|  | /* | 
|  | * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the Apache License 2.0 (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * RSA low level APIs are deprecated for public use, but still ok for | 
|  | * internal use. | 
|  | */ | 
|  | #include "internal/deprecated.h" | 
|  |  | 
|  | #include "internal/constant_time.h" | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/rsa.h> | 
|  | #include <openssl/rand.h> | 
|  | /* Just for the SSL_MAX_MASTER_KEY_LENGTH value */ | 
|  | #include <openssl/prov_ssl.h> | 
|  | #include "internal/cryptlib.h" | 
|  | #include "crypto/rsa.h" | 
|  | #include "rsa_local.h" | 
|  |  | 
|  | int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen, | 
|  | const unsigned char *from, int flen) | 
|  | { | 
|  | int j; | 
|  | unsigned char *p; | 
|  |  | 
|  | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { | 
|  | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | p = (unsigned char *)to; | 
|  |  | 
|  | *(p++) = 0; | 
|  | *(p++) = 1;                 /* Private Key BT (Block Type) */ | 
|  |  | 
|  | /* pad out with 0xff data */ | 
|  | j = tlen - 3 - flen; | 
|  | memset(p, 0xff, j); | 
|  | p += j; | 
|  | *(p++) = '\0'; | 
|  | memcpy(p, from, (unsigned int)flen); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen, | 
|  | const unsigned char *from, int flen, | 
|  | int num) | 
|  | { | 
|  | int i, j; | 
|  | const unsigned char *p; | 
|  |  | 
|  | p = from; | 
|  |  | 
|  | /* | 
|  | * The format is | 
|  | * 00 || 01 || PS || 00 || D | 
|  | * PS - padding string, at least 8 bytes of FF | 
|  | * D  - data. | 
|  | */ | 
|  |  | 
|  | if (num < RSA_PKCS1_PADDING_SIZE) | 
|  | return -1; | 
|  |  | 
|  | /* Accept inputs with and without the leading 0-byte. */ | 
|  | if (num == flen) { | 
|  | if ((*p++) != 0x00) { | 
|  | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_PADDING); | 
|  | return -1; | 
|  | } | 
|  | flen--; | 
|  | } | 
|  |  | 
|  | if ((num != (flen + 1)) || (*(p++) != 0x01)) { | 
|  | ERR_raise(ERR_LIB_RSA, RSA_R_BLOCK_TYPE_IS_NOT_01); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* scan over padding data */ | 
|  | j = flen - 1;               /* one for type. */ | 
|  | for (i = 0; i < j; i++) { | 
|  | if (*p != 0xff) {       /* should decrypt to 0xff */ | 
|  | if (*p == 0) { | 
|  | p++; | 
|  | break; | 
|  | } else { | 
|  | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | p++; | 
|  | } | 
|  |  | 
|  | if (i == j) { | 
|  | ERR_raise(ERR_LIB_RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (i < 8) { | 
|  | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_PAD_BYTE_COUNT); | 
|  | return -1; | 
|  | } | 
|  | i++;                        /* Skip over the '\0' */ | 
|  | j -= i; | 
|  | if (j > tlen) { | 
|  | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE); | 
|  | return -1; | 
|  | } | 
|  | memcpy(to, p, (unsigned int)j); | 
|  |  | 
|  | return j; | 
|  | } | 
|  |  | 
|  | int ossl_rsa_padding_add_PKCS1_type_2_ex(OSSL_LIB_CTX *libctx, unsigned char *to, | 
|  | int tlen, const unsigned char *from, | 
|  | int flen) | 
|  | { | 
|  | int i, j; | 
|  | unsigned char *p; | 
|  |  | 
|  | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) { | 
|  | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); | 
|  | return 0; | 
|  | } else if (flen < 0) { | 
|  | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | p = (unsigned char *)to; | 
|  |  | 
|  | *(p++) = 0; | 
|  | *(p++) = 2;                 /* Public Key BT (Block Type) */ | 
|  |  | 
|  | /* pad out with non-zero random data */ | 
|  | j = tlen - 3 - flen; | 
|  |  | 
|  | if (RAND_bytes_ex(libctx, p, j, 0) <= 0) | 
|  | return 0; | 
|  | for (i = 0; i < j; i++) { | 
|  | if (*p == '\0') | 
|  | do { | 
|  | if (RAND_bytes_ex(libctx, p, 1, 0) <= 0) | 
|  | return 0; | 
|  | } while (*p == '\0'); | 
|  | p++; | 
|  | } | 
|  |  | 
|  | *(p++) = '\0'; | 
|  |  | 
|  | memcpy(p, from, (unsigned int)flen); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen, | 
|  | const unsigned char *from, int flen) | 
|  | { | 
|  | return ossl_rsa_padding_add_PKCS1_type_2_ex(NULL, to, tlen, from, flen); | 
|  | } | 
|  |  | 
|  | int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen, | 
|  | const unsigned char *from, int flen, | 
|  | int num) | 
|  | { | 
|  | int i; | 
|  | /* |em| is the encoded message, zero-padded to exactly |num| bytes */ | 
|  | unsigned char *em = NULL; | 
|  | unsigned int good, found_zero_byte, mask; | 
|  | int zero_index = 0, msg_index, mlen = -1; | 
|  |  | 
|  | if (tlen <= 0 || flen <= 0) | 
|  | return -1; | 
|  |  | 
|  | /* | 
|  | * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard", | 
|  | * section 7.2.2. | 
|  | */ | 
|  |  | 
|  | if (flen > num || num < RSA_PKCS1_PADDING_SIZE) { | 
|  | ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | em = OPENSSL_malloc(num); | 
|  | if (em == NULL) { | 
|  | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); | 
|  | return -1; | 
|  | } | 
|  | /* | 
|  | * Caller is encouraged to pass zero-padded message created with | 
|  | * BN_bn2binpad. Trouble is that since we can't read out of |from|'s | 
|  | * bounds, it's impossible to have an invariant memory access pattern | 
|  | * in case |from| was not zero-padded in advance. | 
|  | */ | 
|  | for (from += flen, em += num, i = 0; i < num; i++) { | 
|  | mask = ~constant_time_is_zero(flen); | 
|  | flen -= 1 & mask; | 
|  | from -= 1 & mask; | 
|  | *--em = *from & mask; | 
|  | } | 
|  |  | 
|  | good = constant_time_is_zero(em[0]); | 
|  | good &= constant_time_eq(em[1], 2); | 
|  |  | 
|  | /* scan over padding data */ | 
|  | found_zero_byte = 0; | 
|  | for (i = 2; i < num; i++) { | 
|  | unsigned int equals0 = constant_time_is_zero(em[i]); | 
|  |  | 
|  | zero_index = constant_time_select_int(~found_zero_byte & equals0, | 
|  | i, zero_index); | 
|  | found_zero_byte |= equals0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PS must be at least 8 bytes long, and it starts two bytes into |em|. | 
|  | * If we never found a 0-byte, then |zero_index| is 0 and the check | 
|  | * also fails. | 
|  | */ | 
|  | good &= constant_time_ge(zero_index, 2 + 8); | 
|  |  | 
|  | /* | 
|  | * Skip the zero byte. This is incorrect if we never found a zero-byte | 
|  | * but in this case we also do not copy the message out. | 
|  | */ | 
|  | msg_index = zero_index + 1; | 
|  | mlen = num - msg_index; | 
|  |  | 
|  | /* | 
|  | * For good measure, do this check in constant time as well. | 
|  | */ | 
|  | good &= constant_time_ge(tlen, mlen); | 
|  |  | 
|  | /* | 
|  | * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left. | 
|  | * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|. | 
|  | * Otherwise leave |to| unchanged. | 
|  | * Copy the memory back in a way that does not reveal the size of | 
|  | * the data being copied via a timing side channel. This requires copying | 
|  | * parts of the buffer multiple times based on the bits set in the real | 
|  | * length. Clear bits do a non-copy with identical access pattern. | 
|  | * The loop below has overall complexity of O(N*log(N)). | 
|  | */ | 
|  | tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen), | 
|  | num - RSA_PKCS1_PADDING_SIZE, tlen); | 
|  | for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) { | 
|  | mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0); | 
|  | for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++) | 
|  | em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]); | 
|  | } | 
|  | for (i = 0; i < tlen; i++) { | 
|  | mask = good & constant_time_lt(i, mlen); | 
|  | to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]); | 
|  | } | 
|  |  | 
|  | OPENSSL_clear_free(em, num); | 
|  | #ifndef FIPS_MODULE | 
|  | /* | 
|  | * This trick doesn't work in the FIPS provider because libcrypto manages | 
|  | * the error stack. Instead we opt not to put an error on the stack at all | 
|  | * in case of padding failure in the FIPS provider. | 
|  | */ | 
|  | ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); | 
|  | err_clear_last_constant_time(1 & good); | 
|  | #endif | 
|  |  | 
|  | return constant_time_select_int(good, mlen, -1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ossl_rsa_padding_check_PKCS1_type_2_TLS() checks and removes the PKCS1 type 2 | 
|  | * padding from a decrypted RSA message in a TLS signature. The result is stored | 
|  | * in the buffer pointed to by |to| which should be |tlen| bytes long. |tlen| | 
|  | * must be at least SSL_MAX_MASTER_KEY_LENGTH. The original decrypted message | 
|  | * should be stored in |from| which must be |flen| bytes in length and padded | 
|  | * such that |flen == RSA_size()|. The TLS protocol version that the client | 
|  | * originally requested should be passed in |client_version|. Some buggy clients | 
|  | * can exist which use the negotiated version instead of the originally | 
|  | * requested protocol version. If it is necessary to work around this bug then | 
|  | * the negotiated protocol version can be passed in |alt_version|, otherwise 0 | 
|  | * should be passed. | 
|  | * | 
|  | * If the passed message is publicly invalid or some other error that can be | 
|  | * treated in non-constant time occurs then -1 is returned. On success the | 
|  | * length of the decrypted data is returned. This will always be | 
|  | * SSL_MAX_MASTER_KEY_LENGTH. If an error occurs that should be treated in | 
|  | * constant time then this function will appear to return successfully, but the | 
|  | * decrypted data will be randomly generated (as per | 
|  | * https://tools.ietf.org/html/rfc5246#section-7.4.7.1). | 
|  | */ | 
|  | int ossl_rsa_padding_check_PKCS1_type_2_TLS(OSSL_LIB_CTX *libctx, | 
|  | unsigned char *to, size_t tlen, | 
|  | const unsigned char *from, | 
|  | size_t flen, int client_version, | 
|  | int alt_version) | 
|  | { | 
|  | unsigned int i, good, version_good; | 
|  | unsigned char rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH]; | 
|  |  | 
|  | /* | 
|  | * If these checks fail then either the message in publicly invalid, or | 
|  | * we've been called incorrectly. We can fail immediately. | 
|  | */ | 
|  | if (flen < RSA_PKCS1_PADDING_SIZE + SSL_MAX_MASTER_KEY_LENGTH | 
|  | || tlen < SSL_MAX_MASTER_KEY_LENGTH) { | 
|  | ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate a random premaster secret to use in the event that we fail | 
|  | * to decrypt. | 
|  | */ | 
|  | if (RAND_priv_bytes_ex(libctx, rand_premaster_secret, | 
|  | sizeof(rand_premaster_secret), 0) <= 0) { | 
|  | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | good = constant_time_is_zero(from[0]); | 
|  | good &= constant_time_eq(from[1], 2); | 
|  |  | 
|  | /* Check we have the expected padding data */ | 
|  | for (i = 2; i < flen - SSL_MAX_MASTER_KEY_LENGTH - 1; i++) | 
|  | good &= ~constant_time_is_zero_8(from[i]); | 
|  | good &= constant_time_is_zero_8(from[flen - SSL_MAX_MASTER_KEY_LENGTH - 1]); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * If the version in the decrypted pre-master secret is correct then | 
|  | * version_good will be 0xff, otherwise it'll be zero. The | 
|  | * Klima-Pokorny-Rosa extension of Bleichenbacher's attack | 
|  | * (http://eprint.iacr.org/2003/052/) exploits the version number | 
|  | * check as a "bad version oracle". Thus version checks are done in | 
|  | * constant time and are treated like any other decryption error. | 
|  | */ | 
|  | version_good = | 
|  | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH], | 
|  | (client_version >> 8) & 0xff); | 
|  | version_good &= | 
|  | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1], | 
|  | client_version & 0xff); | 
|  |  | 
|  | /* | 
|  | * The premaster secret must contain the same version number as the | 
|  | * ClientHello to detect version rollback attacks (strangely, the | 
|  | * protocol does not offer such protection for DH ciphersuites). | 
|  | * However, buggy clients exist that send the negotiated protocol | 
|  | * version instead if the server does not support the requested | 
|  | * protocol version. If SSL_OP_TLS_ROLLBACK_BUG is set then we tolerate | 
|  | * such clients. In that case alt_version will be non-zero and set to | 
|  | * the negotiated version. | 
|  | */ | 
|  | if (alt_version > 0) { | 
|  | unsigned int workaround_good; | 
|  |  | 
|  | workaround_good = | 
|  | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH], | 
|  | (alt_version >> 8) & 0xff); | 
|  | workaround_good &= | 
|  | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1], | 
|  | alt_version & 0xff); | 
|  | version_good |= workaround_good; | 
|  | } | 
|  |  | 
|  | good &= version_good; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Now copy the result over to the to buffer if good, or random data if | 
|  | * not good. | 
|  | */ | 
|  | for (i = 0; i < SSL_MAX_MASTER_KEY_LENGTH; i++) { | 
|  | to[i] = | 
|  | constant_time_select_8(good, | 
|  | from[flen - SSL_MAX_MASTER_KEY_LENGTH + i], | 
|  | rand_premaster_secret[i]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We must not leak whether a decryption failure occurs because of | 
|  | * Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246, | 
|  | * section 7.4.7.1). The code follows that advice of the TLS RFC and | 
|  | * generates a random premaster secret for the case that the decrypt | 
|  | * fails. See https://tools.ietf.org/html/rfc5246#section-7.4.7.1 | 
|  | * So, whether we actually succeeded or not, return success. | 
|  | */ | 
|  |  | 
|  | return SSL_MAX_MASTER_KEY_LENGTH; | 
|  | } |