING = 0, | 
|  | BASE64_VALID_ENCODING = 1, | 
|  | BASE64_INVALID_ENCODING = 2 | 
|  | } base64_encoding_type; | 
|  |  | 
|  | typedef struct encode_data_st { | 
|  | /* Input to encoding */ | 
|  | unsigned char *input; | 
|  | size_t input_len; | 
|  | /* Expected output */ | 
|  | unsigned char *output; | 
|  | size_t output_len; | 
|  | base64_encoding_type encoding; | 
|  | } ENCODE_DATA; | 
|  |  | 
|  | static int encode_test_init(EVP_TEST *t, const char *encoding) | 
|  | { | 
|  | ENCODE_DATA *edata; | 
|  |  | 
|  | if (!TEST_ptr(edata = OPENSSL_zalloc(sizeof(*edata)))) | 
|  | return 0; | 
|  | if (strcmp(encoding, "canonical") == 0) { | 
|  | edata->encoding = BASE64_CANONICAL_ENCODING; | 
|  | } else if (strcmp(encoding, "valid") == 0) { | 
|  | edata->encoding = BASE64_VALID_ENCODING; | 
|  | } else if (strcmp(encoding, "invalid") == 0) { | 
|  | edata->encoding = BASE64_INVALID_ENCODING; | 
|  | if (!TEST_ptr(t->expected_err = OPENSSL_strdup("DECODE_ERROR"))) | 
|  | goto err; | 
|  | } else { | 
|  | TEST_error("Bad encoding: %s." | 
|  | " Should be one of {canonical, valid, invalid}", | 
|  | encoding); | 
|  | goto err; | 
|  | } | 
|  | t->data = edata; | 
|  | return 1; | 
|  | err: | 
|  | OPENSSL_free(edata); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void encode_test_cleanup(EVP_TEST *t) | 
|  | { | 
|  | ENCODE_DATA *edata = t->data; | 
|  |  | 
|  | OPENSSL_free(edata->input); | 
|  | OPENSSL_free(edata->output); | 
|  | memset(edata, 0, sizeof(*edata)); | 
|  | } | 
|  |  | 
|  | static int encode_test_parse(EVP_TEST *t, | 
|  | const char *keyword, const char *value) | 
|  | { | 
|  | ENCODE_DATA *edata = t->data; | 
|  |  | 
|  | if (strcmp(keyword, "Input") == 0) | 
|  | return parse_bin(value, &edata->input, &edata->input_len); | 
|  | if (strcmp(keyword, "Output") == 0) | 
|  | return parse_bin(value, &edata->output, &edata->output_len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int encode_test_run(EVP_TEST *t) | 
|  | { | 
|  | ENCODE_DATA *expected = t->data; | 
|  | unsigned char *encode_out = NULL, *decode_out = NULL; | 
|  | int output_len, chunk_len; | 
|  | EVP_ENCODE_CTX *decode_ctx = NULL, *encode_ctx = NULL; | 
|  |  | 
|  | if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) { | 
|  | t->err = "INTERNAL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (expected->encoding == BASE64_CANONICAL_ENCODING) { | 
|  |  | 
|  | if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new()) | 
|  | || !TEST_ptr(encode_out = | 
|  | OPENSSL_malloc(EVP_ENCODE_LENGTH(expected->input_len)))) | 
|  | goto err; | 
|  |  | 
|  | EVP_EncodeInit(encode_ctx); | 
|  | if (!TEST_true(EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len, | 
|  | expected->input, expected->input_len))) | 
|  | goto err; | 
|  |  | 
|  | output_len = chunk_len; | 
|  |  | 
|  | EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len); | 
|  | output_len += chunk_len; | 
|  |  | 
|  | if (!memory_err_compare(t, "BAD_ENCODING", | 
|  | expected->output, expected->output_len, | 
|  | encode_out, output_len)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!TEST_ptr(decode_out = | 
|  | OPENSSL_malloc(EVP_DECODE_LENGTH(expected->output_len)))) | 
|  | goto err; | 
|  |  | 
|  | EVP_DecodeInit(decode_ctx); | 
|  | if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, expected->output, | 
|  | expected->output_len) < 0) { | 
|  | t->err = "DECODE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | output_len = chunk_len; | 
|  |  | 
|  | if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) { | 
|  | t->err = "DECODE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | output_len += chunk_len; | 
|  |  | 
|  | if (expected->encoding != BASE64_INVALID_ENCODING | 
|  | && !memory_err_compare(t, "BAD_DECODING", | 
|  | expected->input, expected->input_len, | 
|  | decode_out, output_len)) { | 
|  | t->err = "BAD_DECODING"; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | t->err = NULL; | 
|  | err: | 
|  | OPENSSL_free(encode_out); | 
|  | OPENSSL_free(decode_out); | 
|  | EVP_ENCODE_CTX_free(decode_ctx); | 
|  | EVP_ENCODE_CTX_free(encode_ctx); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD encode_test_method = { | 
|  | "Encoding", | 
|  | encode_test_init, | 
|  | encode_test_cleanup, | 
|  | encode_test_parse, | 
|  | encode_test_run, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | ***  KDF TESTS | 
|  | **/ | 
|  |  | 
|  | typedef struct kdf_data_st { | 
|  | /* Context for this operation */ | 
|  | EVP_KDF_CTX *ctx; | 
|  | /* Expected output */ | 
|  | unsigned char *output; | 
|  | size_t output_len; | 
|  | } KDF_DATA; | 
|  |  | 
|  | /* | 
|  | * Perform public key operation setup: lookup key, allocated ctx and call | 
|  | * the appropriate initialisation function | 
|  | */ | 
|  | static int kdf_test_init(EVP_TEST *t, const char *name) | 
|  | { | 
|  | KDF_DATA *kdata; | 
|  | int kdf_nid = OBJ_sn2nid(name); | 
|  |  | 
|  | #ifdef OPENSSL_NO_SCRYPT | 
|  | if (strcmp(name, "scrypt") == 0) { | 
|  | t->skip = 1; | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (kdf_nid == NID_undef) | 
|  | kdf_nid = OBJ_ln2nid(name); | 
|  |  | 
|  | if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) | 
|  | return 0; | 
|  | kdata->ctx = EVP_KDF_CTX_new_id(kdf_nid); | 
|  | if (kdata->ctx == NULL) { | 
|  | OPENSSL_free(kdata); | 
|  | return 0; | 
|  | } | 
|  | t->data = kdata; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void kdf_test_cleanup(EVP_TEST *t) | 
|  | { | 
|  | KDF_DATA *kdata = t->data; | 
|  | OPENSSL_free(kdata->output); | 
|  | EVP_KDF_CTX_free(kdata->ctx); | 
|  | } | 
|  |  | 
|  | static int kdf_test_ctrl(EVP_TEST *t, EVP_KDF_CTX *kctx, | 
|  | const char *value) | 
|  | { | 
|  | int rv; | 
|  | char *p, *tmpval; | 
|  |  | 
|  | if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) | 
|  | return 0; | 
|  | p = strchr(tmpval, ':'); | 
|  | if (p != NULL) | 
|  | *p++ = '\0'; | 
|  | rv = EVP_KDF_ctrl_str(kctx, tmpval, p); | 
|  | if (rv == -2) { | 
|  | t->err = "KDF_CTRL_INVALID"; | 
|  | rv = 1; | 
|  | } else if (p != NULL && rv <= 0) { | 
|  | /* If p has an OID and lookup fails assume disabled algorithm */ | 
|  | int nid = OBJ_sn2nid(p); | 
|  |  | 
|  | if (nid == NID_undef) | 
|  | nid = OBJ_ln2nid(p); | 
|  | if (nid != NID_undef | 
|  | && EVP_get_digestbynid(nid) == NULL | 
|  | && EVP_get_cipherbynid(nid) == NULL) { | 
|  | t->skip = 1; | 
|  | rv = 1; | 
|  | } else { | 
|  | t->err = "KDF_CTRL_ERROR"; | 
|  | rv = 1; | 
|  | } | 
|  | } | 
|  | OPENSSL_free(tmpval); | 
|  | return rv > 0; | 
|  | } | 
|  |  | 
|  | static int kdf_test_parse(EVP_TEST *t, | 
|  | const char *keyword, const char *value) | 
|  | { | 
|  | KDF_DATA *kdata = t->data; | 
|  |  | 
|  | if (strcmp(keyword, "Output") == 0) | 
|  | return parse_bin(value, &kdata->output, &kdata->output_len); | 
|  | if (strncmp(keyword, "Ctrl", 4) == 0) | 
|  | return kdf_test_ctrl(t, kdata->ctx, value); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kdf_test_run(EVP_TEST *t) | 
|  | { | 
|  | KDF_DATA *expected = t->data; | 
|  | unsigned char *got = NULL; | 
|  | size_t got_len = expected->output_len; | 
|  |  | 
|  | if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { | 
|  | t->err = "INTERNAL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (EVP_KDF_derive(expected->ctx, got, got_len) <= 0) { | 
|  | t->err = "KDF_DERIVE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!memory_err_compare(t, "KDF_MISMATCH", | 
|  | expected->output, expected->output_len, | 
|  | got, got_len)) | 
|  | goto err; | 
|  |  | 
|  | t->err = NULL; | 
|  |  | 
|  | err: | 
|  | OPENSSL_free(got); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD kdf_test_method = { | 
|  | "KDF", | 
|  | kdf_test_init, | 
|  | kdf_test_cleanup, | 
|  | kdf_test_parse, | 
|  | kdf_test_run | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | ***  PKEY KDF TESTS | 
|  | **/ | 
|  |  | 
|  | typedef struct pkey_kdf_data_st { | 
|  | /* Context for this operation */ | 
|  | EVP_PKEY_CTX *ctx; | 
|  | /* Expected output */ | 
|  | unsigned char *output; | 
|  | size_t output_len; | 
|  | } PKEY_KDF_DATA; | 
|  |  | 
|  | /* | 
|  | * Perform public key operation setup: lookup key, allocated ctx and call | 
|  | * the appropriate initialisation function | 
|  | */ | 
|  | static int pkey_kdf_test_init(EVP_TEST *t, const char *name) | 
|  | { | 
|  | PKEY_KDF_DATA *kdata; | 
|  | int kdf_nid = OBJ_sn2nid(name); | 
|  |  | 
|  | #ifdef OPENSSL_NO_SCRYPT | 
|  | if (strcmp(name, "scrypt") == 0) { | 
|  | t->skip = 1; | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (kdf_nid == NID_undef) | 
|  | kdf_nid = OBJ_ln2nid(name); | 
|  |  | 
|  | if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) | 
|  | return 0; | 
|  | kdata->ctx = EVP_PKEY_CTX_new_id(kdf_nid, NULL); | 
|  | if (kdata->ctx == NULL) { | 
|  | OPENSSL_free(kdata); | 
|  | return 0; | 
|  | } | 
|  | if (EVP_PKEY_derive_init(kdata->ctx) <= 0) { | 
|  | EVP_PKEY_CTX_free(kdata->ctx); | 
|  | OPENSSL_free(kdata); | 
|  | return 0; | 
|  | } | 
|  | t->data = kdata; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void pkey_kdf_test_cleanup(EVP_TEST *t) | 
|  | { | 
|  | PKEY_KDF_DATA *kdata = t->data; | 
|  | OPENSSL_free(kdata->output); | 
|  | EVP_PKEY_CTX_free(kdata->ctx); | 
|  | } | 
|  |  | 
|  | static int pkey_kdf_test_parse(EVP_TEST *t, | 
|  | const char *keyword, const char *value) | 
|  | { | 
|  | PKEY_KDF_DATA *kdata = t->data; | 
|  |  | 
|  | if (strcmp(keyword, "Output") == 0) | 
|  | return parse_bin(value, &kdata->output, &kdata->output_len); | 
|  | if (strncmp(keyword, "Ctrl", 4) == 0) | 
|  | return pkey_test_ctrl(t, kdata->ctx, value); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pkey_kdf_test_run(EVP_TEST *t) | 
|  | { | 
|  | PKEY_KDF_DATA *expected = t->data; | 
|  | unsigned char *got = NULL; | 
|  | size_t got_len = expected->output_len; | 
|  |  | 
|  | if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { | 
|  | t->err = "INTERNAL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) { | 
|  | t->err = "KDF_DERIVE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) { | 
|  | t->err = "KDF_MISMATCH"; | 
|  | goto err; | 
|  | } | 
|  | t->err = NULL; | 
|  |  | 
|  | err: | 
|  | OPENSSL_free(got); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD pkey_kdf_test_method = { | 
|  | "PKEYKDF", | 
|  | pkey_kdf_test_init, | 
|  | pkey_kdf_test_cleanup, | 
|  | pkey_kdf_test_parse, | 
|  | pkey_kdf_test_run | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | ***  KEYPAIR TESTS | 
|  | **/ | 
|  |  | 
|  | typedef struct keypair_test_data_st { | 
|  | EVP_PKEY *privk; | 
|  | EVP_PKEY *pubk; | 
|  | } KEYPAIR_TEST_DATA; | 
|  |  | 
|  | static int keypair_test_init(EVP_TEST *t, const char *pair) | 
|  | { | 
|  | KEYPAIR_TEST_DATA *data; | 
|  | int rv = 0; | 
|  | EVP_PKEY *pk = NULL, *pubk = NULL; | 
|  | char *pub, *priv = NULL; | 
|  |  | 
|  | /* Split private and public names. */ | 
|  | if (!TEST_ptr(priv = OPENSSL_strdup(pair)) | 
|  | || !TEST_ptr(pub = strchr(priv, ':'))) { | 
|  | t->err = "PARSING_ERROR"; | 
|  | goto end; | 
|  | } | 
|  | *pub++ = '\0'; | 
|  |  | 
|  | if (!TEST_true(find_key(&pk, priv, private_keys))) { | 
|  | TEST_info("Can't find private key: %s", priv); | 
|  | t->err = "MISSING_PRIVATE_KEY"; | 
|  | goto end; | 
|  | } | 
|  | if (!TEST_true(find_key(&pubk, pub, public_keys))) { | 
|  | TEST_info("Can't find public key: %s", pub); | 
|  | t->err = "MISSING_PUBLIC_KEY"; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | if (pk == NULL && pubk == NULL) { | 
|  | /* Both keys are listed but unsupported: skip this test */ | 
|  | t->skip = 1; | 
|  | rv = 1; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data)))) | 
|  | goto end; | 
|  | data->privk = pk; | 
|  | data->pubk = pubk; | 
|  | t->data = data; | 
|  | rv = 1; | 
|  | t->err = NULL; | 
|  |  | 
|  | end: | 
|  | OPENSSL_free(priv); | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | static void keypair_test_cleanup(EVP_TEST *t) | 
|  | { | 
|  | OPENSSL_free(t->data); | 
|  | t->data = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For tests that do not accept any custom keywords. | 
|  | */ | 
|  | static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int keypair_test_run(EVP_TEST *t) | 
|  | { | 
|  | int rv = 0; | 
|  | const KEYPAIR_TEST_DATA *pair = t->data; | 
|  |  | 
|  | if (pair->privk == NULL || pair->pubk == NULL) { | 
|  | /* | 
|  | * this can only happen if only one of the keys is not set | 
|  | * which means that one of them was unsupported while the | 
|  | * other isn't: hence a key type mismatch. | 
|  | */ | 
|  | t->err = "KEYPAIR_TYPE_MISMATCH"; | 
|  | rv = 1; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | if ((rv = EVP_PKEY_cmp(pair->privk, pair->pubk)) != 1 ) { | 
|  | if ( 0 == rv ) { | 
|  | t->err = "KEYPAIR_MISMATCH"; | 
|  | } else if ( -1 == rv ) { | 
|  | t->err = "KEYPAIR_TYPE_MISMATCH"; | 
|  | } else if ( -2 == rv ) { | 
|  | t->err = "UNSUPPORTED_KEY_COMPARISON"; | 
|  | } else { | 
|  | TEST_error("Unexpected error in key comparison"); | 
|  | rv = 0; | 
|  | goto end; | 
|  | } | 
|  | rv = 1; | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | rv = 1; | 
|  | t->err = NULL; | 
|  |  | 
|  | end: | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD keypair_test_method = { | 
|  | "PrivPubKeyPair", | 
|  | keypair_test_init, | 
|  | keypair_test_cleanup, | 
|  | void_test_parse, | 
|  | keypair_test_run | 
|  | }; | 
|  |  | 
|  | /** | 
|  | ***  KEYGEN TEST | 
|  | **/ | 
|  |  | 
|  | typedef struct keygen_test_data_st { | 
|  | EVP_PKEY_CTX *genctx; /* Keygen context to use */ | 
|  | char *keyname; /* Key name to store key or NULL */ | 
|  | } KEYGEN_TEST_DATA; | 
|  |  | 
|  | static int keygen_test_init(EVP_TEST *t, const char *alg) | 
|  | { | 
|  | KEYGEN_TEST_DATA *data; | 
|  | EVP_PKEY_CTX *genctx; | 
|  | int nid = OBJ_sn2nid(alg); | 
|  |  | 
|  | if (nid == NID_undef) { | 
|  | nid = OBJ_ln2nid(alg); | 
|  | if (nid == NID_undef) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_id(nid, NULL))) { | 
|  | /* assume algorithm disabled */ | 
|  | t->skip = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (EVP_PKEY_keygen_init(genctx) <= 0) { | 
|  | t->err = "KEYGEN_INIT_ERROR"; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data)))) | 
|  | goto err; | 
|  | data->genctx = genctx; | 
|  | data->keyname = NULL; | 
|  | t->data = data; | 
|  | t->err = NULL; | 
|  | return 1; | 
|  |  | 
|  | err: | 
|  | EVP_PKEY_CTX_free(genctx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void keygen_test_cleanup(EVP_TEST *t) | 
|  | { | 
|  | KEYGEN_TEST_DATA *keygen = t->data; | 
|  |  | 
|  | EVP_PKEY_CTX_free(keygen->genctx); | 
|  | OPENSSL_free(keygen->keyname); | 
|  | OPENSSL_free(t->data); | 
|  | t->data = NULL; | 
|  | } | 
|  |  | 
|  | static int keygen_test_parse(EVP_TEST *t, | 
|  | const char *keyword, const char *value) | 
|  | { | 
|  | KEYGEN_TEST_DATA *keygen = t->data; | 
|  |  | 
|  | if (strcmp(keyword, "KeyName") == 0) | 
|  | return TEST_ptr(keygen->keyname = OPENSSL_strdup(value)); | 
|  | if (strcmp(keyword, "Ctrl") == 0) | 
|  | return pkey_test_ctrl(t, keygen->genctx, value); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int keygen_test_run(EVP_TEST *t) | 
|  | { | 
|  | KEYGEN_TEST_DATA *keygen = t->data; | 
|  | EVP_PKEY *pkey = NULL; | 
|  |  | 
|  | t->err = NULL; | 
|  | if (EVP_PKEY_keygen(keygen->genctx, &pkey) <= 0) { | 
|  | t->err = "KEYGEN_GENERATE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (keygen->keyname != NULL) { | 
|  | KEY_LIST *key; | 
|  |  | 
|  | if (find_key(NULL, keygen->keyname, private_keys)) { | 
|  | TEST_info("Duplicate key %s", keygen->keyname); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key)))) | 
|  | goto err; | 
|  | key->name = keygen->keyname; | 
|  | keygen->keyname = NULL; | 
|  | key->key = pkey; | 
|  | key->next = private_keys; | 
|  | private_keys = key; | 
|  | } else { | 
|  | EVP_PKEY_free(pkey); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | err: | 
|  | EVP_PKEY_free(pkey); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD keygen_test_method = { | 
|  | "KeyGen", | 
|  | keygen_test_init, | 
|  | keygen_test_cleanup, | 
|  | keygen_test_parse, | 
|  | keygen_test_run, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | ***  DIGEST SIGN+VERIFY TESTS | 
|  | **/ | 
|  |  | 
|  | typedef struct { | 
|  | int is_verify; /* Set to 1 if verifying */ | 
|  | int is_oneshot; /* Set to 1 for one shot operation */ | 
|  | const EVP_MD *md; /* Digest to use */ | 
|  | EVP_MD_CTX *ctx; /* Digest context */ | 
|  | EVP_PKEY_CTX *pctx; | 
|  | STACK_OF(EVP_TEST_BUFFER) *input; /* Input data: streaming */ | 
|  | unsigned char *osin; /* Input data if one shot */ | 
|  | size_t osin_len; /* Input length data if one shot */ | 
|  | unsigned char *output; /* Expected output */ | 
|  | size_t output_len; /* Expected output length */ | 
|  | } DIGESTSIGN_DATA; | 
|  |  | 
|  | static int digestsigver_test_init(EVP_TEST *t, const char *alg, int is_verify, | 
|  | int is_oneshot) | 
|  | { | 
|  | const EVP_MD *md = NULL; | 
|  | DIGESTSIGN_DATA *mdat; | 
|  |  | 
|  | if (strcmp(alg, "NULL") != 0) { | 
|  | if ((md = EVP_get_digestbyname(alg)) == NULL) { | 
|  | /* If alg has an OID assume disabled algorithm */ | 
|  | if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { | 
|  | t->skip = 1; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat)))) | 
|  | return 0; | 
|  | mdat->md = md; | 
|  | if (!TEST_ptr(mdat->ctx = EVP_MD_CTX_new())) { | 
|  | OPENSSL_free(mdat); | 
|  | return 0; | 
|  | } | 
|  | mdat->is_verify = is_verify; | 
|  | mdat->is_oneshot = is_oneshot; | 
|  | t->data = mdat; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int digestsign_test_init(EVP_TEST *t, const char *alg) | 
|  | { | 
|  | return digestsigver_test_init(t, alg, 0, 0); | 
|  | } | 
|  |  | 
|  | static void digestsigver_test_cleanup(EVP_TEST *t) | 
|  | { | 
|  | DIGESTSIGN_DATA *mdata = t->data; | 
|  |  | 
|  | EVP_MD_CTX_free(mdata->ctx); | 
|  | sk_EVP_TEST_BUFFER_pop_free(mdata->input, evp_test_buffer_free); | 
|  | OPENSSL_free(mdata->osin); | 
|  | OPENSSL_free(mdata->output); | 
|  | OPENSSL_free(mdata); | 
|  | t->data = NULL; | 
|  | } | 
|  |  | 
|  | static int digestsigver_test_parse(EVP_TEST *t, | 
|  | const char *keyword, const char *value) | 
|  | { | 
|  | DIGESTSIGN_DATA *mdata = t->data; | 
|  |  | 
|  | if (strcmp(keyword, "Key") == 0) { | 
|  | EVP_PKEY *pkey = NULL; | 
|  | int rv = 0; | 
|  |  | 
|  | if (mdata->is_verify) | 
|  | rv = find_key(&pkey, value, public_keys); | 
|  | if (rv == 0) | 
|  | rv = find_key(&pkey, value, private_keys); | 
|  | if (rv == 0 || pkey == NULL) { | 
|  | t->skip = 1; | 
|  | return 1; | 
|  | } | 
|  | if (mdata->is_verify) { | 
|  | if (!EVP_DigestVerifyInit(mdata->ctx, &mdata->pctx, mdata->md, | 
|  | NULL, pkey)) | 
|  | t->err = "DIGESTVERIFYINIT_ERROR"; | 
|  | return 1; | 
|  | } | 
|  | if (!EVP_DigestSignInit(mdata->ctx, &mdata->pctx, mdata->md, NULL, | 
|  | pkey)) | 
|  | t->err = "DIGESTSIGNINIT_ERROR"; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (strcmp(keyword, "Input") == 0) { | 
|  | if (mdata->is_oneshot) | 
|  | return parse_bin(value, &mdata->osin, &mdata->osin_len); | 
|  | return evp_test_buffer_append(value, &mdata->input); | 
|  | } | 
|  | if (strcmp(keyword, "Output") == 0) | 
|  | return parse_bin(value, &mdata->output, &mdata->output_len); | 
|  |  | 
|  | if (!mdata->is_oneshot) { | 
|  | if (strcmp(keyword, "Count") == 0) | 
|  | return evp_test_buffer_set_count(value, mdata->input); | 
|  | if (strcmp(keyword, "Ncopy") == 0) | 
|  | return evp_test_buffer_ncopy(value, mdata->input); | 
|  | } | 
|  | if (strcmp(keyword, "Ctrl") == 0) { | 
|  | if (mdata->pctx == NULL) | 
|  | return 0; | 
|  | return pkey_test_ctrl(t, mdata->pctx, value); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int digestsign_update_fn(void *ctx, const unsigned char *buf, | 
|  | size_t buflen) | 
|  | { | 
|  | return EVP_DigestSignUpdate(ctx, buf, buflen); | 
|  | } | 
|  |  | 
|  | static int digestsign_test_run(EVP_TEST *t) | 
|  | { | 
|  | DIGESTSIGN_DATA *expected = t->data; | 
|  | unsigned char *got = NULL; | 
|  | size_t got_len; | 
|  |  | 
|  | if (!evp_test_buffer_do(expected->input, digestsign_update_fn, | 
|  | expected->ctx)) { | 
|  | t->err = "DIGESTUPDATE_ERROR"; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!EVP_DigestSignFinal(expected->ctx, NULL, &got_len)) { | 
|  | t->err = "DIGESTSIGNFINAL_LENGTH_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { | 
|  | t->err = "MALLOC_FAILURE"; | 
|  | goto err; | 
|  | } | 
|  | if (!EVP_DigestSignFinal(expected->ctx, got, &got_len)) { | 
|  | t->err = "DIGESTSIGNFINAL_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!memory_err_compare(t, "SIGNATURE_MISMATCH", | 
|  | expected->output, expected->output_len, | 
|  | got, got_len)) | 
|  | goto err; | 
|  |  | 
|  | t->err = NULL; | 
|  | err: | 
|  | OPENSSL_free(got); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD digestsign_test_method = { | 
|  | "DigestSign", | 
|  | digestsign_test_init, | 
|  | digestsigver_test_cleanup, | 
|  | digestsigver_test_parse, | 
|  | digestsign_test_run | 
|  | }; | 
|  |  | 
|  | static int digestverify_test_init(EVP_TEST *t, const char *alg) | 
|  | { | 
|  | return digestsigver_test_init(t, alg, 1, 0); | 
|  | } | 
|  |  | 
|  | static int digestverify_update_fn(void *ctx, const unsigned char *buf, | 
|  | size_t buflen) | 
|  | { | 
|  | return EVP_DigestVerifyUpdate(ctx, buf, buflen); | 
|  | } | 
|  |  | 
|  | static int digestverify_test_run(EVP_TEST *t) | 
|  | { | 
|  | DIGESTSIGN_DATA *mdata = t->data; | 
|  |  | 
|  | if (!evp_test_buffer_do(mdata->input, digestverify_update_fn, mdata->ctx)) { | 
|  | t->err = "DIGESTUPDATE_ERROR"; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (EVP_DigestVerifyFinal(mdata->ctx, mdata->output, | 
|  | mdata->output_len) <= 0) | 
|  | t->err = "VERIFY_ERROR"; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD digestverify_test_method = { | 
|  | "DigestVerify", | 
|  | digestverify_test_init, | 
|  | digestsigver_test_cleanup, | 
|  | digestsigver_test_parse, | 
|  | digestverify_test_run | 
|  | }; | 
|  |  | 
|  | static int oneshot_digestsign_test_init(EVP_TEST *t, const char *alg) | 
|  | { | 
|  | return digestsigver_test_init(t, alg, 0, 1); | 
|  | } | 
|  |  | 
|  | static int oneshot_digestsign_test_run(EVP_TEST *t) | 
|  | { | 
|  | DIGESTSIGN_DATA *expected = t->data; | 
|  | unsigned char *got = NULL; | 
|  | size_t got_len; | 
|  |  | 
|  | if (!EVP_DigestSign(expected->ctx, NULL, &got_len, | 
|  | expected->osin, expected->osin_len)) { | 
|  | t->err = "DIGESTSIGN_LENGTH_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { | 
|  | t->err = "MALLOC_FAILURE"; | 
|  | goto err; | 
|  | } | 
|  | if (!EVP_DigestSign(expected->ctx, got, &got_len, | 
|  | expected->osin, expected->osin_len)) { | 
|  | t->err = "DIGESTSIGN_ERROR"; | 
|  | goto err; | 
|  | } | 
|  | if (!memory_err_compare(t, "SIGNATURE_MISMATCH", | 
|  | expected->output, expected->output_len, | 
|  | got, got_len)) | 
|  | goto err; | 
|  |  | 
|  | t->err = NULL; | 
|  | err: | 
|  | OPENSSL_free(got); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD oneshot_digestsign_test_method = { | 
|  | "OneShotDigestSign", | 
|  | oneshot_digestsign_test_init, | 
|  | digestsigver_test_cleanup, | 
|  | digestsigver_test_parse, | 
|  | oneshot_digestsign_test_run | 
|  | }; | 
|  |  | 
|  | static int oneshot_digestverify_test_init(EVP_TEST *t, const char *alg) | 
|  | { | 
|  | return digestsigver_test_init(t, alg, 1, 1); | 
|  | } | 
|  |  | 
|  | static int oneshot_digestverify_test_run(EVP_TEST *t) | 
|  | { | 
|  | DIGESTSIGN_DATA *mdata = t->data; | 
|  |  | 
|  | if (EVP_DigestVerify(mdata->ctx, mdata->output, mdata->output_len, | 
|  | mdata->osin, mdata->osin_len) <= 0) | 
|  | t->err = "VERIFY_ERROR"; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const EVP_TEST_METHOD oneshot_digestverify_test_method = { | 
|  | "OneShotDigestVerify", | 
|  | oneshot_digestverify_test_init, | 
|  | digestsigver_test_cleanup, | 
|  | digestsigver_test_parse, | 
|  | oneshot_digestverify_test_run | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | ***  PARSING AND DISPATCH | 
|  | **/ | 
|  |  | 
|  | static const EVP_TEST_METHOD *evp_test_list[] = { | 
|  | &cipher_test_method, | 
|  | &digest_test_method, | 
|  | &digestsign_test_method, | 
|  | &digestverify_test_method, | 
|  | &encode_test_method, | 
|  | &kdf_test_method, | 
|  | &pkey_kdf_test_method, | 
|  | &keypair_test_method, | 
|  | &keygen_test_method, | 
|  | &mac_test_method, | 
|  | &oneshot_digestsign_test_method, | 
|  | &oneshot_digestverify_test_method, | 
|  | &pbe_test_method, | 
|  | &pdecrypt_test_method, | 
|  | &pderive_test_method, | 
|  | &psign_test_method, | 
|  | &pverify_recover_test_method, | 
|  | &pverify_test_method, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static const EVP_TEST_METHOD *find_test(const char *name) | 
|  | { | 
|  | const EVP_TEST_METHOD **tt; | 
|  |  | 
|  | for (tt = evp_test_list; *tt; tt++) { | 
|  | if (strcmp(name, (*tt)->name) == 0) | 
|  | return *tt; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void clear_test(EVP_TEST *t) | 
|  | { | 
|  | test_clearstanza(&t->s); | 
|  | ERR_clear_error(); | 
|  | if (t->data != NULL) { | 
|  | if (t->meth != NULL) | 
|  | t->meth->cleanup(t); | 
|  | OPENSSL_free(t->data); | 
|  | t->data = NULL; | 
|  | } | 
|  | OPENSSL_free(t->expected_err); | 
|  | t->expected_err = NULL; | 
|  | OPENSSL_free(t->func); | 
|  | t->func = NULL; | 
|  | OPENSSL_free(t->reason); | 
|  | t->reason = NULL; | 
|  |  | 
|  | /* Text literal. */ | 
|  | t->err = NULL; | 
|  | t->skip = 0; | 
|  | t->meth = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for errors in the test structure; return 1 if okay, else 0. | 
|  | */ | 
|  | static int check_test_error(EVP_TEST *t) | 
|  | { | 
|  | unsigned long err; | 
|  | const char *func; | 
|  | const char *reason; | 
|  |  | 
|  | if (t->err == NULL && t->expected_err == NULL) | 
|  | return 1; | 
|  | if (t->err != NULL && t->expected_err == NULL) { | 
|  | if (t->aux_err != NULL) { | 
|  | TEST_info("%s:%d: Source of above error (%s); unexpected error %s", | 
|  | t->s.test_file, t->s.start, t->aux_err, t->err); | 
|  | } else { | 
|  | TEST_info("%s:%d: Source of above error; unexpected error %s", | 
|  | t->s.test_file, t->s.start, t->err); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | if (t->err == NULL && t->expected_err != NULL) { | 
|  | TEST_info("%s:%d: Succeeded but was expecting %s", | 
|  | t->s.test_file, t->s.start, t->expected_err); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (strcmp(t->err, t->expected_err) != 0) { | 
|  | TEST_info("%s:%d: Expected %s got %s", | 
|  | t->s.test_file, t->s.start, t->expected_err, t->err); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (t->func == NULL && t->reason == NULL) | 
|  | return 1; | 
|  |  | 
|  | if (t->func == NULL || t->reason == NULL) { | 
|  | TEST_info("%s:%d: Test is missing function or reason code", | 
|  | t->s.test_file, t->s.start); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | err = ERR_peek_error(); | 
|  | if (err == 0) { | 
|  | TEST_info("%s:%d: Expected error \"%s:%s\" not set", | 
|  | t->s.test_file, t->s.start, t->func, t->reason); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | func = ERR_func_error_string(err); | 
|  | reason = ERR_reason_error_string(err); | 
|  | if (func == NULL && reason == NULL) { | 
|  | TEST_info("%s:%d: Expected error \"%s:%s\", no strings available." | 
|  | " Assuming ok.", | 
|  | t->s.test_file, t->s.start, t->func, t->reason); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (strcmp(func, t->func) == 0 && strcmp(reason, t->reason) == 0) | 
|  | return 1; | 
|  |  | 
|  | TEST_info("%s:%d: Expected error \"%s:%s\", got \"%s:%s\"", | 
|  | t->s.test_file, t->s.start, t->func, t->reason, func, reason); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Run a parsed test. Log a message and return 0 on error. | 
|  | */ | 
|  | static int run_test(EVP_TEST *t) | 
|  | { | 
|  | if (t->meth == NULL) | 
|  | return 1; | 
|  | t->s.numtests++; | 
|  | if (t->skip) { | 
|  | t->s.numskip++; | 
|  | } else { | 
|  | /* run the test */ | 
|  | if (t->err == NULL && t->meth->run_test(t) != 1) { | 
|  | TEST_info("%s:%d %s error", | 
|  | t->s.test_file, t->s.start, t->meth->name); | 
|  | return 0; | 
|  | } | 
|  | if (!check_test_error(t)) { | 
|  | TEST_openssl_errors(); | 
|  | t->s.errors++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* clean it up */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst) | 
|  | { | 
|  | for (; lst != NULL; lst = lst->next) { | 
|  | if (strcmp(lst->name, name) == 0) { | 
|  | if (ppk != NULL) | 
|  | *ppk = lst->key; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_key_list(KEY_LIST *lst) | 
|  | { | 
|  | while (lst != NULL) { | 
|  | KEY_LIST *next = lst->next; | 
|  |  | 
|  | EVP_PKEY_free(lst->key); | 
|  | OPENSSL_free(lst->name); | 
|  | OPENSSL_free(lst); | 
|  | lst = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is the key type an unsupported algorithm? | 
|  | */ | 
|  | static int key_unsupported(void) | 
|  | { | 
|  | long err = ERR_peek_error(); | 
|  |  | 
|  | if (ERR_GET_LIB(err) == ERR_LIB_EVP | 
|  | && ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) { | 
|  | ERR_clear_error(); | 
|  | return 1; | 
|  | } | 
|  | #ifndef OPENSSL_NO_EC | 
|  | /* | 
|  | * If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an | 
|  | * hint to an unsupported algorithm/curve (e.g. if binary EC support is | 
|  | * disabled). | 
|  | */ | 
|  | if (ERR_GET_LIB(err) == ERR_LIB_EC | 
|  | && ERR_GET_REASON(err) == EC_R_UNKNOWN_GROUP) { | 
|  | ERR_clear_error(); | 
|  | return 1; | 
|  | } | 
|  | #endif /* OPENSSL_NO_EC */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NULL out the value from |pp| but return it.  This "steals" a pointer. | 
|  | */ | 
|  | static char *take_value(PAIR *pp) | 
|  | { | 
|  | char *p = pp->value; | 
|  |  | 
|  | pp->value = NULL; | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read and parse one test.  Return 0 if failure, 1 if okay. | 
|  | */ | 
|  | static int parse(EVP_TEST *t) | 
|  | { | 
|  | KEY_LIST *key, **klist; | 
|  | EVP_PKEY *pkey; | 
|  | PAIR *pp; | 
|  | int i; | 
|  |  | 
|  | top: | 
|  | do { | 
|  | if (BIO_eof(t->s.fp)) | 
|  | return EOF; | 
|  | clear_test(t); | 
|  | if (!test_readstanza(&t->s)) | 
|  | return 0; | 
|  | } while (t->s.numpairs == 0); | 
|  | pp = &t->s.pairs[0]; | 
|  |  | 
|  | /* Are we adding a key? */ | 
|  | klist = NULL; | 
|  | pkey = NULL; | 
|  | if (strcmp(pp->key, "PrivateKey") == 0) { | 
|  | pkey = PEM_read_bio_PrivateKey(t->s.key, NULL, 0, NULL); | 
|  | if (pkey == NULL && !key_unsupported()) { | 
|  | EVP_PKEY_free(pkey); | 
|  | TEST_info("Can't read private key %s", pp->value); | 
|  | TEST_openssl_errors(); | 
|  | return 0; | 
|  | } | 
|  | klist = &private_keys; | 
|  | } else if (strcmp(pp->key, "PublicKey") == 0) { | 
|  | pkey = PEM_read_bio_PUBKEY(t->s.key, NULL, 0, NULL); | 
|  | if (pkey == NULL && !key_unsupported()) { | 
|  | EVP_PKEY_free(pkey); | 
|  | TEST_info("Can't read public key %s", pp->value); | 
|  | TEST_openssl_errors(); | 
|  | return 0; | 
|  | } | 
|  | klist = &public_keys; | 
|  | } else if (strcmp(pp->key, "PrivateKeyRaw") == 0 | 
|  | || strcmp(pp->key, "PublicKeyRaw") == 0 ) { | 
|  | char *strnid = NULL, *keydata = NULL; | 
|  | unsigned char *keybin; | 
|  | size_t keylen; | 
|  | int nid; | 
|  |  | 
|  | if (strcmp(pp->key, "PrivateKeyRaw") == 0) | 
|  | klist = &private_keys; | 
|  | else | 
|  | klist = &public_keys; | 
|  |  | 
|  | strnid = strchr(pp->value, ':'); | 
|  | if (strnid != NULL) { | 
|  | *strnid++ = '\0'; | 
|  | keydata = strchr(strnid, ':'); | 
|  | if (keydata != NULL) | 
|  | *keydata++ = '\0'; | 
|  | } | 
|  | if (keydata == NULL) { | 
|  | TEST_info("Failed to parse %s value", pp->key); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | nid = OBJ_txt2nid(strnid); | 
|  | if (nid == NID_undef) { | 
|  | TEST_info("Uncrecognised algorithm NID"); | 
|  | return 0; | 
|  | } | 
|  | if (!parse_bin(keydata, &keybin, &keylen)) { | 
|  | TEST_info("Failed to create binary key"); | 
|  | return 0; | 
|  | } | 
|  | if (klist == &private_keys) | 
|  | pkey = EVP_PKEY_new_raw_private_key(nid, NULL, keybin, keylen); | 
|  | else | 
|  | pkey = EVP_PKEY_new_raw_public_key(nid, NULL, keybin, keylen); | 
|  | if (pkey == NULL && !key_unsupported()) { | 
|  | TEST_info("Can't read %s data", pp->key); | 
|  | OPENSSL_free(keybin); | 
|  | TEST_openssl_errors(); | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_free(keybin); | 
|  | } | 
|  |  | 
|  | /* If we have a key add to list */ | 
|  | if (klist != NULL) { | 
|  | if (find_key(NULL, pp->value, *klist)) { | 
|  | TEST_info("Duplicate key %s", pp->value); | 
|  | return 0; | 
|  | } | 
|  | if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key)))) | 
|  | return 0; | 
|  | key->name = take_value(pp); | 
|  |  | 
|  | /* Hack to detect SM2 keys */ | 
|  | if(pkey != NULL && strstr(key->name, "SM2") != NULL) { | 
|  | #ifdef OPENSSL_NO_SM2 | 
|  | EVP_PKEY_free(pkey); | 
|  | pkey = NULL; | 
|  | #else | 
|  | EVP_PKEY_set_alias_type(pkey, EVP_PKEY_SM2); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | key->key = pkey; | 
|  | key->next = *klist; | 
|  | *klist = key; | 
|  |  | 
|  | /* Go back and start a new stanza. */ | 
|  | if (t->s.numpairs != 1) | 
|  | TEST_info("Line %d: missing blank line\n", t->s.curr); | 
|  | goto top; | 
|  | } | 
|  |  | 
|  | /* Find the test, based on first keyword. */ | 
|  | if (!TEST_ptr(t->meth = find_test(pp->key))) | 
|  | return 0; | 
|  | if (!t->meth->init(t, pp->value)) { | 
|  | TEST_error("unknown %s: %s\n", pp->key, pp->value); | 
|  | return 0; | 
|  | } | 
|  | if (t->skip == 1) { | 
|  | /* TEST_info("skipping %s %s", pp->key, pp->value); */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (pp++, i = 1; i < t->s.numpairs; pp++, i++) { | 
|  | if (strcmp(pp->key, "Result") == 0) { | 
|  | if (t->expected_err != NULL) { | 
|  | TEST_info("Line %d: multiple result lines", t->s.curr); | 
|  | return 0; | 
|  | } | 
|  | t->expected_err = take_value(pp); | 
|  | } else if (strcmp(pp->key, "Function") == 0) { | 
|  | if (t->func != NULL) { | 
|  | TEST_info("Line %d: multiple function lines\n", t->s.curr); | 
|  | return 0; | 
|  | } | 
|  | t->func = take_value(pp); | 
|  | } else if (strcmp(pp->key, "Reason") == 0) { | 
|  | if (t->reason != NULL) { | 
|  | TEST_info("Line %d: multiple reason lines", t->s.curr); | 
|  | return 0; | 
|  | } | 
|  | t->reason = take_value(pp); | 
|  | } else { | 
|  | /* Must be test specific line: try to parse it */ | 
|  | int rv = t->meth->parse(t, pp->key, pp->value); | 
|  |  | 
|  | if (rv == 0) { | 
|  | TEST_info("Line %d: unknown keyword %s", t->s.curr, pp->key); | 
|  | return 0; | 
|  | } | 
|  | if (rv < 0) { | 
|  | TEST_info("Line %d: error processing keyword %s = %s\n", | 
|  | t->s.curr, pp->key, pp->value); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int run_file_tests(int i) | 
|  | { | 
|  | EVP_TEST *t; | 
|  | const char *testfile = test_get_argument(i); | 
|  | int c; | 
|  |  | 
|  | if (!TEST_ptr(t = OPENSSL_zalloc(sizeof(*t)))) | 
|  | return 0; | 
|  | if (!test_start_file(&t->s, testfile)) { | 
|  | OPENSSL_free(t); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | while (!BIO_eof(t->s.fp)) { | 
|  | c = parse(t); | 
|  | if (t->skip) | 
|  | continue; | 
|  | if (c == 0 || !run_test(t)) { | 
|  | t->s.errors++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | test_end_file(&t->s); | 
|  | clear_test(t); | 
|  |  | 
|  | free_key_list(public_keys); | 
|  | free_key_list(private_keys); | 
|  | BIO_free(t->s.key); | 
|  | c = t->s.errors; | 
|  | OPENSSL_free(t); | 
|  | return c == 0; | 
|  | } | 
|  |  | 
|  | OPT_TEST_DECLARE_USAGE("file...\n") | 
|  |  | 
|  | int setup_tests(void) | 
|  | { | 
|  | size_t n = test_get_argument_count(); | 
|  |  | 
|  | if (n == 0) | 
|  | return 0; | 
|  |  | 
|  | ADD_ALL_TESTS(run_file_tests, n); | 
|  | return 1; | 
|  | } |