| /* |
| * Copyright 2011-2017 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdlib.h> |
| #include <string.h> |
| #include <openssl/crypto.h> |
| #include <openssl/err.h> |
| #include <openssl/rand.h> |
| #include "rand_lcl.h" |
| #include "internal/thread_once.h" |
| |
| /* |
| * Mapping of NIST SP 800-90A DRBG to OpenSSL RAND_METHOD. |
| */ |
| |
| |
| /* |
| * The default global DRBG and its auto-init/auto-cleanup. |
| */ |
| static DRBG_CTX ossl_drbg; |
| |
| static CRYPTO_ONCE ossl_drbg_init = CRYPTO_ONCE_STATIC_INIT; |
| |
| DEFINE_RUN_ONCE_STATIC(do_ossl_drbg_init) |
| { |
| int st = 1; |
| |
| ossl_drbg.lock = CRYPTO_THREAD_lock_new(); |
| st &= ossl_drbg.lock != NULL; |
| st &= RAND_DRBG_set(&ossl_drbg, NID_aes_128_ctr, 0) == 1; |
| return st; |
| } |
| |
| void rand_drbg_cleanup(void) |
| { |
| CRYPTO_THREAD_lock_free(ossl_drbg.lock); |
| } |
| |
| static void inc_128(DRBG_CTR_CTX *cctx) |
| { |
| int i; |
| unsigned char c; |
| unsigned char *p = &cctx->V[15]; |
| |
| for (i = 0; i < 16; i++, p--) { |
| c = *p; |
| c++; |
| *p = c; |
| if (c != 0) { |
| /* If we didn't wrap around, we're done. */ |
| break; |
| } |
| } |
| } |
| |
| static void ctr_XOR(DRBG_CTR_CTX *cctx, const unsigned char *in, size_t inlen) |
| { |
| size_t i, n; |
| |
| if (in == NULL || inlen == 0) |
| return; |
| |
| /* |
| * Any zero padding will have no effect on the result as we |
| * are XORing. So just process however much input we have. |
| */ |
| n = inlen < cctx->keylen ? inlen : cctx->keylen; |
| for (i = 0; i < n; i++) |
| cctx->K[i] ^= in[i]; |
| if (inlen <= cctx->keylen) |
| return; |
| |
| n = inlen - cctx->keylen; |
| if (n > 16) { |
| /* Should never happen */ |
| n = 16; |
| } |
| for (i = 0; i < n; i++) |
| cctx->V[i] ^= in[i + cctx->keylen]; |
| } |
| |
| /* |
| * Process a complete block using BCC algorithm of SP 800-90A 10.3.3 |
| */ |
| static void ctr_BCC_block(DRBG_CTR_CTX *cctx, unsigned char *out, |
| const unsigned char *in) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i++) |
| out[i] ^= in[i]; |
| AES_encrypt(out, out, &cctx->df_ks); |
| } |
| |
| |
| /* |
| * Handle several BCC operations for as much data as we need for K and X |
| */ |
| static void ctr_BCC_blocks(DRBG_CTR_CTX *cctx, const unsigned char *in) |
| { |
| ctr_BCC_block(cctx, cctx->KX, in); |
| ctr_BCC_block(cctx, cctx->KX + 16, in); |
| if (cctx->keylen != 16) |
| ctr_BCC_block(cctx, cctx->KX + 32, in); |
| } |
| |
| /* |
| * Initialise BCC blocks: these have the value 0,1,2 in leftmost positions: |
| * see 10.3.1 stage 7. |
| */ |
| static void ctr_BCC_init(DRBG_CTR_CTX *cctx) |
| { |
| memset(cctx->KX, 0, 48); |
| memset(cctx->bltmp, 0, 16); |
| ctr_BCC_block(cctx, cctx->KX, cctx->bltmp); |
| cctx->bltmp[3] = 1; |
| ctr_BCC_block(cctx, cctx->KX + 16, cctx->bltmp); |
| if (cctx->keylen != 16) { |
| cctx->bltmp[3] = 2; |
| ctr_BCC_block(cctx, cctx->KX + 32, cctx->bltmp); |
| } |
| } |
| |
| /* |
| * Process several blocks into BCC algorithm, some possibly partial |
| */ |
| static void ctr_BCC_update(DRBG_CTR_CTX *cctx, |
| const unsigned char *in, size_t inlen) |
| { |
| if (in == NULL || inlen == 0) |
| return; |
| |
| /* If we have partial block handle it first */ |
| if (cctx->bltmp_pos) { |
| size_t left = 16 - cctx->bltmp_pos; |
| |
| /* If we now have a complete block process it */ |
| if (inlen >= left) { |
| memcpy(cctx->bltmp + cctx->bltmp_pos, in, left); |
| ctr_BCC_blocks(cctx, cctx->bltmp); |
| cctx->bltmp_pos = 0; |
| inlen -= left; |
| in += left; |
| } |
| } |
| |
| /* Process zero or more complete blocks */ |
| for (; inlen >= 16; in += 16, inlen -= 16) { |
| ctr_BCC_blocks(cctx, in); |
| } |
| |
| /* Copy any remaining partial block to the temporary buffer */ |
| if (inlen > 0) { |
| memcpy(cctx->bltmp + cctx->bltmp_pos, in, inlen); |
| cctx->bltmp_pos += inlen; |
| } |
| } |
| |
| static void ctr_BCC_final(DRBG_CTR_CTX *cctx) |
| { |
| if (cctx->bltmp_pos) { |
| memset(cctx->bltmp + cctx->bltmp_pos, 0, 16 - cctx->bltmp_pos); |
| ctr_BCC_blocks(cctx, cctx->bltmp); |
| } |
| } |
| |
| static void ctr_df(DRBG_CTR_CTX *cctx, |
| const unsigned char *in1, size_t in1len, |
| const unsigned char *in2, size_t in2len, |
| const unsigned char *in3, size_t in3len) |
| { |
| static unsigned char c80 = 0x80; |
| size_t inlen; |
| unsigned char *p = cctx->bltmp; |
| |
| ctr_BCC_init(cctx); |
| if (in1 == NULL) |
| in1len = 0; |
| if (in2 == NULL) |
| in2len = 0; |
| if (in3 == NULL) |
| in3len = 0; |
| inlen = in1len + in2len + in3len; |
| /* Initialise L||N in temporary block */ |
| *p++ = (inlen >> 24) & 0xff; |
| *p++ = (inlen >> 16) & 0xff; |
| *p++ = (inlen >> 8) & 0xff; |
| *p++ = inlen & 0xff; |
| |
| /* NB keylen is at most 32 bytes */ |
| *p++ = 0; |
| *p++ = 0; |
| *p++ = 0; |
| *p = (unsigned char)((cctx->keylen + 16) & 0xff); |
| cctx->bltmp_pos = 8; |
| ctr_BCC_update(cctx, in1, in1len); |
| ctr_BCC_update(cctx, in2, in2len); |
| ctr_BCC_update(cctx, in3, in3len); |
| ctr_BCC_update(cctx, &c80, 1); |
| ctr_BCC_final(cctx); |
| /* Set up key K */ |
| AES_set_encrypt_key(cctx->KX, cctx->keylen * 8, &cctx->df_kxks); |
| /* X follows key K */ |
| AES_encrypt(cctx->KX + cctx->keylen, cctx->KX, &cctx->df_kxks); |
| AES_encrypt(cctx->KX, cctx->KX + 16, &cctx->df_kxks); |
| if (cctx->keylen != 16) |
| AES_encrypt(cctx->KX + 16, cctx->KX + 32, &cctx->df_kxks); |
| } |
| |
| /* |
| * NB the no-df Update in SP800-90A specifies a constant input length |
| * of seedlen, however other uses of this algorithm pad the input with |
| * zeroes if necessary and have up to two parameters XORed together, |
| * handle both cases in this function instead. |
| */ |
| static void ctr_update(DRBG_CTX *dctx, |
| const unsigned char *in1, size_t in1len, |
| const unsigned char *in2, size_t in2len, |
| const unsigned char *nonce, size_t noncelen) |
| { |
| DRBG_CTR_CTX *cctx = &dctx->ctr; |
| |
| /* ks is already setup for correct key */ |
| inc_128(cctx); |
| AES_encrypt(cctx->V, cctx->K, &cctx->ks); |
| |
| /* If keylen longer than 128 bits need extra encrypt */ |
| if (cctx->keylen != 16) { |
| inc_128(cctx); |
| AES_encrypt(cctx->V, cctx->K + 16, &cctx->ks); |
| } |
| inc_128(cctx); |
| AES_encrypt(cctx->V, cctx->V, &cctx->ks); |
| |
| /* If 192 bit key part of V is on end of K */ |
| if (cctx->keylen == 24) { |
| memcpy(cctx->V + 8, cctx->V, 8); |
| memcpy(cctx->V, cctx->K + 24, 8); |
| } |
| |
| if (dctx->flags & RAND_DRBG_FLAG_CTR_USE_DF) { |
| /* If no input reuse existing derived value */ |
| if (in1 != NULL || nonce != NULL || in2 != NULL) |
| ctr_df(cctx, in1, in1len, nonce, noncelen, in2, in2len); |
| /* If this a reuse input in1len != 0 */ |
| if (in1len) |
| ctr_XOR(cctx, cctx->KX, dctx->seedlen); |
| } else { |
| ctr_XOR(cctx, in1, in1len); |
| ctr_XOR(cctx, in2, in2len); |
| } |
| |
| AES_set_encrypt_key(cctx->K, dctx->strength, &cctx->ks); |
| } |
| |
| int ctr_instantiate(DRBG_CTX *dctx, |
| const unsigned char *ent, size_t entlen, |
| const unsigned char *nonce, size_t noncelen, |
| const unsigned char *pers, size_t perslen) |
| { |
| DRBG_CTR_CTX *cctx = &dctx->ctr; |
| |
| memset(cctx->K, 0, sizeof(cctx->K)); |
| memset(cctx->V, 0, sizeof(cctx->V)); |
| AES_set_encrypt_key(cctx->K, dctx->strength, &cctx->ks); |
| ctr_update(dctx, ent, entlen, pers, perslen, nonce, noncelen); |
| return 1; |
| } |
| |
| int ctr_reseed(DRBG_CTX *dctx, |
| const unsigned char *ent, size_t entlen, |
| const unsigned char *adin, size_t adinlen) |
| { |
| ctr_update(dctx, ent, entlen, adin, adinlen, NULL, 0); |
| return 1; |
| } |
| |
| int ctr_generate(DRBG_CTX *dctx, |
| unsigned char *out, size_t outlen, |
| const unsigned char *adin, size_t adinlen) |
| { |
| DRBG_CTR_CTX *cctx = &dctx->ctr; |
| |
| if (adin != NULL && adinlen != 0) { |
| ctr_update(dctx, adin, adinlen, NULL, 0, NULL, 0); |
| /* This means we reuse derived value */ |
| if (dctx->flags & RAND_DRBG_FLAG_CTR_USE_DF) { |
| adin = NULL; |
| adinlen = 1; |
| } |
| } else { |
| adinlen = 0; |
| } |
| |
| for ( ; ; ) { |
| inc_128(cctx); |
| if (outlen < 16) { |
| /* Use K as temp space as it will be updated */ |
| AES_encrypt(cctx->V, cctx->K, &cctx->ks); |
| memcpy(out, cctx->K, outlen); |
| break; |
| } |
| AES_encrypt(cctx->V, out, &cctx->ks); |
| out += 16; |
| outlen -= 16; |
| if (outlen == 0) |
| break; |
| } |
| |
| ctr_update(dctx, adin, adinlen, NULL, 0, NULL, 0); |
| return 1; |
| } |
| |
| int ctr_uninstantiate(DRBG_CTX *dctx) |
| { |
| memset(&dctx->ctr, 0, sizeof(dctx->ctr)); |
| return 1; |
| } |
| |
| int ctr_init(DRBG_CTX *dctx) |
| { |
| DRBG_CTR_CTX *cctx = &dctx->ctr; |
| size_t keylen; |
| |
| switch (dctx->nid) { |
| default: |
| /* This can't happen, but silence the compiler warning. */ |
| return -1; |
| case NID_aes_128_ctr: |
| keylen = 16; |
| break; |
| case NID_aes_192_ctr: |
| keylen = 24; |
| break; |
| case NID_aes_256_ctr: |
| keylen = 32; |
| break; |
| } |
| |
| cctx->keylen = keylen; |
| dctx->strength = keylen * 8; |
| dctx->blocklength = 16; |
| dctx->seedlen = keylen + 16; |
| |
| if (dctx->flags & RAND_DRBG_FLAG_CTR_USE_DF) { |
| /* df initialisation */ |
| static unsigned char df_key[32] = { |
| 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07, |
| 0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f, |
| 0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17, |
| 0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f |
| }; |
| /* Set key schedule for df_key */ |
| AES_set_encrypt_key(df_key, dctx->strength, &cctx->df_ks); |
| |
| dctx->min_entropy = cctx->keylen; |
| dctx->max_entropy = DRBG_MAX_LENGTH; |
| dctx->min_nonce = dctx->min_entropy / 2; |
| dctx->max_nonce = DRBG_MAX_LENGTH; |
| dctx->max_pers = DRBG_MAX_LENGTH; |
| dctx->max_adin = DRBG_MAX_LENGTH; |
| } else { |
| dctx->min_entropy = dctx->seedlen; |
| dctx->max_entropy = dctx->seedlen; |
| /* Nonce not used */ |
| dctx->min_nonce = 0; |
| dctx->max_nonce = 0; |
| dctx->max_pers = dctx->seedlen; |
| dctx->max_adin = dctx->seedlen; |
| } |
| |
| dctx->max_request = 1 << 16; |
| dctx->reseed_interval = MAX_RESEED; |
| return 1; |
| } |
| |
| |
| /* |
| * The following function tie the DRBG code into the RAND_METHOD |
| */ |
| |
| DRBG_CTX *RAND_DRBG_get_default(void) |
| { |
| if (!RUN_ONCE(&ossl_drbg_init, do_ossl_drbg_init)) |
| return NULL; |
| return &ossl_drbg; |
| } |
| |
| static int drbg_bytes(unsigned char *out, int count) |
| { |
| DRBG_CTX *dctx = RAND_DRBG_get_default(); |
| int ret = 0; |
| |
| CRYPTO_THREAD_write_lock(dctx->lock); |
| do { |
| size_t rcnt; |
| |
| if (count > (int)dctx->max_request) |
| rcnt = dctx->max_request; |
| else |
| rcnt = count; |
| ret = RAND_DRBG_generate(dctx, out, rcnt, 0, NULL, 0); |
| if (!ret) |
| goto err; |
| out += rcnt; |
| count -= rcnt; |
| } while (count); |
| ret = 1; |
| err: |
| CRYPTO_THREAD_unlock(dctx->lock); |
| return ret; |
| } |
| |
| static int drbg_status(void) |
| { |
| DRBG_CTX *dctx = RAND_DRBG_get_default(); |
| int ret; |
| |
| CRYPTO_THREAD_write_lock(dctx->lock); |
| ret = dctx->status == DRBG_STATUS_READY ? 1 : 0; |
| CRYPTO_THREAD_unlock(dctx->lock); |
| return ret; |
| } |
| |
| static void drbg_cleanup(void) |
| { |
| DRBG_CTX *dctx = RAND_DRBG_get_default(); |
| |
| CRYPTO_THREAD_write_lock(dctx->lock); |
| RAND_DRBG_uninstantiate(dctx); |
| CRYPTO_THREAD_unlock(dctx->lock); |
| } |
| |
| static const RAND_METHOD rand_drbg_meth = |
| { |
| NULL, |
| drbg_bytes, |
| drbg_cleanup, |
| NULL, |
| drbg_bytes, |
| drbg_status |
| }; |
| |
| const RAND_METHOD *RAND_drbg(void) |
| { |
| return &rand_drbg_meth; |
| } |