| /* |
| * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include "e_os.h" |
| |
| #if !(defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_DSPBIOS)) |
| # include <sys/time.h> |
| #endif |
| #if defined(OPENSSL_SYS_VXWORKS) |
| # include <time.h> |
| #endif |
| |
| #include <openssl/opensslconf.h> |
| #include <openssl/crypto.h> |
| #include <openssl/rand.h> |
| #include <openssl/async.h> |
| #include <openssl/err.h> |
| #include <internal/thread_once.h> |
| #include "rand_lcl.h" |
| |
| #if defined(BN_DEBUG) || defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) |
| # define PREDICT 1 |
| #endif |
| |
| #define STATE_SIZE 1023 |
| |
| typedef struct ossl_rand_state_st OSSL_RAND_STATE; |
| |
| struct ossl_rand_state_st { |
| size_t num; |
| size_t index; |
| unsigned char state[STATE_SIZE + SHA_DIGEST_LENGTH]; |
| unsigned char md[SHA_DIGEST_LENGTH]; |
| long md_count[2]; |
| }; |
| |
| static OSSL_RAND_STATE global_state; |
| static double randomness = 0; |
| static int initialized = 0; |
| static CRYPTO_RWLOCK *rand_lock = NULL; |
| static CRYPTO_RWLOCK *rand_tmp_lock = NULL; |
| static CRYPTO_ONCE ossl_rand_init = CRYPTO_ONCE_STATIC_INIT; |
| static CRYPTO_THREAD_LOCAL key; |
| |
| /* May be set only when a thread holds rand_lock (to prevent double locking) */ |
| static unsigned int crypto_lock_rand = 0; |
| /* |
| * access to locking_threadid is synchronized by rand_tmp_lock; |
| * valid iff crypto_lock_rand is set |
| */ |
| static CRYPTO_THREAD_ID locking_threadid; |
| |
| #ifdef PREDICT |
| int rand_predictable = 0; |
| #endif |
| |
| static int rand_hw_seed(EVP_MD_CTX *ctx); |
| |
| static void rand_thread_cleanup(void *arg) |
| { |
| OSSL_RAND_STATE *sp = arg; |
| |
| OPENSSL_clear_free(sp, sizeof(*sp)); |
| } |
| |
| DEFINE_RUN_ONCE_STATIC(do_ossl_rand_init) |
| { |
| int ret = 1; |
| |
| OPENSSL_init_crypto(0, NULL); |
| rand_lock = CRYPTO_THREAD_lock_new(); |
| ret &= rand_lock != NULL; |
| rand_tmp_lock = CRYPTO_THREAD_lock_new(); |
| ret &= rand_tmp_lock != NULL; |
| ret &= CRYPTO_THREAD_init_local(&key, rand_thread_cleanup) == 1; |
| return ret; |
| } |
| |
| RAND_METHOD *RAND_OpenSSL(void) |
| { |
| return &openssl_rand_meth; |
| } |
| |
| static void rand_cleanup(void) |
| { |
| OPENSSL_cleanse(&global_state, sizeof(global_state)); |
| randomness = 0; |
| initialized = 0; |
| CRYPTO_THREAD_lock_free(rand_lock); |
| CRYPTO_THREAD_lock_free(rand_tmp_lock); |
| } |
| |
| static int rand_add(const void *buf, int num, double add) |
| { |
| int i, j, k, st_idx; |
| long md_c[2]; |
| unsigned char local_md[SHA_DIGEST_LENGTH]; |
| EVP_MD_CTX *m; |
| int do_not_lock; |
| int rv = 0; |
| OSSL_RAND_STATE *sp = &global_state; |
| |
| if (!num) |
| return 1; |
| |
| #ifdef PREDICT |
| if (rand_predictable) |
| return 1; |
| #endif |
| |
| /* |
| * (Based on the rand(3) manpage) |
| * |
| * The input is chopped up into units of 20 bytes (or less for |
| * the last block). Each of these blocks is run through the hash |
| * function as follows: The data passed to the hash function |
| * is the current 'md', the same number of bytes from the 'state' |
| * (the location determined by in incremented looping index) as |
| * the current 'block', the new key data 'block', and 'count' |
| * (which is incremented after each use). |
| * The result of this is kept in 'md' and also xored into the |
| * 'state' at the same locations that were used as input into the |
| * hash function. |
| */ |
| |
| m = EVP_MD_CTX_new(); |
| if (m == NULL) |
| goto err; |
| |
| if (!RUN_ONCE(&ossl_rand_init, do_ossl_rand_init)) |
| goto err; |
| |
| /* check if we already have the lock */ |
| if (crypto_lock_rand) { |
| CRYPTO_THREAD_ID cur = CRYPTO_THREAD_get_current_id(); |
| CRYPTO_THREAD_read_lock(rand_tmp_lock); |
| do_not_lock = CRYPTO_THREAD_compare_id(locking_threadid, cur); |
| CRYPTO_THREAD_unlock(rand_tmp_lock); |
| } else |
| do_not_lock = 0; |
| |
| if (!do_not_lock) |
| CRYPTO_THREAD_write_lock(rand_lock); |
| st_idx = sp->index; |
| |
| /* |
| * use our own copies of the counters so that even if a concurrent thread |
| * seeds with exactly the same data and uses the same subarray there's |
| * _some_ difference |
| */ |
| md_c[0] = sp->md_count[0]; |
| md_c[1] = sp->md_count[1]; |
| |
| memcpy(local_md, sp->md, sizeof(sp->md)); |
| |
| /* sp->index <= sp->num <= STATE_SIZE */ |
| sp->index += num; |
| if (sp->index >= STATE_SIZE) { |
| sp->index %= STATE_SIZE; |
| sp->num = STATE_SIZE; |
| } else if (sp->num < STATE_SIZE) { |
| if (sp->index > sp->num) |
| sp->num = sp->index; |
| } |
| /* sp->index <= sp->num <= STATE_SIZE */ |
| |
| /* |
| * state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE] are what we |
| * will use now, but other threads may use them as well |
| */ |
| |
| sp->md_count[1] += (num / SHA_DIGEST_LENGTH) + (num % SHA_DIGEST_LENGTH > 0); |
| |
| if (!do_not_lock) |
| CRYPTO_THREAD_unlock(rand_lock); |
| |
| for (i = 0; i < num; i += SHA_DIGEST_LENGTH) { |
| j = (num - i); |
| j = (j > SHA_DIGEST_LENGTH) ? SHA_DIGEST_LENGTH : j; |
| |
| if (!EVP_DigestInit_ex(m, EVP_sha1(), NULL)) |
| goto err; |
| if (!EVP_DigestUpdate(m, local_md, SHA_DIGEST_LENGTH)) |
| goto err; |
| k = (st_idx + j) - STATE_SIZE; |
| if (k > 0) { |
| if (!EVP_DigestUpdate(m, &sp->state[st_idx], j - k)) |
| goto err; |
| if (!EVP_DigestUpdate(m, &sp->state[0], k)) |
| goto err; |
| } else if (!EVP_DigestUpdate(m, &sp->state[st_idx], j)) |
| goto err; |
| |
| /* DO NOT REMOVE THE FOLLOWING CALL TO EVP_DigestUpdate()! */ |
| if (!EVP_DigestUpdate(m, buf, j)) |
| goto err; |
| /* |
| * We know that line may cause programs such as purify and valgrind |
| * to complain about use of uninitialized data. The problem is not, |
| * it's with the caller. Removing that line will make sure you get |
| * really bad randomness and thereby other problems such as very |
| * insecure keys. |
| */ |
| |
| if (!EVP_DigestUpdate(m, (unsigned char *)md_c, sizeof(md_c))) |
| goto err; |
| if (!EVP_DigestFinal_ex(m, local_md, NULL)) |
| goto err; |
| md_c[1]++; |
| |
| buf = (const char *)buf + j; |
| |
| for (k = 0; k < j; k++) { |
| /* |
| * Parallel threads may interfere with this, but always each byte |
| * of the new state is the XOR of some previous value of its and |
| * local_md (intermediate values may be lost). Alway using locking |
| * could hurt performance more than necessary given that |
| * conflicts occur only when the total seeding is longer than the |
| * random state. |
| */ |
| sp->state[st_idx++] ^= local_md[k]; |
| if (st_idx >= STATE_SIZE) |
| st_idx = 0; |
| } |
| } |
| |
| if (!do_not_lock) |
| CRYPTO_THREAD_write_lock(rand_lock); |
| /* |
| * Don't just copy back local_md into md -- this could mean that other |
| * thread's seeding remains without effect (except for the incremented |
| * counter). By XORing it we keep at least as much randomness as fits into |
| * md. |
| */ |
| for (k = 0; k < (int)sizeof(sp->md); k++) { |
| sp->md[k] ^= local_md[k]; |
| } |
| if (randomness < RANDOMNESS_NEEDED) /* stop counting when we have enough */ |
| randomness += add; |
| if (!do_not_lock) |
| CRYPTO_THREAD_unlock(rand_lock); |
| |
| rv = 1; |
| err: |
| EVP_MD_CTX_free(m); |
| return rv; |
| } |
| |
| static int rand_seed(const void *buf, int num) |
| { |
| return rand_add(buf, num, (double)num); |
| } |
| |
| static int rand_bytes(unsigned char *buf, int num) |
| { |
| static volatile int stirred_pool = 0; |
| int i, j, k; |
| size_t num_ceil, st_idx, st_num; |
| int ok; |
| long md_c[2]; |
| unsigned char local_md[SHA_DIGEST_LENGTH]; |
| EVP_MD_CTX *m; |
| OSSL_RAND_STATE *sp = &global_state; |
| #ifndef GETPID_IS_MEANINGLESS |
| pid_t curr_pid = getpid(); |
| #endif |
| time_t curr_time = time(NULL); |
| int do_stir_pool = 0; |
| /* time value for various platforms */ |
| #ifdef OPENSSL_SYS_WIN32 |
| FILETIME tv; |
| # ifdef _WIN32_WCE |
| SYSTEMTIME t; |
| GetSystemTime(&t); |
| SystemTimeToFileTime(&t, &tv); |
| # else |
| GetSystemTimeAsFileTime(&tv); |
| # endif |
| #elif defined(OPENSSL_SYS_VXWORKS) |
| struct timespec tv; |
| clock_gettime(CLOCK_REALTIME, &ts); |
| #elif defined(OPENSSL_SYS_DSPBIOS) |
| unsigned long long tv, OPENSSL_rdtsc(); |
| tv = OPENSSL_rdtsc(); |
| #else |
| struct timeval tv; |
| gettimeofday(&tv, NULL); |
| #endif |
| |
| #ifdef PREDICT |
| if (rand_predictable) { |
| unsigned char val = 1; |
| |
| for (i = 0; i < num; i++) |
| buf[i] = val++; |
| return (1); |
| } |
| #endif |
| |
| if (num <= 0) |
| return 1; |
| |
| m = EVP_MD_CTX_new(); |
| if (m == NULL) |
| goto err_mem; |
| |
| /* round upwards to multiple of SHA_DIGEST_LENGTH/2 */ |
| num_ceil = |
| (1 + (num - 1) / (SHA_DIGEST_LENGTH / 2)) * (SHA_DIGEST_LENGTH / 2); |
| |
| /* |
| * (Based on the rand(3) manpage:) |
| * |
| * For each group of 10 bytes (or less), we do the following: |
| * |
| * Input into the hash function the local 'md' (which is initialized from |
| * the global 'md' before any bytes are generated), the bytes that are to |
| * be overwritten by the random bytes, and bytes from the 'state' |
| * (incrementing looping index). From this digest output (which is kept |
| * in 'md'), the top (up to) 10 bytes are returned to the caller and the |
| * bottom 10 bytes are xored into the 'state'. |
| * |
| * Finally, after we have finished 'num' random bytes for the |
| * caller, 'count' (which is incremented) and the local and global 'md' |
| * are fed into the hash function and the results are kept in the |
| * global 'md'. |
| */ |
| |
| if (!RUN_ONCE(&ossl_rand_init, do_ossl_rand_init)) |
| goto err_mem; |
| |
| CRYPTO_THREAD_write_lock(rand_lock); |
| /* |
| * We could end up in an async engine while holding this lock so ensure |
| * we don't pause and cause a deadlock |
| */ |
| ASYNC_block_pause(); |
| |
| /* prevent rand_bytes() from trying to obtain the lock again */ |
| CRYPTO_THREAD_write_lock(rand_tmp_lock); |
| locking_threadid = CRYPTO_THREAD_get_current_id(); |
| CRYPTO_THREAD_unlock(rand_tmp_lock); |
| crypto_lock_rand = 1; |
| |
| if (!initialized) { |
| RAND_poll(); |
| initialized = 1; |
| } |
| |
| if (!stirred_pool) |
| do_stir_pool = 1; |
| |
| ok = (randomness >= RANDOMNESS_NEEDED); |
| if (!ok) { |
| /* |
| * If the PRNG state is not yet unpredictable, then seeing the PRNG |
| * output may help attackers to determine the new state; thus we have |
| * to decrease the randomness estimate. Once we've had enough initial |
| * seeding we don't bother to adjust the randomness count, though, |
| * because we're not ambitious to provide *information-theoretic* |
| * randomness. NOTE: This approach fails if the program forks before |
| * we have enough randomness. Randomness should be collected in a |
| * separate input pool and be transferred to the output pool only |
| * when the randomness limit has been reached. |
| */ |
| randomness -= num; |
| if (randomness < 0) |
| randomness = 0; |
| } |
| |
| if (do_stir_pool) { |
| /* |
| * In the output function only half of 'md' remains secret, so we |
| * better make sure that the required randomness gets 'evenly |
| * distributed' through 'state', our randomness pool. The input |
| * function (rand_add) chains all of 'md', which makes it more |
| * suitable for this purpose. |
| */ |
| |
| int n = STATE_SIZE; /* so that the complete pool gets accessed */ |
| while (n > 0) { |
| #if SHA_DIGEST_LENGTH > 20 |
| # error "Please adjust DUMMY_SEED." |
| #endif |
| #define DUMMY_SEED "...................." /* at least SHA_DIGEST_LENGTH */ |
| /* |
| * Note that the seed does not matter, it's just that |
| * rand_add expects to have something to hash. |
| */ |
| rand_add(DUMMY_SEED, SHA_DIGEST_LENGTH, 0.0); |
| n -= SHA_DIGEST_LENGTH; |
| } |
| if (ok) |
| stirred_pool = 1; |
| } |
| |
| st_idx = sp->index; |
| st_num = sp->num; |
| md_c[0] = sp->md_count[0]; |
| md_c[1] = sp->md_count[1]; |
| memcpy(local_md, sp->md, sizeof sp->md); |
| |
| sp->index += num_ceil; |
| if (sp->index > sp->num) |
| sp->index %= sp->num; |
| |
| /* |
| * state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] are now |
| * ours (but other threads may use them too) |
| */ |
| |
| sp->md_count[0] += 1; |
| |
| /* before unlocking, we must clear 'crypto_lock_rand' */ |
| crypto_lock_rand = 0; |
| ASYNC_unblock_pause(); |
| CRYPTO_THREAD_unlock(rand_lock); |
| |
| while (num > 0) { |
| /* num_ceil -= SHA_DIGEST_LENGTH / 2 */ |
| j = (num >= SHA_DIGEST_LENGTH / 2) ? SHA_DIGEST_LENGTH / 2 : num; |
| num -= j; |
| if (!EVP_DigestInit_ex(m, EVP_sha1(), NULL)) |
| goto err; |
| #ifndef GETPID_IS_MEANINGLESS |
| if (curr_pid) { /* just in the first iteration to save time */ |
| if (!EVP_DigestUpdate(m, (unsigned char *)&curr_pid, sizeof curr_pid)) |
| goto err; |
| curr_pid = 0; |
| } |
| #endif |
| if (curr_time) { /* just in the first iteration to save time */ |
| if (!EVP_DigestUpdate(m, (unsigned char *)&curr_time, sizeof curr_time)) |
| goto err; |
| if (!EVP_DigestUpdate(m, (unsigned char *)&tv, sizeof tv)) |
| goto err; |
| curr_time = 0; |
| if (!rand_hw_seed(m)) |
| goto err; |
| } |
| if (!EVP_DigestUpdate(m, local_md, SHA_DIGEST_LENGTH)) |
| goto err; |
| if (!EVP_DigestUpdate(m, (unsigned char *)md_c, sizeof(md_c))) |
| goto err; |
| |
| k = (st_idx + SHA_DIGEST_LENGTH / 2) - st_num; |
| if (k > 0) { |
| if (!EVP_DigestUpdate(m, &sp->state[st_idx], SHA_DIGEST_LENGTH / 2 - k)) |
| goto err; |
| if (!EVP_DigestUpdate(m, &sp->state[0], k)) |
| goto err; |
| } else if (!EVP_DigestUpdate(m, &sp->state[st_idx], SHA_DIGEST_LENGTH / 2)) |
| goto err; |
| if (!EVP_DigestFinal_ex(m, local_md, NULL)) |
| goto err; |
| |
| for (i = 0; i < SHA_DIGEST_LENGTH / 2; i++) { |
| /* may compete with other threads */ |
| sp->state[st_idx++] ^= local_md[i]; |
| if (st_idx >= st_num) |
| st_idx = 0; |
| if (i < j) |
| *(buf++) = local_md[i + SHA_DIGEST_LENGTH / 2]; |
| } |
| } |
| |
| if (!EVP_DigestInit_ex(m, EVP_sha1(), NULL) |
| || !EVP_DigestUpdate(m, (unsigned char *)md_c, sizeof(md_c)) |
| || !EVP_DigestUpdate(m, local_md, SHA_DIGEST_LENGTH)) |
| goto err; |
| CRYPTO_THREAD_write_lock(rand_lock); |
| /* |
| * Prevent deadlocks if we end up in an async engine |
| */ |
| ASYNC_block_pause(); |
| if (!EVP_DigestUpdate(m, sp->md, sizeof(sp->md)) |
| || !EVP_DigestFinal_ex(m, sp->md, NULL)) { |
| ASYNC_unblock_pause(); |
| CRYPTO_THREAD_unlock(rand_lock); |
| goto err; |
| } |
| ASYNC_unblock_pause(); |
| CRYPTO_THREAD_unlock(rand_lock); |
| |
| EVP_MD_CTX_free(m); |
| if (ok) |
| return (1); |
| RANDerr(RAND_F_RAND_BYTES, RAND_R_PRNG_NOT_SEEDED); |
| ERR_add_error_data(1, "You need to read the OpenSSL FAQ, " |
| "https://www.openssl.org/docs/faq.html"); |
| return (0); |
| err: |
| RANDerr(RAND_F_RAND_BYTES, ERR_R_EVP_LIB); |
| EVP_MD_CTX_free(m); |
| return 0; |
| err_mem: |
| RANDerr(RAND_F_RAND_BYTES, ERR_R_MALLOC_FAILURE); |
| EVP_MD_CTX_free(m); |
| return 0; |
| |
| } |
| |
| static int rand_status(void) |
| { |
| CRYPTO_THREAD_ID cur; |
| int ret; |
| int do_not_lock; |
| |
| if (!RUN_ONCE(&ossl_rand_init, do_ossl_rand_init)) |
| return 0; |
| |
| cur = CRYPTO_THREAD_get_current_id(); |
| /* |
| * check if we already have the lock (could happen if a RAND_poll() |
| * implementation calls RAND_status()) |
| */ |
| if (crypto_lock_rand) { |
| CRYPTO_THREAD_read_lock(rand_tmp_lock); |
| do_not_lock = CRYPTO_THREAD_compare_id(locking_threadid, cur); |
| CRYPTO_THREAD_unlock(rand_tmp_lock); |
| } else |
| do_not_lock = 0; |
| |
| if (!do_not_lock) { |
| CRYPTO_THREAD_write_lock(rand_lock); |
| /* |
| * Prevent deadlocks in case we end up in an async engine |
| */ |
| ASYNC_block_pause(); |
| |
| /* |
| * prevent rand_bytes() from trying to obtain the lock again |
| */ |
| CRYPTO_THREAD_write_lock(rand_tmp_lock); |
| locking_threadid = cur; |
| CRYPTO_THREAD_unlock(rand_tmp_lock); |
| crypto_lock_rand = 1; |
| } |
| |
| if (!initialized) { |
| RAND_poll(); |
| initialized = 1; |
| } |
| |
| ret = randomness >= RANDOMNESS_NEEDED; |
| |
| if (!do_not_lock) { |
| /* before unlocking, we must clear 'crypto_lock_rand' */ |
| crypto_lock_rand = 0; |
| |
| ASYNC_unblock_pause(); |
| CRYPTO_THREAD_unlock(rand_lock); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * rand_hw_seed: get seed data from any available hardware RNG. only |
| * currently supports rdrand. |
| */ |
| #if (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ |
| defined(__x86_64) || defined(__x86_64__) || \ |
| defined(_M_AMD64) || defined (_M_X64)) && defined(OPENSSL_CPUID_OBJ) \ |
| && !defined(OPENSSL_NO_RDRAND) |
| |
| # define RDRAND_CALLS 4 |
| |
| size_t OPENSSL_ia32_rdrand(void); |
| extern unsigned int OPENSSL_ia32cap_P[]; |
| |
| static int rand_hw_seed(EVP_MD_CTX *ctx) |
| { |
| int i; |
| if (!(OPENSSL_ia32cap_P[1] & (1 << (62 - 32)))) |
| return 1; |
| for (i = 0; i < RDRAND_CALLS; i++) { |
| size_t rnd; |
| rnd = OPENSSL_ia32_rdrand(); |
| if (rnd == 0) |
| return 1; |
| if (!EVP_DigestUpdate(ctx, (unsigned char *)&rnd, sizeof(size_t))) |
| return 0; |
| } |
| return 1; |
| } |
| |
| #else |
| |
| static int rand_hw_seed(EVP_MD_CTX *ctx) |
| { |
| return 1; |
| } |
| |
| #endif |
| |
| |
| RAND_METHOD openssl_rand_meth = { |
| rand_seed, |
| rand_bytes, |
| rand_cleanup, |
| rand_add, |
| rand_bytes, |
| rand_status |
| }; |