| /* |
| * Copyright 2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdlib.h> |
| #include "ssl_locl.h" |
| #include <openssl/evp.h> |
| #include <openssl/kdf.h> |
| |
| #define TLS13_MAX_LABEL_LEN 246 |
| |
| /* Always filled with zeros */ |
| static const unsigned char default_zeros[EVP_MAX_MD_SIZE]; |
| |
| /* |
| * Given a |secret|; a |label| of length |labellen|; and a |hash| of the |
| * handshake messages, derive a new secret |outlen| bytes long and store it in |
| * the location pointed to be |out|. The |hash| value may be NULL. Returns 1 on |
| * success 0 on failure. |
| */ |
| static int tls13_hkdf_expand(SSL *s, const unsigned char *secret, |
| const unsigned char *label, size_t labellen, |
| const unsigned char *hash, |
| unsigned char *out, size_t outlen) |
| { |
| const unsigned char label_prefix[] = "TLS 1.3, "; |
| const EVP_MD *md = ssl_handshake_md(s); |
| EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL); |
| int ret; |
| size_t hkdflabellen; |
| size_t hashlen; |
| /* |
| * 2 bytes for length of whole HkdfLabel + 1 byte for length of combined |
| * prefix and label + bytes for the label itself + bytes for the hash |
| */ |
| unsigned char hkdflabel[sizeof(uint16_t) + sizeof(uint8_t) + |
| + sizeof(label_prefix) + TLS13_MAX_LABEL_LEN |
| + EVP_MAX_MD_SIZE]; |
| WPACKET pkt; |
| |
| if (pctx == NULL) |
| return 0; |
| |
| hashlen = EVP_MD_size(md); |
| |
| if (!WPACKET_init_static_len(&pkt, hkdflabel, sizeof(hkdflabel), 0) |
| || !WPACKET_put_bytes_u16(&pkt, outlen) |
| || !WPACKET_start_sub_packet_u8(&pkt) |
| || !WPACKET_memcpy(&pkt, label_prefix, sizeof(label_prefix) - 1) |
| || !WPACKET_memcpy(&pkt, label, labellen) |
| || !WPACKET_close(&pkt) |
| || !WPACKET_sub_memcpy_u8(&pkt, hash, (hash == NULL) ? 0 : hashlen) |
| || !WPACKET_get_total_written(&pkt, &hkdflabellen) |
| || !WPACKET_finish(&pkt)) { |
| WPACKET_cleanup(&pkt); |
| return 0; |
| } |
| |
| ret = EVP_PKEY_derive_init(pctx) <= 0 |
| || EVP_PKEY_CTX_hkdf_mode(pctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY) |
| <= 0 |
| || EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0 |
| || EVP_PKEY_CTX_set1_hkdf_key(pctx, secret, hashlen) <= 0 |
| || EVP_PKEY_CTX_add1_hkdf_info(pctx, hkdflabel, hkdflabellen) <= 0 |
| || EVP_PKEY_derive(pctx, out, &outlen) <= 0; |
| |
| EVP_PKEY_CTX_free(pctx); |
| |
| return ret == 0; |
| } |
| |
| /* |
| * Given a input secret |insecret| and a |label| of length |labellen|, derive a |
| * new |secret|. This will be the length of the current hash output size and |
| * will be based on the current state of the handshake hashes. Returns 1 on |
| * success 0 on failure. |
| */ |
| int tls13_derive_secret(SSL *s, const unsigned char *insecret, |
| const unsigned char *label, size_t labellen, |
| unsigned char *secret) |
| { |
| unsigned char hash[EVP_MAX_MD_SIZE]; |
| size_t hashlen; |
| |
| if (!ssl3_digest_cached_records(s, 1)) |
| return 0; |
| |
| if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) |
| return 0; |
| |
| return tls13_hkdf_expand(s, insecret, label, labellen, hash, secret, |
| hashlen); |
| } |
| |
| /* |
| * Given a |secret| generate a |key| of length |keylen| bytes. Returns 1 on |
| * success 0 on failure. |
| */ |
| int tls13_derive_key(SSL *s, const unsigned char *secret, unsigned char *key, |
| size_t keylen) |
| { |
| static const unsigned char keylabel[] = "key"; |
| |
| return tls13_hkdf_expand(s, secret, keylabel, sizeof(keylabel) - 1, NULL, |
| key, keylen); |
| } |
| |
| /* |
| * Given a |secret| generate an |iv| of length |ivlen| bytes. Returns 1 on |
| * success 0 on failure. |
| */ |
| int tls13_derive_iv(SSL *s, const unsigned char *secret, unsigned char *iv, |
| size_t ivlen) |
| { |
| static const unsigned char ivlabel[] = "iv"; |
| |
| return tls13_hkdf_expand(s, secret, ivlabel, sizeof(ivlabel) - 1, NULL, |
| iv, ivlen); |
| } |
| |
| static int tls13_derive_finishedkey(SSL *s, const unsigned char *secret, |
| unsigned char *fin, size_t finlen) |
| { |
| static const unsigned char finishedlabel[] = "finished"; |
| |
| return tls13_hkdf_expand(s, secret, finishedlabel, |
| sizeof(finishedlabel) - 1, NULL, fin, finlen); |
| } |
| |
| /* |
| * Given the previous secret |prevsecret| and a new input secret |insecret| of |
| * length |insecretlen|, generate a new secret and store it in the location |
| * pointed to by |outsecret|. Returns 1 on success 0 on failure. |
| */ |
| static int tls13_generate_secret(SSL *s, const unsigned char *prevsecret, |
| const unsigned char *insecret, |
| size_t insecretlen, |
| unsigned char *outsecret) |
| { |
| const EVP_MD *md = ssl_handshake_md(s); |
| size_t mdlen, prevsecretlen; |
| int ret; |
| EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL); |
| |
| if (pctx == NULL) |
| return 0; |
| |
| mdlen = EVP_MD_size(md); |
| |
| if (insecret == NULL) { |
| insecret = default_zeros; |
| insecretlen = mdlen; |
| } |
| if (prevsecret == NULL) { |
| prevsecret = default_zeros; |
| prevsecretlen = 0; |
| } else { |
| prevsecretlen = mdlen; |
| } |
| |
| ret = EVP_PKEY_derive_init(pctx) <= 0 |
| || EVP_PKEY_CTX_hkdf_mode(pctx, EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY) |
| <= 0 |
| || EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0 |
| || EVP_PKEY_CTX_set1_hkdf_key(pctx, insecret, insecretlen) <= 0 |
| || EVP_PKEY_CTX_set1_hkdf_salt(pctx, prevsecret, prevsecretlen) |
| <= 0 |
| || EVP_PKEY_derive(pctx, outsecret, &mdlen) |
| <= 0; |
| |
| EVP_PKEY_CTX_free(pctx); |
| return ret == 0; |
| } |
| |
| /* |
| * Given an input secret |insecret| of length |insecretlen| generate the early |
| * secret. Returns 1 on success 0 on failure. |
| */ |
| int tls13_generate_early_secret(SSL *s, const unsigned char *insecret, |
| size_t insecretlen) |
| { |
| return tls13_generate_secret(s, NULL, insecret, insecretlen, |
| (unsigned char *)&s->early_secret); |
| } |
| |
| /* |
| * Given an input secret |insecret| of length |insecretlen| generate the |
| * handshake secret. This requires the early secret to already have been |
| * generated. Returns 1 on success 0 on failure. |
| */ |
| int tls13_generate_handshake_secret(SSL *s, const unsigned char *insecret, |
| size_t insecretlen) |
| { |
| return tls13_generate_secret(s, s->early_secret, insecret, insecretlen, |
| (unsigned char *)&s->handshake_secret); |
| } |
| |
| /* |
| * Given the handshake secret |prev| of length |prevlen| generate the master |
| * secret and store its length in |*secret_size|. Returns 1 on success 0 on |
| * failure. |
| */ |
| int tls13_generate_master_secret(SSL *s, unsigned char *out, |
| unsigned char *prev, size_t prevlen, |
| size_t *secret_size) |
| { |
| *secret_size = EVP_MD_size(ssl_handshake_md(s)); |
| return tls13_generate_secret(s, prev, NULL, 0, out); |
| } |
| |
| /* |
| * Generates the mac for the Finished message. Returns the length of the MAC or |
| * 0 on error. |
| */ |
| size_t tls13_final_finish_mac(SSL *s, const char *str, size_t slen, |
| unsigned char *out) |
| { |
| const EVP_MD *md = ssl_handshake_md(s); |
| unsigned char hash[EVP_MAX_MD_SIZE]; |
| size_t hashlen, ret = 0; |
| EVP_PKEY *key = NULL; |
| EVP_MD_CTX *ctx = EVP_MD_CTX_new(); |
| |
| if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) |
| goto err; |
| |
| if (str == s->method->ssl3_enc->server_finished_label) |
| key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, |
| s->server_finished_secret, hashlen); |
| else |
| key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, |
| s->client_finished_secret, hashlen); |
| |
| if (key == NULL |
| || ctx == NULL |
| || EVP_DigestSignInit(ctx, NULL, md, NULL, key) <= 0 |
| || EVP_DigestSignUpdate(ctx, hash, hashlen) <= 0 |
| || EVP_DigestSignFinal(ctx, out, &hashlen) <= 0) |
| goto err; |
| |
| ret = hashlen; |
| err: |
| EVP_PKEY_free(key); |
| EVP_MD_CTX_free(ctx); |
| return ret; |
| } |
| |
| /* |
| * There isn't really a key block in TLSv1.3, but we still need this function |
| * for initialising the cipher and hash. Returns 1 on success or 0 on failure. |
| */ |
| int tls13_setup_key_block(SSL *s) |
| { |
| const EVP_CIPHER *c; |
| const EVP_MD *hash; |
| int mac_type = NID_undef; |
| |
| s->session->cipher = s->s3->tmp.new_cipher; |
| if (!ssl_cipher_get_evp |
| (s->session, &c, &hash, &mac_type, NULL, NULL, 0)) { |
| SSLerr(SSL_F_TLS13_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE); |
| return 0; |
| } |
| |
| s->s3->tmp.new_sym_enc = c; |
| s->s3->tmp.new_hash = hash; |
| |
| return 1; |
| } |
| |
| int tls13_change_cipher_state(SSL *s, int which) |
| { |
| static const unsigned char client_handshake_traffic[] = |
| "client handshake traffic secret"; |
| static const unsigned char client_application_traffic[] = |
| "client application traffic secret"; |
| static const unsigned char server_handshake_traffic[] = |
| "server handshake traffic secret"; |
| static const unsigned char server_application_traffic[] = |
| "server application traffic secret"; |
| unsigned char key[EVP_MAX_KEY_LENGTH]; |
| unsigned char *iv; |
| unsigned char secret[EVP_MAX_MD_SIZE]; |
| unsigned char *insecret; |
| unsigned char *finsecret = NULL; |
| EVP_CIPHER_CTX *ciph_ctx; |
| const EVP_CIPHER *ciph = s->s3->tmp.new_sym_enc; |
| size_t ivlen, keylen, finsecretlen = 0; |
| const unsigned char *label; |
| size_t labellen; |
| int ret = 0; |
| |
| if (which & SSL3_CC_READ) { |
| if (s->enc_read_ctx != NULL) { |
| EVP_CIPHER_CTX_reset(s->enc_read_ctx); |
| } else { |
| s->enc_read_ctx = EVP_CIPHER_CTX_new(); |
| if (s->enc_read_ctx == NULL) { |
| SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| } |
| ciph_ctx = s->enc_read_ctx; |
| iv = s->read_iv; |
| |
| RECORD_LAYER_reset_read_sequence(&s->rlayer); |
| } else { |
| if (s->enc_write_ctx != NULL) { |
| EVP_CIPHER_CTX_reset(s->enc_write_ctx); |
| } else { |
| s->enc_write_ctx = EVP_CIPHER_CTX_new(); |
| if (s->enc_write_ctx == NULL) { |
| SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| } |
| ciph_ctx = s->enc_write_ctx; |
| iv = s->write_iv; |
| |
| RECORD_LAYER_reset_write_sequence(&s->rlayer); |
| } |
| |
| if (((which & SSL3_CC_CLIENT) && (which & SSL3_CC_WRITE)) |
| || ((which & SSL3_CC_SERVER) && (which & SSL3_CC_READ))) { |
| if (which & SSL3_CC_HANDSHAKE) { |
| insecret = s->handshake_secret; |
| finsecret = s->client_finished_secret; |
| finsecretlen = sizeof(s->client_finished_secret); |
| label = client_handshake_traffic; |
| labellen = sizeof(client_handshake_traffic) - 1; |
| } else { |
| insecret = s->session->master_key; |
| label = client_application_traffic; |
| labellen = sizeof(client_application_traffic) - 1; |
| } |
| } else { |
| if (which & SSL3_CC_HANDSHAKE) { |
| insecret = s->handshake_secret; |
| finsecret = s->server_finished_secret; |
| finsecretlen = sizeof(s->server_finished_secret); |
| label = server_handshake_traffic; |
| labellen = sizeof(server_handshake_traffic) - 1; |
| } else { |
| insecret = s->session->master_key; |
| label = server_application_traffic; |
| labellen = sizeof(server_application_traffic) - 1; |
| } |
| } |
| |
| if (!tls13_derive_secret(s, insecret, label, labellen, secret)) { |
| SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| /* TODO(size_t): convert me */ |
| keylen = EVP_CIPHER_key_length(ciph); |
| ivlen = EVP_CIPHER_iv_length(ciph); |
| |
| if (!tls13_derive_key(s, secret, key, keylen) |
| || !tls13_derive_iv(s, secret, iv, ivlen) |
| || (finsecret != NULL && !tls13_derive_finishedkey(s, secret, |
| finsecret, |
| finsecretlen))) { |
| SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| if (EVP_CipherInit_ex(ciph_ctx, ciph, NULL, key, NULL, |
| (which & SSL3_CC_WRITE)) <= 0) { |
| SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_EVP_LIB); |
| goto err; |
| } |
| |
| #ifdef OPENSSL_SSL_TRACE_CRYPTO |
| if (s->msg_callback) { |
| int wh = which & SSL3_CC_WRITE ? TLS1_RT_CRYPTO_WRITE : 0; |
| |
| if (ciph->key_len) |
| s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_KEY, |
| key, ciph->key_len, s, s->msg_callback_arg); |
| |
| wh |= TLS1_RT_CRYPTO_IV; |
| s->msg_callback(2, s->version, wh, iv, ivlen, s, |
| s->msg_callback_arg); |
| } |
| #endif |
| |
| ret = 1; |
| err: |
| OPENSSL_cleanse(secret, sizeof(secret)); |
| OPENSSL_cleanse(key, sizeof(key)); |
| return ret; |
| } |