| /* |
| * Copyright 2015-2019 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include <stdlib.h> |
| #include <ctype.h> |
| #include <openssl/evp.h> |
| #include <openssl/pem.h> |
| #include <openssl/err.h> |
| #include <openssl/x509v3.h> |
| #include <openssl/pkcs12.h> |
| #include <openssl/kdf.h> |
| #include "internal/numbers.h" |
| #include "testutil.h" |
| #include "evp_test.h" |
| |
| #define AAD_NUM 4 |
| |
| typedef struct evp_test_method_st EVP_TEST_METHOD; |
| |
| /* |
| * Structure holding test information |
| */ |
| typedef struct evp_test_st { |
| STANZA s; /* Common test stanza */ |
| char *name; |
| int skip; /* Current test should be skipped */ |
| const EVP_TEST_METHOD *meth; /* method for this test */ |
| const char *err, *aux_err; /* Error string for test */ |
| char *expected_err; /* Expected error value of test */ |
| char *func; /* Expected error function string */ |
| char *reason; /* Expected error reason string */ |
| void *data; /* test specific data */ |
| } EVP_TEST; |
| |
| /* |
| * Test method structure |
| */ |
| struct evp_test_method_st { |
| /* Name of test as it appears in file */ |
| const char *name; |
| /* Initialise test for "alg" */ |
| int (*init) (EVP_TEST * t, const char *alg); |
| /* Clean up method */ |
| void (*cleanup) (EVP_TEST * t); |
| /* Test specific name value pair processing */ |
| int (*parse) (EVP_TEST * t, const char *name, const char *value); |
| /* Run the test itself */ |
| int (*run_test) (EVP_TEST * t); |
| }; |
| |
| |
| /* |
| * Linked list of named keys. |
| */ |
| typedef struct key_list_st { |
| char *name; |
| EVP_PKEY *key; |
| struct key_list_st *next; |
| } KEY_LIST; |
| |
| /* |
| * List of public and private keys |
| */ |
| static KEY_LIST *private_keys; |
| static KEY_LIST *public_keys; |
| static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst); |
| |
| static int parse_bin(const char *value, unsigned char **buf, size_t *buflen); |
| |
| /* |
| * Compare two memory regions for equality, returning zero if they differ. |
| * However, if there is expected to be an error and the actual error |
| * matches then the memory is expected to be different so handle this |
| * case without producing unnecessary test framework output. |
| */ |
| static int memory_err_compare(EVP_TEST *t, const char *err, |
| const void *expected, size_t expected_len, |
| const void *got, size_t got_len) |
| { |
| int r; |
| |
| if (t->expected_err != NULL && strcmp(t->expected_err, err) == 0) |
| r = !TEST_mem_ne(expected, expected_len, got, got_len); |
| else |
| r = TEST_mem_eq(expected, expected_len, got, got_len); |
| if (!r) |
| t->err = err; |
| return r; |
| } |
| |
| /* |
| * Structure used to hold a list of blocks of memory to test |
| * calls to "update" like functions. |
| */ |
| struct evp_test_buffer_st { |
| unsigned char *buf; |
| size_t buflen; |
| size_t count; |
| int count_set; |
| }; |
| |
| static void evp_test_buffer_free(EVP_TEST_BUFFER *db) |
| { |
| if (db != NULL) { |
| OPENSSL_free(db->buf); |
| OPENSSL_free(db); |
| } |
| } |
| |
| /* |
| * append buffer to a list |
| */ |
| static int evp_test_buffer_append(const char *value, |
| STACK_OF(EVP_TEST_BUFFER) **sk) |
| { |
| EVP_TEST_BUFFER *db = NULL; |
| |
| if (!TEST_ptr(db = OPENSSL_malloc(sizeof(*db)))) |
| goto err; |
| |
| if (!parse_bin(value, &db->buf, &db->buflen)) |
| goto err; |
| db->count = 1; |
| db->count_set = 0; |
| |
| if (*sk == NULL && !TEST_ptr(*sk = sk_EVP_TEST_BUFFER_new_null())) |
| goto err; |
| if (!sk_EVP_TEST_BUFFER_push(*sk, db)) |
| goto err; |
| |
| return 1; |
| |
| err: |
| evp_test_buffer_free(db); |
| return 0; |
| } |
| |
| /* |
| * replace last buffer in list with copies of itself |
| */ |
| static int evp_test_buffer_ncopy(const char *value, |
| STACK_OF(EVP_TEST_BUFFER) *sk) |
| { |
| EVP_TEST_BUFFER *db; |
| unsigned char *tbuf, *p; |
| size_t tbuflen; |
| int ncopy = atoi(value); |
| int i; |
| |
| if (ncopy <= 0) |
| return 0; |
| if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0) |
| return 0; |
| db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1); |
| |
| tbuflen = db->buflen * ncopy; |
| if (!TEST_ptr(tbuf = OPENSSL_malloc(tbuflen))) |
| return 0; |
| for (i = 0, p = tbuf; i < ncopy; i++, p += db->buflen) |
| memcpy(p, db->buf, db->buflen); |
| |
| OPENSSL_free(db->buf); |
| db->buf = tbuf; |
| db->buflen = tbuflen; |
| return 1; |
| } |
| |
| /* |
| * set repeat count for last buffer in list |
| */ |
| static int evp_test_buffer_set_count(const char *value, |
| STACK_OF(EVP_TEST_BUFFER) *sk) |
| { |
| EVP_TEST_BUFFER *db; |
| int count = atoi(value); |
| |
| if (count <= 0) |
| return 0; |
| |
| if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0) |
| return 0; |
| |
| db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1); |
| if (db->count_set != 0) |
| return 0; |
| |
| db->count = (size_t)count; |
| db->count_set = 1; |
| return 1; |
| } |
| |
| /* |
| * call "fn" with each element of the list in turn |
| */ |
| static int evp_test_buffer_do(STACK_OF(EVP_TEST_BUFFER) *sk, |
| int (*fn)(void *ctx, |
| const unsigned char *buf, |
| size_t buflen), |
| void *ctx) |
| { |
| int i; |
| |
| for (i = 0; i < sk_EVP_TEST_BUFFER_num(sk); i++) { |
| EVP_TEST_BUFFER *tb = sk_EVP_TEST_BUFFER_value(sk, i); |
| size_t j; |
| |
| for (j = 0; j < tb->count; j++) { |
| if (fn(ctx, tb->buf, tb->buflen) <= 0) |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * Unescape some sequences in string literals (only \n for now). |
| * Return an allocated buffer, set |out_len|. If |input_len| |
| * is zero, get an empty buffer but set length to zero. |
| */ |
| static unsigned char* unescape(const char *input, size_t input_len, |
| size_t *out_len) |
| { |
| unsigned char *ret, *p; |
| size_t i; |
| |
| if (input_len == 0) { |
| *out_len = 0; |
| return OPENSSL_zalloc(1); |
| } |
| |
| /* Escaping is non-expanding; over-allocate original size for simplicity. */ |
| if (!TEST_ptr(ret = p = OPENSSL_malloc(input_len))) |
| return NULL; |
| |
| for (i = 0; i < input_len; i++) { |
| if (*input == '\\') { |
| if (i == input_len - 1 || *++input != 'n') { |
| TEST_error("Bad escape sequence in file"); |
| goto err; |
| } |
| *p++ = '\n'; |
| i++; |
| input++; |
| } else { |
| *p++ = *input++; |
| } |
| } |
| |
| *out_len = p - ret; |
| return ret; |
| |
| err: |
| OPENSSL_free(ret); |
| return NULL; |
| } |
| |
| /* |
| * For a hex string "value" convert to a binary allocated buffer. |
| * Return 1 on success or 0 on failure. |
| */ |
| static int parse_bin(const char *value, unsigned char **buf, size_t *buflen) |
| { |
| long len; |
| |
| /* Check for NULL literal */ |
| if (strcmp(value, "NULL") == 0) { |
| *buf = NULL; |
| *buflen = 0; |
| return 1; |
| } |
| |
| /* Check for empty value */ |
| if (*value == '\0') { |
| /* |
| * Don't return NULL for zero length buffer. This is needed for |
| * some tests with empty keys: HMAC_Init_ex() expects a non-NULL key |
| * buffer even if the key length is 0, in order to detect key reset. |
| */ |
| *buf = OPENSSL_malloc(1); |
| if (*buf == NULL) |
| return 0; |
| **buf = 0; |
| *buflen = 0; |
| return 1; |
| } |
| |
| /* Check for string literal */ |
| if (value[0] == '"') { |
| size_t vlen = strlen(++value); |
| |
| if (vlen == 0 || value[vlen - 1] != '"') |
| return 0; |
| vlen--; |
| *buf = unescape(value, vlen, buflen); |
| return *buf == NULL ? 0 : 1; |
| } |
| |
| /* Otherwise assume as hex literal and convert it to binary buffer */ |
| if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) { |
| TEST_info("Can't convert %s", value); |
| TEST_openssl_errors(); |
| return -1; |
| } |
| /* Size of input buffer means we'll never overflow */ |
| *buflen = len; |
| return 1; |
| } |
| |
| |
| /** |
| *** MESSAGE DIGEST TESTS |
| **/ |
| |
| typedef struct digest_data_st { |
| /* Digest this test is for */ |
| const EVP_MD *digest; |
| /* Input to digest */ |
| STACK_OF(EVP_TEST_BUFFER) *input; |
| /* Expected output */ |
| unsigned char *output; |
| size_t output_len; |
| } DIGEST_DATA; |
| |
| static int digest_test_init(EVP_TEST *t, const char *alg) |
| { |
| DIGEST_DATA *mdat; |
| const EVP_MD *digest; |
| |
| if ((digest = EVP_get_digestbyname(alg)) == NULL) { |
| /* If alg has an OID assume disabled algorithm */ |
| if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { |
| t->skip = 1; |
| return 1; |
| } |
| return 0; |
| } |
| if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat)))) |
| return 0; |
| t->data = mdat; |
| mdat->digest = digest; |
| return 1; |
| } |
| |
| static void digest_test_cleanup(EVP_TEST *t) |
| { |
| DIGEST_DATA *mdat = t->data; |
| |
| sk_EVP_TEST_BUFFER_pop_free(mdat->input, evp_test_buffer_free); |
| OPENSSL_free(mdat->output); |
| } |
| |
| static int digest_test_parse(EVP_TEST *t, |
| const char *keyword, const char *value) |
| { |
| DIGEST_DATA *mdata = t->data; |
| |
| if (strcmp(keyword, "Input") == 0) |
| return evp_test_buffer_append(value, &mdata->input); |
| if (strcmp(keyword, "Output") == 0) |
| return parse_bin(value, &mdata->output, &mdata->output_len); |
| if (strcmp(keyword, "Count") == 0) |
| return evp_test_buffer_set_count(value, mdata->input); |
| if (strcmp(keyword, "Ncopy") == 0) |
| return evp_test_buffer_ncopy(value, mdata->input); |
| return 0; |
| } |
| |
| static int digest_update_fn(void *ctx, const unsigned char *buf, size_t buflen) |
| { |
| return EVP_DigestUpdate(ctx, buf, buflen); |
| } |
| |
| static int digest_test_run(EVP_TEST *t) |
| { |
| DIGEST_DATA *expected = t->data; |
| EVP_MD_CTX *mctx; |
| unsigned char *got = NULL; |
| unsigned int got_len; |
| |
| t->err = "TEST_FAILURE"; |
| if (!TEST_ptr(mctx = EVP_MD_CTX_new())) |
| goto err; |
| |
| got = OPENSSL_malloc(expected->output_len > EVP_MAX_MD_SIZE ? |
| expected->output_len : EVP_MAX_MD_SIZE); |
| if (!TEST_ptr(got)) |
| goto err; |
| |
| if (!EVP_DigestInit_ex(mctx, expected->digest, NULL)) { |
| t->err = "DIGESTINIT_ERROR"; |
| goto err; |
| } |
| if (!evp_test_buffer_do(expected->input, digest_update_fn, mctx)) { |
| t->err = "DIGESTUPDATE_ERROR"; |
| goto err; |
| } |
| |
| if (EVP_MD_flags(expected->digest) & EVP_MD_FLAG_XOF) { |
| got_len = expected->output_len; |
| if (!EVP_DigestFinalXOF(mctx, got, got_len)) { |
| t->err = "DIGESTFINALXOF_ERROR"; |
| goto err; |
| } |
| } else { |
| if (!EVP_DigestFinal(mctx, got, &got_len)) { |
| t->err = "DIGESTFINAL_ERROR"; |
| goto err; |
| } |
| } |
| if (!TEST_int_eq(expected->output_len, got_len)) { |
| t->err = "DIGEST_LENGTH_MISMATCH"; |
| goto err; |
| } |
| if (!memory_err_compare(t, "DIGEST_MISMATCH", |
| expected->output, expected->output_len, |
| got, got_len)) |
| goto err; |
| |
| t->err = NULL; |
| |
| err: |
| OPENSSL_free(got); |
| EVP_MD_CTX_free(mctx); |
| return 1; |
| } |
| |
| static const EVP_TEST_METHOD digest_test_method = { |
| "Digest", |
| digest_test_init, |
| digest_test_cleanup, |
| digest_test_parse, |
| digest_test_run |
| }; |
| |
| |
| /** |
| *** CIPHER TESTS |
| **/ |
| |
| typedef struct cipher_data_st { |
| const EVP_CIPHER *cipher; |
| int enc; |
| /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */ |
| int aead; |
| unsigned char *key; |
| size_t key_len; |
| unsigned char *iv; |
| size_t iv_len; |
| unsigned char *plaintext; |
| size_t plaintext_len; |
| unsigned char *ciphertext; |
| size_t ciphertext_len; |
| /* GCM, CCM, OCB and SIV only */ |
| unsigned char *aad[AAD_NUM]; |
| size_t aad_len[AAD_NUM]; |
| unsigned char *tag; |
| size_t tag_len; |
| } CIPHER_DATA; |
| |
| static int cipher_test_init(EVP_TEST *t, const char *alg) |
| { |
| const EVP_CIPHER *cipher; |
| CIPHER_DATA *cdat; |
| int m; |
| |
| if ((cipher = EVP_get_cipherbyname(alg)) == NULL) { |
| /* If alg has an OID assume disabled algorithm */ |
| if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { |
| t->skip = 1; |
| return 1; |
| } |
| return 0; |
| } |
| cdat = OPENSSL_zalloc(sizeof(*cdat)); |
| cdat->cipher = cipher; |
| cdat->enc = -1; |
| m = EVP_CIPHER_mode(cipher); |
| if (m == EVP_CIPH_GCM_MODE |
| || m == EVP_CIPH_OCB_MODE |
| || m == EVP_CIPH_SIV_MODE |
| || m == EVP_CIPH_CCM_MODE) |
| cdat->aead = m; |
| else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) |
| cdat->aead = -1; |
| else |
| cdat->aead = 0; |
| |
| t->data = cdat; |
| return 1; |
| } |
| |
| static void cipher_test_cleanup(EVP_TEST *t) |
| { |
| int i; |
| CIPHER_DATA *cdat = t->data; |
| |
| OPENSSL_free(cdat->key); |
| OPENSSL_free(cdat->iv); |
| OPENSSL_free(cdat->ciphertext); |
| OPENSSL_free(cdat->plaintext); |
| for (i = 0; i < AAD_NUM; i++) |
| OPENSSL_free(cdat->aad[i]); |
| OPENSSL_free(cdat->tag); |
| } |
| |
| static int cipher_test_parse(EVP_TEST *t, const char *keyword, |
| const char *value) |
| { |
| CIPHER_DATA *cdat = t->data; |
| int i; |
| |
| if (strcmp(keyword, "Key") == 0) |
| return parse_bin(value, &cdat->key, &cdat->key_len); |
| if (strcmp(keyword, "IV") == 0) |
| return parse_bin(value, &cdat->iv, &cdat->iv_len); |
| if (strcmp(keyword, "Plaintext") == 0) |
| return parse_bin(value, &cdat->plaintext, &cdat->plaintext_len); |
| if (strcmp(keyword, "Ciphertext") == 0) |
| return parse_bin(value, &cdat->ciphertext, &cdat->ciphertext_len); |
| if (cdat->aead) { |
| if (strcmp(keyword, "AAD") == 0) { |
| for (i = 0; i < AAD_NUM; i++) { |
| if (cdat->aad[i] == NULL) |
| return parse_bin(value, &cdat->aad[i], &cdat->aad_len[i]); |
| } |
| return 0; |
| } |
| if (strcmp(keyword, "Tag") == 0) |
| return parse_bin(value, &cdat->tag, &cdat->tag_len); |
| } |
| |
| if (strcmp(keyword, "Operation") == 0) { |
| if (strcmp(value, "ENCRYPT") == 0) |
| cdat->enc = 1; |
| else if (strcmp(value, "DECRYPT") == 0) |
| cdat->enc = 0; |
| else |
| return 0; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int cipher_test_enc(EVP_TEST *t, int enc, |
| size_t out_misalign, size_t inp_misalign, int frag) |
| { |
| CIPHER_DATA *expected = t->data; |
| unsigned char *in, *expected_out, *tmp = NULL; |
| size_t in_len, out_len, donelen = 0; |
| int ok = 0, tmplen, chunklen, tmpflen, i; |
| EVP_CIPHER_CTX *ctx = NULL; |
| |
| t->err = "TEST_FAILURE"; |
| if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new())) |
| goto err; |
| EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW); |
| if (enc) { |
| in = expected->plaintext; |
| in_len = expected->plaintext_len; |
| expected_out = expected->ciphertext; |
| out_len = expected->ciphertext_len; |
| } else { |
| in = expected->ciphertext; |
| in_len = expected->ciphertext_len; |
| expected_out = expected->plaintext; |
| out_len = expected->plaintext_len; |
| } |
| if (inp_misalign == (size_t)-1) { |
| /* |
| * Exercise in-place encryption |
| */ |
| tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH); |
| if (!tmp) |
| goto err; |
| in = memcpy(tmp + out_misalign, in, in_len); |
| } else { |
| inp_misalign += 16 - ((out_misalign + in_len) & 15); |
| /* |
| * 'tmp' will store both output and copy of input. We make the copy |
| * of input to specifically aligned part of 'tmp'. So we just |
| * figured out how much padding would ensure the required alignment, |
| * now we allocate extended buffer and finally copy the input just |
| * past inp_misalign in expression below. Output will be written |
| * past out_misalign... |
| */ |
| tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH + |
| inp_misalign + in_len); |
| if (!tmp) |
| goto err; |
| in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH + |
| inp_misalign, in, in_len); |
| } |
| if (!EVP_CipherInit_ex(ctx, expected->cipher, NULL, NULL, NULL, enc)) { |
| t->err = "CIPHERINIT_ERROR"; |
| goto err; |
| } |
| if (expected->iv) { |
| if (expected->aead) { |
| if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, |
| expected->iv_len, 0)) { |
| t->err = "INVALID_IV_LENGTH"; |
| goto err; |
| } |
| } else if (expected->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx)) { |
| t->err = "INVALID_IV_LENGTH"; |
| goto err; |
| } |
| } |
| if (expected->aead) { |
| unsigned char *tag; |
| /* |
| * If encrypting or OCB just set tag length initially, otherwise |
| * set tag length and value. |
| */ |
| if (enc || expected->aead == EVP_CIPH_OCB_MODE) { |
| t->err = "TAG_LENGTH_SET_ERROR"; |
| tag = NULL; |
| } else { |
| t->err = "TAG_SET_ERROR"; |
| tag = expected->tag; |
| } |
| if (tag || expected->aead != EVP_CIPH_GCM_MODE) { |
| if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, |
| expected->tag_len, tag)) |
| goto err; |
| } |
| } |
| |
| if (!EVP_CIPHER_CTX_set_key_length(ctx, expected->key_len)) { |
| t->err = "INVALID_KEY_LENGTH"; |
| goto err; |
| } |
| if (!EVP_CipherInit_ex(ctx, NULL, NULL, expected->key, expected->iv, -1)) { |
| t->err = "KEY_SET_ERROR"; |
| goto err; |
| } |
| |
| if (!enc && expected->aead == EVP_CIPH_OCB_MODE) { |
| if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, |
| expected->tag_len, expected->tag)) { |
| t->err = "TAG_SET_ERROR"; |
| goto err; |
| } |
| } |
| |
| if (expected->aead == EVP_CIPH_CCM_MODE) { |
| if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) { |
| t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR"; |
| goto err; |
| } |
| } |
| if (expected->aad[0] != NULL) { |
| t->err = "AAD_SET_ERROR"; |
| if (!frag) { |
| for (i = 0; expected->aad[i] != NULL; i++) { |
| if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i], |
| expected->aad_len[i])) |
| goto err; |
| } |
| } else { |
| /* |
| * Supply the AAD in chunks less than the block size where possible |
| */ |
| for (i = 0; expected->aad[i] != NULL; i++) { |
| if (expected->aad_len[i] > 0) { |
| if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i], 1)) |
| goto err; |
| donelen++; |
| } |
| if (expected->aad_len[i] > 2) { |
| if (!EVP_CipherUpdate(ctx, NULL, &chunklen, |
| expected->aad[i] + donelen, |
| expected->aad_len[i] - 2)) |
| goto err; |
| donelen += expected->aad_len[i] - 2; |
| } |
| if (expected->aad_len[i] > 1 |
| && !EVP_CipherUpdate(ctx, NULL, &chunklen, |
| expected->aad[i] + donelen, 1)) |
| goto err; |
| } |
| } |
| } |
| EVP_CIPHER_CTX_set_padding(ctx, 0); |
| t->err = "CIPHERUPDATE_ERROR"; |
| tmplen = 0; |
| if (!frag) { |
| /* We supply the data all in one go */ |
| if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len)) |
| goto err; |
| } else { |
| /* Supply the data in chunks less than the block size where possible */ |
| if (in_len > 0) { |
| if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1)) |
| goto err; |
| tmplen += chunklen; |
| in++; |
| in_len--; |
| } |
| if (in_len > 1) { |
| if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen, |
| in, in_len - 1)) |
| goto err; |
| tmplen += chunklen; |
| in += in_len - 1; |
| in_len = 1; |
| } |
| if (in_len > 0 ) { |
| if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen, |
| in, 1)) |
| goto err; |
| tmplen += chunklen; |
| } |
| } |
| if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) { |
| t->err = "CIPHERFINAL_ERROR"; |
| goto err; |
| } |
| if (!memory_err_compare(t, "VALUE_MISMATCH", expected_out, out_len, |
| tmp + out_misalign, tmplen + tmpflen)) |
| goto err; |
| if (enc && expected->aead) { |
| unsigned char rtag[16]; |
| |
| if (!TEST_size_t_le(expected->tag_len, sizeof(rtag))) { |
| t->err = "TAG_LENGTH_INTERNAL_ERROR"; |
| goto err; |
| } |
| if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, |
| expected->tag_len, rtag)) { |
| t->err = "TAG_RETRIEVE_ERROR"; |
| goto err; |
| } |
| if (!memory_err_compare(t, "TAG_VALUE_MISMATCH", |
| expected->tag, expected->tag_len, |
| rtag, expected->tag_len)) |
| goto err; |
| } |
| t->err = NULL; |
| ok = 1; |
| err: |
| OPENSSL_free(tmp); |
| EVP_CIPHER_CTX_free(ctx); |
| return ok; |
| } |
| |
| static int cipher_test_run(EVP_TEST *t) |
| { |
| CIPHER_DATA *cdat = t->data; |
| int rv, frag = 0; |
| size_t out_misalign, inp_misalign; |
| |
| if (!cdat->key) { |
| t->err = "NO_KEY"; |
| return 0; |
| } |
| if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) { |
| /* IV is optional and usually omitted in wrap mode */ |
| if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) { |
| t->err = "NO_IV"; |
| return 0; |
| } |
| } |
| if (cdat->aead && !cdat->tag) { |
| t->err = "NO_TAG"; |
| return 0; |
| } |
| for (out_misalign = 0; out_misalign <= 1;) { |
| static char aux_err[64]; |
| t->aux_err = aux_err; |
| for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) { |
| if (inp_misalign == (size_t)-1) { |
| /* kludge: inp_misalign == -1 means "exercise in-place" */ |
| BIO_snprintf(aux_err, sizeof(aux_err), |
| "%s in-place, %sfragmented", |
| out_misalign ? "misaligned" : "aligned", |
| frag ? "" : "not "); |
| } else { |
| BIO_snprintf(aux_err, sizeof(aux_err), |
| "%s output and %s input, %sfragmented", |
| out_misalign ? "misaligned" : "aligned", |
| inp_misalign ? "misaligned" : "aligned", |
| frag ? "" : "not "); |
| } |
| if (cdat->enc) { |
| rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag); |
| /* Not fatal errors: return */ |
| if (rv != 1) { |
| if (rv < 0) |
| return 0; |
| return 1; |
| } |
| } |
| if (cdat->enc != 1) { |
| rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag); |
| /* Not fatal errors: return */ |
| if (rv != 1) { |
| if (rv < 0) |
| return 0; |
| return 1; |
| } |
| } |
| } |
| |
| if (out_misalign == 1 && frag == 0) { |
| /* |
| * XTS, SIV, CCM and Wrap modes have special requirements about input |
| * lengths so we don't fragment for those |
| */ |
| if (cdat->aead == EVP_CIPH_CCM_MODE |
| || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_SIV_MODE |
| || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE |
| || EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE) |
| break; |
| out_misalign = 0; |
| frag++; |
| } else { |
| out_misalign++; |
| } |
| } |
| t->aux_err = NULL; |
| |
| return 1; |
| } |
| |
| static const EVP_TEST_METHOD cipher_test_method = { |
| "Cipher", |
| cipher_test_init, |
| cipher_test_cleanup, |
| cipher_test_parse, |
| cipher_test_run |
| }; |
| |
| |
| /** |
| *** MAC TESTS |
| **/ |
| |
| typedef struct mac_data_st { |
| /* MAC type in one form or another */ |
| const EVP_MAC *mac; /* for mac_test_run_mac */ |
| int type; /* for mac_test_run_pkey */ |
| /* Algorithm string for this MAC */ |
| char *alg; |
| /* MAC key */ |
| unsigned char *key; |
| size_t key_len; |
| /* MAC IV (GMAC) */ |
| unsigned char *iv; |
| size_t iv_len; |
| /* Input to MAC */ |
| unsigned char *input; |
| size_t input_len; |
| /* Expected output */ |
| unsigned char *output; |
| size_t output_len; |
| unsigned char *custom; |
| size_t custom_len; |
| /* MAC salt (blake2) */ |
| unsigned char *salt; |
| size_t salt_len; |
| /* Collection of controls */ |
| STACK_OF(OPENSSL_STRING) *controls; |
| } MAC_DATA; |
| |
| static int mac_test_init(EVP_TEST *t, const char *alg) |
| { |
| const EVP_MAC *mac = NULL; |
| int type = NID_undef; |
| MAC_DATA *mdat; |
| |
| if ((mac = EVP_get_macbyname(alg)) == NULL) { |
| /* |
| * Since we didn't find an EVP_MAC, we check for known EVP_PKEY methods |
| * For debugging purposes, we allow 'NNNN by EVP_PKEY' to force running |
| * the EVP_PKEY method. |
| */ |
| size_t sz = strlen(alg); |
| static const char epilogue[] = " by EVP_PKEY"; |
| |
| if (sz >= sizeof(epilogue) |
| && strcmp(alg + sz - (sizeof(epilogue) - 1), epilogue) == 0) |
| sz -= sizeof(epilogue) - 1; |
| |
| if (strncmp(alg, "HMAC", sz) == 0) { |
| type = EVP_PKEY_HMAC; |
| } else if (strncmp(alg, "CMAC", sz) == 0) { |
| #ifndef OPENSSL_NO_CMAC |
| type = EVP_PKEY_CMAC; |
| #else |
| t->skip = 1; |
| return 1; |
| #endif |
| } else if (strncmp(alg, "Poly1305", sz) == 0) { |
| #ifndef OPENSSL_NO_POLY1305 |
| type = EVP_PKEY_POLY1305; |
| #else |
| t->skip = 1; |
| return 1; |
| #endif |
| } else if (strncmp(alg, "SipHash", sz) == 0) { |
| #ifndef OPENSSL_NO_SIPHASH |
| type = EVP_PKEY_SIPHASH; |
| #else |
| t->skip = 1; |
| return 1; |
| #endif |
| } else { |
| /* |
| * Not a known EVP_PKEY method either. If it's a known OID, then |
| * assume it's been disabled. |
| */ |
| if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { |
| t->skip = 1; |
| return 1; |
| } |
| |
| return 0; |
| } |
| } |
| |
| mdat = OPENSSL_zalloc(sizeof(*mdat)); |
| mdat->type = type; |
| mdat->mac = mac; |
| mdat->controls = sk_OPENSSL_STRING_new_null(); |
| t->data = mdat; |
| return 1; |
| } |
| |
| /* Because OPENSSL_free is a macro, it can't be passed as a function pointer */ |
| static void openssl_free(char *m) |
| { |
| OPENSSL_free(m); |
| } |
| |
| static void mac_test_cleanup(EVP_TEST *t) |
| { |
| MAC_DATA *mdat = t->data; |
| |
| sk_OPENSSL_STRING_pop_free(mdat->controls, openssl_free); |
| OPENSSL_free(mdat->alg); |
| OPENSSL_free(mdat->key); |
| OPENSSL_free(mdat->iv); |
| OPENSSL_free(mdat->custom); |
| OPENSSL_free(mdat->salt); |
| OPENSSL_free(mdat->input); |
| OPENSSL_free(mdat->output); |
| } |
| |
| static int mac_test_parse(EVP_TEST *t, |
| const char *keyword, const char *value) |
| { |
| MAC_DATA *mdata = t->data; |
| |
| if (strcmp(keyword, "Key") == 0) |
| return parse_bin(value, &mdata->key, &mdata->key_len); |
| if (strcmp(keyword, "IV") == 0) |
| return parse_bin(value, &mdata->iv, &mdata->iv_len); |
| if (strcmp(keyword, "Custom") == 0) |
| return parse_bin(value, &mdata->custom, &mdata->custom_len); |
| if (strcmp(keyword, "Salt") == 0) |
| return parse_bin(value, &mdata->salt, &mdata->salt_len); |
| if (strcmp(keyword, "Algorithm") == 0) { |
| mdata->alg = OPENSSL_strdup(value); |
| if (!mdata->alg) |
| return 0; |
| return 1; |
| } |
| if (strcmp(keyword, "Input") == 0) |
| return parse_bin(value, &mdata->input, &mdata->input_len); |
| if (strcmp(keyword, "Output") == 0) |
| return parse_bin(value, &mdata->output, &mdata->output_len); |
| if (strcmp(keyword, "Ctrl") == 0) |
| return sk_OPENSSL_STRING_push(mdata->controls, |
| OPENSSL_strdup(value)) != 0; |
| return 0; |
| } |
| |
| static int mac_test_ctrl_pkey(EVP_TEST *t, EVP_PKEY_CTX *pctx, |
| const char *value) |
| { |
| int rv; |
| char *p, *tmpval; |
| |
| if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) |
| return 0; |
| p = strchr(tmpval, ':'); |
| if (p != NULL) |
| *p++ = '\0'; |
| rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p); |
| if (rv == -2) |
| t->err = "PKEY_CTRL_INVALID"; |
| else if (rv <= 0) |
| t->err = "PKEY_CTRL_ERROR"; |
| else |
| rv = 1; |
| OPENSSL_free(tmpval); |
| return rv > 0; |
| } |
| |
| static int mac_test_run_pkey(EVP_TEST *t) |
| { |
| MAC_DATA *expected = t->data; |
| EVP_MD_CTX *mctx = NULL; |
| EVP_PKEY_CTX *pctx = NULL, *genctx = NULL; |
| EVP_PKEY *key = NULL; |
| const EVP_MD *md = NULL; |
| unsigned char *got = NULL; |
| size_t got_len; |
| int i; |
| |
| if (expected->alg == NULL) |
| TEST_info("Trying the EVP_PKEY %s test", OBJ_nid2sn(expected->type)); |
| else |
| TEST_info("Trying the EVP_PKEY %s test with %s", |
| OBJ_nid2sn(expected->type), expected->alg); |
| |
| #ifdef OPENSSL_NO_DES |
| if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) { |
| /* Skip DES */ |
| t->err = NULL; |
| goto err; |
| } |
| #endif |
| |
| if (expected->type == EVP_PKEY_CMAC) |
| key = EVP_PKEY_new_CMAC_key(NULL, expected->key, expected->key_len, |
| EVP_get_cipherbyname(expected->alg)); |
| else |
| key = EVP_PKEY_new_raw_private_key(expected->type, NULL, expected->key, |
| expected->key_len); |
| if (key == NULL) { |
| t->err = "MAC_KEY_CREATE_ERROR"; |
| goto err; |
| } |
| |
| if (expected->type == EVP_PKEY_HMAC) { |
| if (!TEST_ptr(md = EVP_get_digestbyname(expected->alg))) { |
| t->err = "MAC_ALGORITHM_SET_ERROR"; |
| goto err; |
| } |
| } |
| if (!TEST_ptr(mctx = EVP_MD_CTX_new())) { |
| t->err = "INTERNAL_ERROR"; |
| goto err; |
| } |
| if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key)) { |
| t->err = "DIGESTSIGNINIT_ERROR"; |
| goto err; |
| } |
| for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++) |
| if (!mac_test_ctrl_pkey(t, pctx, |
| sk_OPENSSL_STRING_value(expected->controls, |
| i))) { |
| t->err = "EVPPKEYCTXCTRL_ERROR"; |
| goto err; |
| } |
| if (!EVP_DigestSignUpdate(mctx, expected->input, expected->input_len)) { |
| t->err = "DIGESTSIGNUPDATE_ERROR"; |
| goto err; |
| } |
| if (!EVP_DigestSignFinal(mctx, NULL, &got_len)) { |
| t->err = "DIGESTSIGNFINAL_LENGTH_ERROR"; |
| goto err; |
| } |
| if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { |
| t->err = "TEST_FAILURE"; |
| goto err; |
| } |
| if (!EVP_DigestSignFinal(mctx, got, &got_len) |
| || !memory_err_compare(t, "TEST_MAC_ERR", |
| expected->output, expected->output_len, |
| got, got_len)) { |
| t->err = "TEST_MAC_ERR"; |
| goto err; |
| } |
| t->err = NULL; |
| err: |
| EVP_MD_CTX_free(mctx); |
| OPENSSL_free(got); |
| EVP_PKEY_CTX_free(genctx); |
| EVP_PKEY_free(key); |
| return 1; |
| } |
| |
| static int mac_test_run_mac(EVP_TEST *t) |
| { |
| MAC_DATA *expected = t->data; |
| EVP_MAC_CTX *ctx = NULL; |
| const void *algo = NULL; |
| int algo_ctrl = 0; |
| unsigned char *got = NULL; |
| size_t got_len; |
| int rv, i; |
| |
| if (expected->alg == NULL) |
| TEST_info("Trying the EVP_MAC %s test", EVP_MAC_name(expected->mac)); |
| else |
| TEST_info("Trying the EVP_MAC %s test with %s", |
| EVP_MAC_name(expected->mac), expected->alg); |
| |
| #ifdef OPENSSL_NO_DES |
| if (expected->alg != NULL && strstr(expected->alg, "DES") != NULL) { |
| /* Skip DES */ |
| t->err = NULL; |
| goto err; |
| } |
| #endif |
| |
| if ((ctx = EVP_MAC_CTX_new(expected->mac)) == NULL) { |
| t->err = "MAC_CREATE_ERROR"; |
| goto err; |
| } |
| |
| if (expected->alg != NULL |
| && ((algo_ctrl = EVP_MAC_CTRL_SET_CIPHER, |
| algo = EVP_get_cipherbyname(expected->alg)) == NULL |
| && (algo_ctrl = EVP_MAC_CTRL_SET_MD, |
| algo = EVP_get_digestbyname(expected->alg)) == NULL)) { |
| t->err = "MAC_BAD_ALGORITHM"; |
| goto err; |
| } |
| |
| |
| if (algo_ctrl != 0) { |
| rv = EVP_MAC_ctrl(ctx, algo_ctrl, algo); |
| if (rv == -2) { |
| t->err = "MAC_CTRL_INVALID"; |
| goto err; |
| } else if (rv <= 0) { |
| t->err = "MAC_CTRL_ERROR"; |
| goto err; |
| } |
| } |
| |
| rv = EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_KEY, |
| expected->key, expected->key_len); |
| if (rv == -2) { |
| t->err = "MAC_CTRL_INVALID"; |
| goto err; |
| } else if (rv <= 0) { |
| t->err = "MAC_CTRL_ERROR"; |
| goto err; |
| } |
| if (expected->custom != NULL) { |
| rv = EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_CUSTOM, |
| expected->custom, expected->custom_len); |
| if (rv == -2) { |
| t->err = "MAC_CTRL_INVALID"; |
| goto err; |
| } else if (rv <= 0) { |
| t->err = "MAC_CTRL_ERROR"; |
| goto err; |
| } |
| } |
| |
| if (expected->salt != NULL) { |
| rv = EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_SALT, |
| expected->salt, expected->salt_len); |
| if (rv == -2) { |
| t->err = "MAC_CTRL_INVALID"; |
| goto err; |
| } else if (rv <= 0) { |
| t->err = "MAC_CTRL_ERROR"; |
| goto err; |
| } |
| } |
| |
| if (expected->iv != NULL) { |
| rv = EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_IV, |
| expected->iv, expected->iv_len); |
| if (rv == -2) { |
| t->err = "MAC_CTRL_INVALID"; |
| goto err; |
| } else if (rv <= 0) { |
| t->err = "MAC_CTRL_ERROR"; |
| goto err; |
| } |
| } |
| |
| for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++) { |
| char *p, *tmpval; |
| char *value = sk_OPENSSL_STRING_value(expected->controls, i); |
| |
| if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) { |
| t->err = "MAC_CTRL_ERROR"; |
| goto err; |
| } |
| p = strchr(tmpval, ':'); |
| if (p != NULL) |
| *p++ = '\0'; |
| rv = EVP_MAC_ctrl_str(ctx, tmpval, p); |
| OPENSSL_free(tmpval); |
| if (rv == -2) { |
| t->err = "MAC_CTRL_INVALID"; |
| goto err; |
| } else if (rv <= 0) { |
| t->err = "MAC_CTRL_ERROR"; |
| goto err; |
| } |
| } |
| if (!EVP_MAC_init(ctx)) { |
| t->err = "MAC_INIT_ERROR"; |
| goto err; |
| } |
| if (!EVP_MAC_update(ctx, expected->input, expected->input_len)) { |
| t->err = "MAC_UPDATE_ERROR"; |
| goto err; |
| } |
| if (!EVP_MAC_final(ctx, NULL, &got_len)) { |
| t->err = "MAC_FINAL_LENGTH_ERROR"; |
| goto err; |
| } |
| if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { |
| t->err = "TEST_FAILURE"; |
| goto err; |
| } |
| if (!EVP_MAC_final(ctx, got, &got_len) |
| || !memory_err_compare(t, "TEST_MAC_ERR", |
| expected->output, expected->output_len, |
| got, got_len)) { |
| t->err = "TEST_MAC_ERR"; |
| goto err; |
| } |
| t->err = NULL; |
| err: |
| EVP_MAC_CTX_free(ctx); |
| OPENSSL_free(got); |
| return 1; |
| } |
| |
| static int mac_test_run(EVP_TEST *t) |
| { |
| MAC_DATA *expected = t->data; |
| |
| if (expected->mac != NULL) |
| return mac_test_run_mac(t); |
| return mac_test_run_pkey(t); |
| } |
| |
| static const EVP_TEST_METHOD mac_test_method = { |
| "MAC", |
| mac_test_init, |
| mac_test_cleanup, |
| mac_test_parse, |
| mac_test_run |
| }; |
| |
| |
| /** |
| *** PUBLIC KEY TESTS |
| *** These are all very similar and share much common code. |
| **/ |
| |
| typedef struct pkey_data_st { |
| /* Context for this operation */ |
| EVP_PKEY_CTX *ctx; |
| /* Key operation to perform */ |
| int (*keyop) (EVP_PKEY_CTX *ctx, |
| unsigned char *sig, size_t *siglen, |
| const unsigned char *tbs, size_t tbslen); |
| /* Input to MAC */ |
| unsigned char *input; |
| size_t input_len; |
| /* Expected output */ |
| unsigned char *output; |
| size_t output_len; |
| } PKEY_DATA; |
| |
| /* |
| * Perform public key operation setup: lookup key, allocated ctx and call |
| * the appropriate initialisation function |
| */ |
| static int pkey_test_init(EVP_TEST *t, const char *name, |
| int use_public, |
| int (*keyopinit) (EVP_PKEY_CTX *ctx), |
| int (*keyop)(EVP_PKEY_CTX *ctx, |
| unsigned char *sig, size_t *siglen, |
| const unsigned char *tbs, |
| size_t tbslen)) |
| { |
| PKEY_DATA *kdata; |
| EVP_PKEY *pkey = NULL; |
| int rv = 0; |
| |
| if (use_public) |
| rv = find_key(&pkey, name, public_keys); |
| if (rv == 0) |
| rv = find_key(&pkey, name, private_keys); |
| if (rv == 0 || pkey == NULL) { |
| t->skip = 1; |
| return 1; |
| } |
| |
| if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) { |
| EVP_PKEY_free(pkey); |
| return 0; |
| } |
| kdata->keyop = keyop; |
| if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL))) { |
| EVP_PKEY_free(pkey); |
| OPENSSL_free(kdata); |
| return 0; |
| } |
| if (keyopinit(kdata->ctx) <= 0) |
| t->err = "KEYOP_INIT_ERROR"; |
| t->data = kdata; |
| return 1; |
| } |
| |
| static void pkey_test_cleanup(EVP_TEST *t) |
| { |
| PKEY_DATA *kdata = t->data; |
| |
| OPENSSL_free(kdata->input); |
| OPENSSL_free(kdata->output); |
| EVP_PKEY_CTX_free(kdata->ctx); |
| } |
| |
| static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx, |
| const char *value) |
| { |
| int rv; |
| char *p, *tmpval; |
| |
| if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) |
| return 0; |
| p = strchr(tmpval, ':'); |
| if (p != NULL) |
| *p++ = '\0'; |
| rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p); |
| if (rv == -2) { |
| t->err = "PKEY_CTRL_INVALID"; |
| rv = 1; |
| } else if (p != NULL && rv <= 0) { |
| /* If p has an OID and lookup fails assume disabled algorithm */ |
| int nid = OBJ_sn2nid(p); |
| |
| if (nid == NID_undef) |
| nid = OBJ_ln2nid(p); |
| if (nid != NID_undef |
| && EVP_get_digestbynid(nid) == NULL |
| && EVP_get_cipherbynid(nid) == NULL) { |
| t->skip = 1; |
| rv = 1; |
| } else { |
| t->err = "PKEY_CTRL_ERROR"; |
| rv = 1; |
| } |
| } |
| OPENSSL_free(tmpval); |
| return rv > 0; |
| } |
| |
| static int pkey_test_parse(EVP_TEST *t, |
| const char *keyword, const char *value) |
| { |
| PKEY_DATA *kdata = t->data; |
| if (strcmp(keyword, "Input") == 0) |
| return parse_bin(value, &kdata->input, &kdata->input_len); |
| if (strcmp(keyword, "Output") == 0) |
| return parse_bin(value, &kdata->output, &kdata->output_len); |
| if (strcmp(keyword, "Ctrl") == 0) |
| return pkey_test_ctrl(t, kdata->ctx, value); |
| return 0; |
| } |
| |
| static int pkey_test_run(EVP_TEST *t) |
| { |
| PKEY_DATA *expected = t->data; |
| unsigned char *got = NULL; |
| size_t got_len; |
| |
| if (expected->keyop(expected->ctx, NULL, &got_len, |
| expected->input, expected->input_len) <= 0 |
| || !TEST_ptr(got = OPENSSL_malloc(got_len))) { |
| t->err = "KEYOP_LENGTH_ERROR"; |
| goto err; |
| } |
| if (expected->keyop(expected->ctx, got, &got_len, |
| expected->input, expected->input_len) <= 0) { |
| t->err = "KEYOP_ERROR"; |
| goto err; |
| } |
| if (!memory_err_compare(t, "KEYOP_MISMATCH", |
| expected->output, expected->output_len, |
| got, got_len)) |
| goto err; |
| |
| t->err = NULL; |
| err: |
| OPENSSL_free(got); |
| return 1; |
| } |
| |
| static int sign_test_init(EVP_TEST *t, const char *name) |
| { |
| return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign); |
| } |
| |
| static const EVP_TEST_METHOD psign_test_method = { |
| "Sign", |
| sign_test_init, |
| pkey_test_cleanup, |
| pkey_test_parse, |
| pkey_test_run |
| }; |
| |
| static int verify_recover_test_init(EVP_TEST *t, const char *name) |
| { |
| return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init, |
| EVP_PKEY_verify_recover); |
| } |
| |
| static const EVP_TEST_METHOD pverify_recover_test_method = { |
| "VerifyRecover", |
| verify_recover_test_init, |
| pkey_test_cleanup, |
| pkey_test_parse, |
| pkey_test_run |
| }; |
| |
| static int decrypt_test_init(EVP_TEST *t, const char *name) |
| { |
| return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init, |
| EVP_PKEY_decrypt); |
| } |
| |
| static const EVP_TEST_METHOD pdecrypt_test_method = { |
| "Decrypt", |
| decrypt_test_init, |
| pkey_test_cleanup, |
| pkey_test_parse, |
| pkey_test_run |
| }; |
| |
| static int verify_test_init(EVP_TEST *t, const char *name) |
| { |
| return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0); |
| } |
| |
| static int verify_test_run(EVP_TEST *t) |
| { |
| PKEY_DATA *kdata = t->data; |
| |
| if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len, |
| kdata->input, kdata->input_len) <= 0) |
| t->err = "VERIFY_ERROR"; |
| return 1; |
| } |
| |
| static const EVP_TEST_METHOD pverify_test_method = { |
| "Verify", |
| verify_test_init, |
| pkey_test_cleanup, |
| pkey_test_parse, |
| verify_test_run |
| }; |
| |
| |
| static int pderive_test_init(EVP_TEST *t, const char *name) |
| { |
| return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0); |
| } |
| |
| static int pderive_test_parse(EVP_TEST *t, |
| const char *keyword, const char *value) |
| { |
| PKEY_DATA *kdata = t->data; |
| |
| if (strcmp(keyword, "PeerKey") == 0) { |
| EVP_PKEY *peer; |
| if (find_key(&peer, value, public_keys) == 0) |
| return 0; |
| if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0) |
| return 0; |
| return 1; |
| } |
| if (strcmp(keyword, "SharedSecret") == 0) |
| return parse_bin(value, &kdata->output, &kdata->output_len); |
| if (strcmp(keyword, "Ctrl") == 0) |
| return pkey_test_ctrl(t, kdata->ctx, value); |
| return 0; |
| } |
| |
| static int pderive_test_run(EVP_TEST *t) |
| { |
| PKEY_DATA *expected = t->data; |
| unsigned char *got = NULL; |
| size_t got_len; |
| |
| if (EVP_PKEY_derive(expected->ctx, NULL, &got_len) <= 0) { |
| t->err = "DERIVE_ERROR"; |
| goto err; |
| } |
| if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { |
| t->err = "DERIVE_ERROR"; |
| goto err; |
| } |
| if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) { |
| t->err = "DERIVE_ERROR"; |
| goto err; |
| } |
| if (!memory_err_compare(t, "SHARED_SECRET_MISMATCH", |
| expected->output, expected->output_len, |
| got, got_len)) |
| goto err; |
| |
| t->err = NULL; |
| err: |
| OPENSSL_free(got); |
| return 1; |
| } |
| |
| static const EVP_TEST_METHOD pderive_test_method = { |
| "Derive", |
| pderive_test_init, |
| pkey_test_cleanup, |
| pderive_test_parse, |
| pderive_test_run |
| }; |
| |
| |
| /** |
| *** PBE TESTS |
| **/ |
| |
| typedef enum pbe_type_enum { |
| PBE_TYPE_INVALID = 0, |
| PBE_TYPE_SCRYPT, PBE_TYPE_PBKDF2, PBE_TYPE_PKCS12 |
| } PBE_TYPE; |
| |
| typedef struct pbe_data_st { |
| PBE_TYPE pbe_type; |
| /* scrypt parameters */ |
| uint64_t N, r, p, maxmem; |
| /* PKCS#12 parameters */ |
| int id, iter; |
| const EVP_MD *md; |
| /* password */ |
| unsigned char *pass; |
| size_t pass_len; |
| /* salt */ |
| unsigned char *salt; |
| size_t salt_len; |
| /* Expected output */ |
| unsigned char *key; |
| size_t key_len; |
| } PBE_DATA; |
| |
| #ifndef OPENSSL_NO_SCRYPT |
| /* |
| * Parse unsigned decimal 64 bit integer value |
| */ |
| static int parse_uint64(const char *value, uint64_t *pr) |
| { |
| const char *p = value; |
| |
| if (!TEST_true(*p)) { |
| TEST_info("Invalid empty integer value"); |
| return -1; |
| } |
| for (*pr = 0; *p; ) { |
| if (*pr > UINT64_MAX / 10) { |
| TEST_error("Integer overflow in string %s", value); |
| return -1; |
| } |
| *pr *= 10; |
| if (!TEST_true(isdigit((unsigned char)*p))) { |
| TEST_error("Invalid character in string %s", value); |
| return -1; |
| } |
| *pr += *p - '0'; |
| p++; |
| } |
| return 1; |
| } |
| |
| static int scrypt_test_parse(EVP_TEST *t, |
| const char *keyword, const char *value) |
| { |
| PBE_DATA *pdata = t->data; |
| |
| if (strcmp(keyword, "N") == 0) |
| return parse_uint64(value, &pdata->N); |
| if (strcmp(keyword, "p") == 0) |
| return parse_uint64(value, &pdata->p); |
| if (strcmp(keyword, "r") == 0) |
| return parse_uint64(value, &pdata->r); |
| if (strcmp(keyword, "maxmem") == 0) |
| return parse_uint64(value, &pdata->maxmem); |
| return 0; |
| } |
| #endif |
| |
| static int pbkdf2_test_parse(EVP_TEST *t, |
| const char *keyword, const char *value) |
| { |
| PBE_DATA *pdata = t->data; |
| |
| if (strcmp(keyword, "iter") == 0) { |
| pdata->iter = atoi(value); |
| if (pdata->iter <= 0) |
| return -1; |
| return 1; |
| } |
| if (strcmp(keyword, "MD") == 0) { |
| pdata->md = EVP_get_digestbyname(value); |
| if (pdata->md == NULL) |
| return -1; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int pkcs12_test_parse(EVP_TEST *t, |
| const char *keyword, const char *value) |
| { |
| PBE_DATA *pdata = t->data; |
| |
| if (strcmp(keyword, "id") == 0) { |
| pdata->id = atoi(value); |
| if (pdata->id <= 0) |
| return -1; |
| return 1; |
| } |
| return pbkdf2_test_parse(t, keyword, value); |
| } |
| |
| static int pbe_test_init(EVP_TEST *t, const char *alg) |
| { |
| PBE_DATA *pdat; |
| PBE_TYPE pbe_type = PBE_TYPE_INVALID; |
| |
| if (strcmp(alg, "scrypt") == 0) { |
| #ifndef OPENSSL_NO_SCRYPT |
| pbe_type = PBE_TYPE_SCRYPT; |
| #else |
| t->skip = 1; |
| return 1; |
| #endif |
| } else if (strcmp(alg, "pbkdf2") == 0) { |
| pbe_type = PBE_TYPE_PBKDF2; |
| } else if (strcmp(alg, "pkcs12") == 0) { |
| pbe_type = PBE_TYPE_PKCS12; |
| } else { |
| TEST_error("Unknown pbe algorithm %s", alg); |
| } |
| pdat = OPENSSL_zalloc(sizeof(*pdat)); |
| pdat->pbe_type = pbe_type; |
| t->data = pdat; |
| return 1; |
| } |
| |
| static void pbe_test_cleanup(EVP_TEST *t) |
| { |
| PBE_DATA *pdat = t->data; |
| |
| OPENSSL_free(pdat->pass); |
| OPENSSL_free(pdat->salt); |
| OPENSSL_free(pdat->key); |
| } |
| |
| static int pbe_test_parse(EVP_TEST *t, |
| const char *keyword, const char *value) |
| { |
| PBE_DATA *pdata = t->data; |
| |
| if (strcmp(keyword, "Password") == 0) |
| return parse_bin(value, &pdata->pass, &pdata->pass_len); |
| if (strcmp(keyword, "Salt") == 0) |
| return parse_bin(value, &pdata->salt, &pdata->salt_len); |
| if (strcmp(keyword, "Key") == 0) |
| return parse_bin(value, &pdata->key, &pdata->key_len); |
| if (pdata->pbe_type == PBE_TYPE_PBKDF2) |
| return pbkdf2_test_parse(t, keyword, value); |
| else if (pdata->pbe_type == PBE_TYPE_PKCS12) |
| return pkcs12_test_parse(t, keyword, value); |
| #ifndef OPENSSL_NO_SCRYPT |
| else if (pdata->pbe_type == PBE_TYPE_SCRYPT) |
| return scrypt_test_parse(t, keyword, value); |
| #endif |
| return 0; |
| } |
| |
| static int pbe_test_run(EVP_TEST *t) |
| { |
| PBE_DATA *expected = t->data; |
| unsigned char *key; |
| |
| if (!TEST_ptr(key = OPENSSL_malloc(expected->key_len))) { |
| t->err = "INTERNAL_ERROR"; |
| goto err; |
| } |
| if (expected->pbe_type == PBE_TYPE_PBKDF2) { |
| if (PKCS5_PBKDF2_HMAC((char *)expected->pass, expected->pass_len, |
| expected->salt, expected->salt_len, |
| expected->iter, expected->md, |
| expected->key_len, key) == 0) { |
| t->err = "PBKDF2_ERROR"; |
| goto err; |
| } |
| #ifndef OPENSSL_NO_SCRYPT |
| } else if (expected->pbe_type == PBE_TYPE_SCRYPT) { |
| if (EVP_PBE_scrypt((const char *)expected->pass, expected->pass_len, |
| expected->salt, expected->salt_len, expected->N, |
| expected->r, expected->p, expected->maxmem, |
| key, expected->key_len) == 0) { |
| t->err = "SCRYPT_ERROR"; |
| goto err; |
| } |
| #endif |
| } else if (expected->pbe_type == PBE_TYPE_PKCS12) { |
| if (PKCS12_key_gen_uni(expected->pass, expected->pass_len, |
| expected->salt, expected->salt_len, |
| expected->id, expected->iter, expected->key_len, |
| key, expected->md) == 0) { |
| t->err = "PKCS12_ERROR"; |
| goto err; |
| } |
| } |
| if (!memory_err_compare(t, "KEY_MISMATCH", expected->key, expected->key_len, |
| key, expected->key_len)) |
| goto err; |
| |
| t->err = NULL; |
| err: |
| OPENSSL_free(key); |
| return 1; |
| } |
| |
| static const EVP_TEST_METHOD pbe_test_method = { |
| "PBE", |
| pbe_test_init, |
| pbe_test_cleanup, |
| pbe_test_parse, |
| pbe_test_run |
| }; |
| |
| |
| /** |
| *** BASE64 TESTS |
| **/ |
| |
| typedef enum { |
| BASE64_CANONICAL_ENCODING = 0, |
| BASE64_VALID_ENCODING = 1, |
| BASE64_INVALID_ENCODING = 2 |
| } base64_encoding_type; |
| |
| typedef struct encode_data_st { |
| /* Input to encoding */ |
| unsigned char *input; |
| size_t input_len; |
| /* Expected output */ |
| unsigned char *output; |
| size_t output_len; |
| base64_encoding_type encoding; |
| } ENCODE_DATA; |
| |
| static int encode_test_init(EVP_TEST *t, const char *encoding) |
| { |
| ENCODE_DATA *edata; |
| |
| if (!TEST_ptr(edata = OPENSSL_zalloc(sizeof(*edata)))) |
| return 0; |
| if (strcmp(encoding, "canonical") == 0) { |
| edata->encoding = BASE64_CANONICAL_ENCODING; |
| } else if (strcmp(encoding, "valid") == 0) { |
| edata->encoding = BASE64_VALID_ENCODING; |
| } else if (strcmp(encoding, "invalid") == 0) { |
| edata->encoding = BASE64_INVALID_ENCODING; |
| if (!TEST_ptr(t->expected_err = OPENSSL_strdup("DECODE_ERROR"))) |
| goto err; |
| } else { |
| TEST_error("Bad encoding: %s." |
| " Should be one of {canonical, valid, invalid}", |
| encoding); |
| goto err; |
| } |
| t->data = edata; |
| return 1; |
| err: |
| OPENSSL_free(edata); |
| return 0; |
| } |
| |
| static void encode_test_cleanup(EVP_TEST *t) |
| { |
| ENCODE_DATA *edata = t->data; |
| |
| OPENSSL_free(edata->input); |
| OPENSSL_free(edata->output); |
| memset(edata, 0, sizeof(*edata)); |
| } |
| |
| static int encode_test_parse(EVP_TEST *t, |
| const char *keyword, const char *value) |
| { |
| ENCODE_DATA *edata = t->data; |
| |
| if (strcmp(keyword, "Input") == 0) |
| return parse_bin(value, &edata->input, &edata->input_len); |
| if (strcmp(keyword, "Output") == 0) |
| return parse_bin(value, &edata->output, &edata->output_len); |
| return 0; |
| } |
| |
| static int encode_test_run(EVP_TEST *t) |
| { |
| ENCODE_DATA *expected = t->data; |
| unsigned char *encode_out = NULL, *decode_out = NULL; |
| int output_len, chunk_len; |
| EVP_ENCODE_CTX *decode_ctx = NULL, *encode_ctx = NULL; |
| |
| if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) { |
| t->err = "INTERNAL_ERROR"; |
| goto err; |
| } |
| |
| if (expected->encoding == BASE64_CANONICAL_ENCODING) { |
| |
| if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new()) |
| || !TEST_ptr(encode_out = |
| OPENSSL_malloc(EVP_ENCODE_LENGTH(expected->input_len)))) |
| goto err; |
| |
| EVP_EncodeInit(encode_ctx); |
| if (!TEST_true(EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len, |
| expected->input, expected->input_len))) |
| goto err; |
| |
| output_len = chunk_len; |
| |
| EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len); |
| output_len += chunk_len; |
| |
| if (!memory_err_compare(t, "BAD_ENCODING", |
| expected->output, expected->output_len, |
| encode_out, output_len)) |
| goto err; |
| } |
| |
| if (!TEST_ptr(decode_out = |
| OPENSSL_malloc(EVP_DECODE_LENGTH(expected->output_len)))) |
| goto err; |
| |
| EVP_DecodeInit(decode_ctx); |
| if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, expected->output, |
| expected->output_len) < 0) { |
| t->err = "DECODE_ERROR"; |
| goto err; |
| } |
| output_len = chunk_len; |
| |
| if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) { |
| t->err = "DECODE_ERROR"; |
| goto err; |
| } |
| output_len += chunk_len; |
| |
| if (expected->encoding != BASE64_INVALID_ENCODING |
| && !memory_err_compare(t, "BAD_DECODING", |
| expected->input, expected->input_len, |
| decode_out, output_len)) { |
| t->err = "BAD_DECODING"; |
| goto err; |
| } |
| |
| t->err = NULL; |
| err: |
| OPENSSL_free(encode_out); |
| OPENSSL_free(decode_out); |
| EVP_ENCODE_CTX_free(decode_ctx); |
| EVP_ENCODE_CTX_free(encode_ctx); |
| return 1; |
| } |
| |
| static const EVP_TEST_METHOD encode_test_method = { |
| "Encoding", |
| encode_test_init, |
| encode_test_cleanup, |
| encode_test_parse, |
| encode_test_run, |
| }; |
| |
| |
| /** |
| *** KDF TESTS |
| **/ |
| |
| typedef struct kdf_data_st { |
| /* Context for this operation */ |
| EVP_KDF_CTX *ctx; |
| /* Expected output */ |
| unsigned char *output; |
| size_t output_len; |
| } KDF_DATA; |
| |
| /* |
| * Perform public key operation setup: lookup key, allocated ctx and call |
| * the appropriate initialisation function |
| */ |
| static int kdf_test_init(EVP_TEST *t, const char *name) |
| { |
| KDF_DATA *kdata; |
| int kdf_nid = OBJ_sn2nid(name); |
| |
| #ifdef OPENSSL_NO_SCRYPT |
| if (strcmp(name, "scrypt") == 0) { |
| t->skip = 1; |
| return 1; |
| } |
| #endif |
| |
| if (kdf_nid == NID_undef) |
| kdf_nid = OBJ_ln2nid(name); |
| |
| if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) |
| return 0; |
| kdata->ctx = EVP_KDF_CTX_new_id(kdf_nid); |
| if (kdata->ctx == NULL) { |
| OPENSSL_free(kdata); |
| return 0; |
| } |
| t->data = kdata; |
| return 1; |
| } |
| |
| static void kdf_test_cleanup(EVP_TEST *t) |
| { |
| KDF_DATA *kdata = t->data; |
| OPENSSL_free(kdata->output); |
| EVP_KDF_CTX_free(kdata->ctx); |
| } |
| |
| static int kdf_test_ctrl(EVP_TEST *t, EVP_KDF_CTX *kctx, |
| const char *value) |
| { |
| int rv; |
| char *p, *tmpval; |
| |
| if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) |
| return 0; |
| p = strchr(tmpval, ':'); |
| if (p != NULL) |
| *p++ = '\0'; |
| rv = EVP_KDF_ctrl_str(kctx, tmpval, p); |
| if (rv == -2) { |
| t->err = "KDF_CTRL_INVALID"; |
| rv = 1; |
| } else if (p != NULL && rv <= 0) { |
| /* If p has an OID and lookup fails assume disabled algorithm */ |
| int nid = OBJ_sn2nid(p); |
| |
| if (nid == NID_undef) |
| nid = OBJ_ln2nid(p); |
| if (nid != NID_undef |
| && EVP_get_digestbynid(nid) == NULL |
| && EVP_get_cipherbynid(nid) == NULL) { |
| t->skip = 1; |
| rv = 1; |
| } else { |
| t->err = "KDF_CTRL_ERROR"; |
| rv = 1; |
| } |
| } |
| OPENSSL_free(tmpval); |
| return rv > 0; |
| } |
| |
| static int kdf_test_parse(EVP_TEST *t, |
| const char *keyword, const char *value) |
| { |
| KDF_DATA *kdata = t->data; |
| |
| if (strcmp(keyword, "Output") == 0) |
| return parse_bin(value, &kdata->output, &kdata->output_len); |
| if (strncmp(keyword, "Ctrl", 4) == 0) |
| return kdf_test_ctrl(t, kdata->ctx, value); |
| return 0; |
| } |
| |
| static int kdf_test_run(EVP_TEST *t) |
| { |
| KDF_DATA *expected = t->data; |
| unsigned char *got = NULL; |
| size_t got_len = expected->output_len; |
| |
| if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { |
| t->err = "INTERNAL_ERROR"; |
| goto err; |
| } |
| if (EVP_KDF_derive(expected->ctx, got, got_len) <= 0) { |
| t->err = "KDF_DERIVE_ERROR"; |
| goto err; |
| } |
| if (!memory_err_compare(t, "KDF_MISMATCH", |
| expected->output, expected->output_len, |
| got, got_len)) |
| goto err; |
| |
| t->err = NULL; |
| |
| err: |
| OPENSSL_free(got); |
| return 1; |
| } |
| |
| static const EVP_TEST_METHOD kdf_test_method = { |
| "KDF", |
| kdf_test_init, |
| kdf_test_cleanup, |
| kdf_test_parse, |
| kdf_test_run |
| }; |
| |
| |
| /** |
| *** PKEY KDF TESTS |
| **/ |
| |
| typedef struct pkey_kdf_data_st { |
| /* Context for this operation */ |
| EVP_PKEY_CTX *ctx; |
| /* Expected output */ |
| unsigned char *output; |
| size_t output_len; |
| } PKEY_KDF_DATA; |
| |
| /* |
| * Perform public key operation setup: lookup key, allocated ctx and call |
| * the appropriate initialisation function |
| */ |
| static int pkey_kdf_test_init(EVP_TEST *t, const char *name) |
| { |
| PKEY_KDF_DATA *kdata; |
| int kdf_nid = OBJ_sn2nid(name); |
| |
| #ifdef OPENSSL_NO_SCRYPT |
| if (strcmp(name, "scrypt") == 0) { |
| t->skip = 1; |
| return 1; |
| } |
| #endif |
| |
| if (kdf_nid == NID_undef) |
| kdf_nid = OBJ_ln2nid(name); |
| |
| if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) |
| return 0; |
| kdata->ctx = EVP_PKEY_CTX_new_id(kdf_nid, NULL); |
| if (kdata->ctx == NULL) { |
| OPENSSL_free(kdata); |
| return 0; |
| } |
| if (EVP_PKEY_derive_init(kdata->ctx) <= 0) { |
| EVP_PKEY_CTX_free(kdata->ctx); |
| OPENSSL_free(kdata); |
| return 0; |
| } |
| t->data = kdata; |
| return 1; |
| } |
| |
| static void pkey_kdf_test_cleanup(EVP_TEST *t) |
| { |
| PKEY_KDF_DATA *kdata = t->data; |
| OPENSSL_free(kdata->output); |
| EVP_PKEY_CTX_free(kdata->ctx); |
| } |
| |
| static int pkey_kdf_test_parse(EVP_TEST *t, |
| const char *keyword, const char *value) |
| { |
| PKEY_KDF_DATA *kdata = t->data; |
| |
| if (strcmp(keyword, "Output") == 0) |
| return parse_bin(value, &kdata->output, &kdata->output_len); |
| if (strncmp(keyword, "Ctrl", 4) == 0) |
| return pkey_test_ctrl(t, kdata->ctx, value); |
| return 0; |
| } |
| |
| static int pkey_kdf_test_run(EVP_TEST *t) |
| { |
| PKEY_KDF_DATA *expected = t->data; |
| unsigned char *got = NULL; |
| size_t got_len = expected->output_len; |
| |
| if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { |
| t->err = "INTERNAL_ERROR"; |
| goto err; |
| } |
| if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) { |
| t->err = "KDF_DERIVE_ERROR"; |
| goto err; |
| } |
| if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) { |
| t->err = "KDF_MISMATCH"; |
| goto err; |
| } |
| t->err = NULL; |
| |
| err: |
| OPENSSL_free(got); |
| return 1; |
| } |
| |
| static const EVP_TEST_METHOD pkey_kdf_test_method = { |
| "PKEYKDF", |
| pkey_kdf_test_init, |
| pkey_kdf_test_cleanup, |
| pkey_kdf_test_parse, |
| pkey_kdf_test_run |
| }; |
| |
| |
| /** |
| *** KEYPAIR TESTS |
| **/ |
| |
| typedef struct keypair_test_data_st { |
| EVP_PKEY *privk; |
| EVP_PKEY *pubk; |
| } KEYPAIR_TEST_DATA; |
| |
| static int keypair_test_init(EVP_TEST *t, const char *pair) |
| { |
| KEYPAIR_TEST_DATA *data; |
| int rv = 0; |
| EVP_PKEY *pk = NULL, *pubk = NULL; |
| char *pub, *priv = NULL; |
| |
| /* Split private and public names. */ |
| if (!TEST_ptr(priv = OPENSSL_strdup(pair)) |
| || !TEST_ptr(pub = strchr(priv, ':'))) { |
| t->err = "PARSING_ERROR"; |
| goto end; |
| } |
| *pub++ = '\0'; |
| |
| if (!TEST_true(find_key(&pk, priv, private_keys))) { |
| TEST_info("Can't find private key: %s", priv); |
| t->err = "MISSING_PRIVATE_KEY"; |
| goto end; |
| } |
| if (!TEST_true(find_key(&pubk, pub, public_keys))) { |
| TEST_info("Can't find public key: %s", pub); |
| t->err = "MISSING_PUBLIC_KEY"; |
| goto end; |
| } |
| |
| if (pk == NULL && pubk == NULL) { |
| /* Both keys are listed but unsupported: skip this test */ |
| t->skip = 1; |
| rv = 1; |
| goto end; |
| } |
| |
| if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data)))) |
| goto end; |
| data->privk = pk; |
| data->pubk = pubk; |
| t->data = data; |
| rv = 1; |
| t->err = NULL; |
| |
| end: |
| OPENSSL_free(priv); |
| return rv; |
| } |
| |
| static void keypair_test_cleanup(EVP_TEST *t) |
| { |
| OPENSSL_free(t->data); |
| t->data = NULL; |
| } |
| |
| /* |
| * For tests that do not accept any custom keywords. |
| */ |
| static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value) |
| { |
| return 0; |
| } |
| |
| static int keypair_test_run(EVP_TEST *t) |
| { |
| int rv = 0; |
| const KEYPAIR_TEST_DATA *pair = t->data; |
| |
| if (pair->privk == NULL || pair->pubk == NULL) { |
| /* |
| * this can only happen if only one of the keys is not set |
| * which means that one of them was unsupported while the |
| * other isn't: hence a key type mismatch. |
| */ |
| t->err = "KEYPAIR_TYPE_MISMATCH"; |
| rv = 1; |
| goto end; |
| } |
| |
| if ((rv = EVP_PKEY_cmp(pair->privk, pair->pubk)) != 1 ) { |
| if ( 0 == rv ) { |
| t->err = "KEYPAIR_MISMATCH"; |
| } else if ( -1 == rv ) { |
| t->err = "KEYPAIR_TYPE_MISMATCH"; |
| } else if ( -2 == rv ) { |
| t->err = "UNSUPPORTED_KEY_COMPARISON"; |
| } else { |
| TEST_error("Unexpected error in key comparison"); |
| rv = 0; |
| goto end; |
| } |
| rv = 1; |
| goto end; |
| } |
| |
| rv = 1; |
| t->err = NULL; |
| |
| end: |
| return rv; |
| } |
| |
| static const EVP_TEST_METHOD keypair_test_method = { |
| "PrivPubKeyPair", |
| keypair_test_init, |
| keypair_test_cleanup, |
| void_test_parse, |
| keypair_test_run |
| }; |
| |
| /** |
| *** KEYGEN TEST |
| **/ |
| |
| typedef struct keygen_test_data_st { |
| EVP_PKEY_CTX *genctx; /* Keygen context to use */ |
| char *keyname; /* Key name to store key or NULL */ |
| } KEYGEN_TEST_DATA; |
| |
| static int keygen_test_init(EVP_TEST *t, const char *alg) |
| { |
| KEYGEN_TEST_DATA *data; |
| EVP_PKEY_CTX *genctx; |
| int nid = OBJ_sn2nid(alg); |
| |
| if (nid == NID_undef) { |
| nid = OBJ_ln2nid(alg); |
| if (nid == NID_undef) |
| return 0; |
| } |
| |
| if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_id(nid, NULL))) { |
| /* assume algorithm disabled */ |
| t->skip = 1; |
| return 1; |
| } |
| |
| if (EVP_PKEY_keygen_init(genctx) <= 0) { |
| t->err = "KEYGEN_INIT_ERROR"; |
| goto err; |
| } |
| |
| if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data)))) |
| goto err; |
| data->genctx = genctx; |
| data->keyname = NULL; |
| t->data = data; |
| t->err = NULL; |
| return 1; |
| |
| err: |
| EVP_PKEY_CTX_free(genctx); |
| return 0; |
| } |
| |
| static void keygen_test_cleanup(EVP_TEST *t) |
| { |
| KEYGEN_TEST_DATA *keygen = t->data; |
| |
| EVP_PKEY_CTX_free(keygen->genctx); |
| OPENSSL_free(keygen->keyname); |
| OPENSSL_free(t->data); |
| t->data = NULL; |
| } |
| |
| static int keygen_test_parse(EVP_TEST *t, |
| const char *keyword, const char *value) |
| { |
| KEYGEN_TEST_DATA *keygen = t->data; |
| |
| if (strcmp(keyword, "KeyName") == 0) |
| return TEST_ptr(keygen->keyname = OPENSSL_strdup(value)); |
| if (strcmp(keyword, "Ctrl") == 0) |
| return pkey_test_ctrl(t, keygen->genctx, value); |
| return 0; |
| } |
| |
| static int keygen_test_run(EVP_TEST *t) |
| { |
| KEYGEN_TEST_DATA *keygen = t->data; |
| EVP_PKEY *pkey = NULL; |
| |
| t->err = NULL; |
| if (EVP_PKEY_keygen(keygen->genctx, &pkey) <= 0) { |
| t->err = "KEYGEN_GENERATE_ERROR"; |
| goto err; |
| } |
| |
| if (keygen->keyname != NULL) { |
| KEY_LIST *key; |
| |
| if (find_key(NULL, keygen->keyname, private_keys)) { |
| TEST_info("Duplicate key %s", keygen->keyname); |
| goto err; |
| } |
| |
| if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key)))) |
| goto err; |
| key->name = keygen->keyname; |
| keygen->keyname = NULL; |
| key->key = pkey; |
| key->next = private_keys; |
| private_keys = key; |
| } else { |
| EVP_PKEY_free(pkey); |
| } |
| |
| return 1; |
| |
| err: |
| EVP_PKEY_free(pkey); |
| return 0; |
| } |
| |
| static const EVP_TEST_METHOD keygen_test_method = { |
| "KeyGen", |
| keygen_test_init, |
| keygen_test_cleanup, |
| keygen_test_parse, |
| keygen_test_run, |
| }; |
| |
| /** |
| *** DIGEST SIGN+VERIFY TESTS |
| **/ |
| |
| typedef struct { |
| int is_verify; /* Set to 1 if verifying */ |
| int is_oneshot; /* Set to 1 for one shot operation */ |
| const EVP_MD *md; /* Digest to use */ |
| EVP_MD_CTX *ctx; /* Digest context */ |
| EVP_PKEY_CTX *pctx; |
| STACK_OF(EVP_TEST_BUFFER) *input; /* Input data: streaming */ |
| unsigned char *osin; /* Input data if one shot */ |
| size_t osin_len; /* Input length data if one shot */ |
| unsigned char *output; /* Expected output */ |
| size_t output_len; /* Expected output length */ |
| } DIGESTSIGN_DATA; |
| |
| static int digestsigver_test_init(EVP_TEST *t, const char *alg, int is_verify, |
| int is_oneshot) |
| { |
| const EVP_MD *md = NULL; |
| DIGESTSIGN_DATA *mdat; |
| |
| if (strcmp(alg, "NULL") != 0) { |
| if ((md = EVP_get_digestbyname(alg)) == NULL) { |
| /* If alg has an OID assume disabled algorithm */ |
| if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) { |
| t->skip = 1; |
| return 1; |
| } |
| return 0; |
| } |
| } |
| if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat)))) |
| return 0; |
| mdat->md = md; |
| if (!TEST_ptr(mdat->ctx = EVP_MD_CTX_new())) { |
| OPENSSL_free(mdat); |
| return 0; |
| } |
| mdat->is_verify = is_verify; |
| mdat->is_oneshot = is_oneshot; |
| t->data = mdat; |
| return 1; |
| } |
| |
| static int digestsign_test_init(EVP_TEST *t, const char *alg) |
| { |
| return digestsigver_test_init(t, alg, 0, 0); |
| } |
| |
| static void digestsigver_test_cleanup(EVP_TEST *t) |
| { |
| DIGESTSIGN_DATA *mdata = t->data; |
| |
| EVP_MD_CTX_free(mdata->ctx); |
| sk_EVP_TEST_BUFFER_pop_free(mdata->input, evp_test_buffer_free); |
| OPENSSL_free(mdata->osin); |
| OPENSSL_free(mdata->output); |
| OPENSSL_free(mdata); |
| t->data = NULL; |
| } |
| |
| static int digestsigver_test_parse(EVP_TEST *t, |
| const char *keyword, const char *value) |
| { |
| DIGESTSIGN_DATA *mdata = t->data; |
| |
| if (strcmp(keyword, "Key") == 0) { |
| EVP_PKEY *pkey = NULL; |
| int rv = 0; |
| |
| if (mdata->is_verify) |
| rv = find_key(&pkey, value, public_keys); |
| if (rv == 0) |
| rv = find_key(&pkey, value, private_keys); |
| if (rv == 0 || pkey == NULL) { |
| t->skip = 1; |
| return 1; |
| } |
| if (mdata->is_verify) { |
| if (!EVP_DigestVerifyInit(mdata->ctx, &mdata->pctx, mdata->md, |
| NULL, pkey)) |
| t->err = "DIGESTVERIFYINIT_ERROR"; |
| return 1; |
| } |
| if (!EVP_DigestSignInit(mdata->ctx, &mdata->pctx, mdata->md, NULL, |
| pkey)) |
| t->err = "DIGESTSIGNINIT_ERROR"; |
| return 1; |
| } |
| |
| if (strcmp(keyword, "Input") == 0) { |
| if (mdata->is_oneshot) |
| return parse_bin(value, &mdata->osin, &mdata->osin_len); |
| return evp_test_buffer_append(value, &mdata->input); |
| } |
| if (strcmp(keyword, "Output") == 0) |
| return parse_bin(value, &mdata->output, &mdata->output_len); |
| |
| if (!mdata->is_oneshot) { |
| if (strcmp(keyword, "Count") == 0) |
| return evp_test_buffer_set_count(value, mdata->input); |
| if (strcmp(keyword, "Ncopy") == 0) |
| return evp_test_buffer_ncopy(value, mdata->input); |
| } |
| if (strcmp(keyword, "Ctrl") == 0) { |
| if (mdata->pctx == NULL) |
| return 0; |
| return pkey_test_ctrl(t, mdata->pctx, value); |
| } |
| return 0; |
| } |
| |
| static int digestsign_update_fn(void *ctx, const unsigned char *buf, |
| size_t buflen) |
| { |
| return EVP_DigestSignUpdate(ctx, buf, buflen); |
| } |
| |
| static int digestsign_test_run(EVP_TEST *t) |
| { |
| DIGESTSIGN_DATA *expected = t->data; |
| unsigned char *got = NULL; |
| size_t got_len; |
| |
| if (!evp_test_buffer_do(expected->input, digestsign_update_fn, |
| expected->ctx)) { |
| t->err = "DIGESTUPDATE_ERROR"; |
| goto err; |
| } |
| |
| if (!EVP_DigestSignFinal(expected->ctx, NULL, &got_len)) { |
| t->err = "DIGESTSIGNFINAL_LENGTH_ERROR"; |
| goto err; |
| } |
| if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { |
| t->err = "MALLOC_FAILURE"; |
| goto err; |
| } |
| if (!EVP_DigestSignFinal(expected->ctx, got, &got_len)) { |
| t->err = "DIGESTSIGNFINAL_ERROR"; |
| goto err; |
| } |
| if (!memory_err_compare(t, "SIGNATURE_MISMATCH", |
| expected->output, expected->output_len, |
| got, got_len)) |
| goto err; |
| |
| t->err = NULL; |
| err: |
| OPENSSL_free(got); |
| return 1; |
| } |
| |
| static const EVP_TEST_METHOD digestsign_test_method = { |
| "DigestSign", |
| digestsign_test_init, |
| digestsigver_test_cleanup, |
| digestsigver_test_parse, |
| digestsign_test_run |
| }; |
| |
| static int digestverify_test_init(EVP_TEST *t, const char *alg) |
| { |
| return digestsigver_test_init(t, alg, 1, 0); |
| } |
| |
| static int digestverify_update_fn(void *ctx, const unsigned char *buf, |
| size_t buflen) |
| { |
| return EVP_DigestVerifyUpdate(ctx, buf, buflen); |
| } |
| |
| static int digestverify_test_run(EVP_TEST *t) |
| { |
| DIGESTSIGN_DATA *mdata = t->data; |
| |
| if (!evp_test_buffer_do(mdata->input, digestverify_update_fn, mdata->ctx)) { |
| t->err = "DIGESTUPDATE_ERROR"; |
| return 1; |
| } |
| |
| if (EVP_DigestVerifyFinal(mdata->ctx, mdata->output, |
| mdata->output_len) <= 0) |
| t->err = "VERIFY_ERROR"; |
| return 1; |
| } |
| |
| static const EVP_TEST_METHOD digestverify_test_method = { |
| "DigestVerify", |
| digestverify_test_init, |
| digestsigver_test_cleanup, |
| digestsigver_test_parse, |
| digestverify_test_run |
| }; |
| |
| static int oneshot_digestsign_test_init(EVP_TEST *t, const char *alg) |
| { |
| return digestsigver_test_init(t, alg, 0, 1); |
| } |
| |
| static int oneshot_digestsign_test_run(EVP_TEST *t) |
| { |
| DIGESTSIGN_DATA *expected = t->data; |
| unsigned char *got = NULL; |
| size_t got_len; |
| |
| if (!EVP_DigestSign(expected->ctx, NULL, &got_len, |
| expected->osin, expected->osin_len)) { |
| t->err = "DIGESTSIGN_LENGTH_ERROR"; |
| goto err; |
| } |
| if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { |
| t->err = "MALLOC_FAILURE"; |
| goto err; |
| } |
| if (!EVP_DigestSign(expected->ctx, got, &got_len, |
| expected->osin, expected->osin_len)) { |
| t->err = "DIGESTSIGN_ERROR"; |
| goto err; |
| } |
| if (!memory_err_compare(t, "SIGNATURE_MISMATCH", |
| expected->output, expected->output_len, |
| got, got_len)) |
| goto err; |
| |
| t->err = NULL; |
| err: |
| OPENSSL_free(got); |
| return 1; |
| } |
| |
| static const EVP_TEST_METHOD oneshot_digestsign_test_method = { |
| "OneShotDigestSign", |
| oneshot_digestsign_test_init, |
| digestsigver_test_cleanup, |
| digestsigver_test_parse, |
| oneshot_digestsign_test_run |
| }; |
| |
| static int oneshot_digestverify_test_init(EVP_TEST *t, const char *alg) |
| { |
| return digestsigver_test_init(t, alg, 1, 1); |
| } |
| |
| static int oneshot_digestverify_test_run(EVP_TEST *t) |
| { |
| DIGESTSIGN_DATA *mdata = t->data; |
| |
| if (EVP_DigestVerify(mdata->ctx, mdata->output, mdata->output_len, |
| mdata->osin, mdata->osin_len) <= 0) |
| t->err = "VERIFY_ERROR"; |
| return 1; |
| } |
| |
| static const EVP_TEST_METHOD oneshot_digestverify_test_method = { |
| "OneShotDigestVerify", |
| oneshot_digestverify_test_init, |
| digestsigver_test_cleanup, |
| digestsigver_test_parse, |
| oneshot_digestverify_test_run |
| }; |
| |
| |
| /** |
| *** PARSING AND DISPATCH |
| **/ |
| |
| static const EVP_TEST_METHOD *evp_test_list[] = { |
| &cipher_test_method, |
| &digest_test_method, |
| &digestsign_test_method, |
| &digestverify_test_method, |
| &encode_test_method, |
| &kdf_test_method, |
| &pkey_kdf_test_method, |
| &keypair_test_method, |
| &keygen_test_method, |
| &mac_test_method, |
| &oneshot_digestsign_test_method, |
| &oneshot_digestverify_test_method, |
| &pbe_test_method, |
| &pdecrypt_test_method, |
| &pderive_test_method, |
| &psign_test_method, |
| &pverify_recover_test_method, |
| &pverify_test_method, |
| NULL |
| }; |
| |
| static const EVP_TEST_METHOD *find_test(const char *name) |
| { |
| const EVP_TEST_METHOD **tt; |
| |
| for (tt = evp_test_list; *tt; tt++) { |
| if (strcmp(name, (*tt)->name) == 0) |
| return *tt; |
| } |
| return NULL; |
| } |
| |
| static void clear_test(EVP_TEST *t) |
| { |
| test_clearstanza(&t->s); |
| ERR_clear_error(); |
| if (t->data != NULL) { |
| if (t->meth != NULL) |
| t->meth->cleanup(t); |
| OPENSSL_free(t->data); |
| t->data = NULL; |
| } |
| OPENSSL_free(t->expected_err); |
| t->expected_err = NULL; |
| OPENSSL_free(t->func); |
| t->func = NULL; |
| OPENSSL_free(t->reason); |
| t->reason = NULL; |
| |
| /* Text literal. */ |
| t->err = NULL; |
| t->skip = 0; |
| t->meth = NULL; |
| } |
| |
| /* |
| * Check for errors in the test structure; return 1 if okay, else 0. |
| */ |
| static int check_test_error(EVP_TEST *t) |
| { |
| unsigned long err; |
| const char *func; |
| const char *reason; |
| |
| if (t->err == NULL && t->expected_err == NULL) |
| return 1; |
| if (t->err != NULL && t->expected_err == NULL) { |
| if (t->aux_err != NULL) { |
| TEST_info("%s:%d: Source of above error (%s); unexpected error %s", |
| t->s.test_file, t->s.start, t->aux_err, t->err); |
| } else { |
| TEST_info("%s:%d: Source of above error; unexpected error %s", |
| t->s.test_file, t->s.start, t->err); |
| } |
| return 0; |
| } |
| if (t->err == NULL && t->expected_err != NULL) { |
| TEST_info("%s:%d: Succeeded but was expecting %s", |
| t->s.test_file, t->s.start, t->expected_err); |
| return 0; |
| } |
| |
| if (strcmp(t->err, t->expected_err) != 0) { |
| TEST_info("%s:%d: Expected %s got %s", |
| t->s.test_file, t->s.start, t->expected_err, t->err); |
| return 0; |
| } |
| |
| if (t->func == NULL && t->reason == NULL) |
| return 1; |
| |
| if (t->func == NULL || t->reason == NULL) { |
| TEST_info("%s:%d: Test is missing function or reason code", |
| t->s.test_file, t->s.start); |
| return 0; |
| } |
| |
| err = ERR_peek_error(); |
| if (err == 0) { |
| TEST_info("%s:%d: Expected error \"%s:%s\" not set", |
| t->s.test_file, t->s.start, t->func, t->reason); |
| return 0; |
| } |
| |
| func = ERR_func_error_string(err); |
| reason = ERR_reason_error_string(err); |
| if (func == NULL && reason == NULL) { |
| TEST_info("%s:%d: Expected error \"%s:%s\", no strings available." |
| " Assuming ok.", |
| t->s.test_file, t->s.start, t->func, t->reason); |
| return 1; |
| } |
| |
| if (strcmp(func, t->func) == 0 && strcmp(reason, t->reason) == 0) |
| return 1; |
| |
| TEST_info("%s:%d: Expected error \"%s:%s\", got \"%s:%s\"", |
| t->s.test_file, t->s.start, t->func, t->reason, func, reason); |
| |
| return 0; |
| } |
| |
| /* |
| * Run a parsed test. Log a message and return 0 on error. |
| */ |
| static int run_test(EVP_TEST *t) |
| { |
| if (t->meth == NULL) |
| return 1; |
| t->s.numtests++; |
| if (t->skip) { |
| t->s.numskip++; |
| } else { |
| /* run the test */ |
| if (t->err == NULL && t->meth->run_test(t) != 1) { |
| TEST_info("%s:%d %s error", |
| t->s.test_file, t->s.start, t->meth->name); |
| return 0; |
| } |
| if (!check_test_error(t)) { |
| TEST_openssl_errors(); |
| t->s.errors++; |
| } |
| } |
| |
| /* clean it up */ |
| return 1; |
| } |
| |
| static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst) |
| { |
| for (; lst != NULL; lst = lst->next) { |
| if (strcmp(lst->name, name) == 0) { |
| if (ppk != NULL) |
| *ppk = lst->key; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static void free_key_list(KEY_LIST *lst) |
| { |
| while (lst != NULL) { |
| KEY_LIST *next = lst->next; |
| |
| EVP_PKEY_free(lst->key); |
| OPENSSL_free(lst->name); |
| OPENSSL_free(lst); |
| lst = next; |
| } |
| } |
| |
| /* |
| * Is the key type an unsupported algorithm? |
| */ |
| static int key_unsupported(void) |
| { |
| long err = ERR_peek_error(); |
| |
| if (ERR_GET_LIB(err) == ERR_LIB_EVP |
| && ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) { |
| ERR_clear_error(); |
| return 1; |
| } |
| #ifndef OPENSSL_NO_EC |
| /* |
| * If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an |
| * hint to an unsupported algorithm/curve (e.g. if binary EC support is |
| * disabled). |
| */ |
| if (ERR_GET_LIB(err) == ERR_LIB_EC |
| && ERR_GET_REASON(err) == EC_R_UNKNOWN_GROUP) { |
| ERR_clear_error(); |
| return 1; |
| } |
| #endif /* OPENSSL_NO_EC */ |
| return 0; |
| } |
| |
| /* |
| * NULL out the value from |pp| but return it. This "steals" a pointer. |
| */ |
| static char *take_value(PAIR *pp) |
| { |
| char *p = pp->value; |
| |
| pp->value = NULL; |
| return p; |
| } |
| |
| /* |
| * Read and parse one test. Return 0 if failure, 1 if okay. |
| */ |
| static int parse(EVP_TEST *t) |
| { |
| KEY_LIST *key, **klist; |
| EVP_PKEY *pkey; |
| PAIR *pp; |
| int i; |
| |
| top: |
| do { |
| if (BIO_eof(t->s.fp)) |
| return EOF; |
| clear_test(t); |
| if (!test_readstanza(&t->s)) |
| return 0; |
| } while (t->s.numpairs == 0); |
| pp = &t->s.pairs[0]; |
| |
| /* Are we adding a key? */ |
| klist = NULL; |
| pkey = NULL; |
| if (strcmp(pp->key, "PrivateKey") == 0) { |
| pkey = PEM_read_bio_PrivateKey(t->s.key, NULL, 0, NULL); |
| if (pkey == NULL && !key_unsupported()) { |
| EVP_PKEY_free(pkey); |
| TEST_info("Can't read private key %s", pp->value); |
| TEST_openssl_errors(); |
| return 0; |
| } |
| klist = &private_keys; |
| } else if (strcmp(pp->key, "PublicKey") == 0) { |
| pkey = PEM_read_bio_PUBKEY(t->s.key, NULL, 0, NULL); |
| if (pkey == NULL && !key_unsupported()) { |
| EVP_PKEY_free(pkey); |
| TEST_info("Can't read public key %s", pp->value); |
| TEST_openssl_errors(); |
| return 0; |
| } |
| klist = &public_keys; |
| } else if (strcmp(pp->key, "PrivateKeyRaw") == 0 |
| || strcmp(pp->key, "PublicKeyRaw") == 0 ) { |
| char *strnid = NULL, *keydata = NULL; |
| unsigned char *keybin; |
| size_t keylen; |
| int nid; |
| |
| if (strcmp(pp->key, "PrivateKeyRaw") == 0) |
| klist = &private_keys; |
| else |
| klist = &public_keys; |
| |
| strnid = strchr(pp->value, ':'); |
| if (strnid != NULL) { |
| *strnid++ = '\0'; |
| keydata = strchr(strnid, ':'); |
| if (keydata != NULL) |
| *keydata++ = '\0'; |
| } |
| if (keydata == NULL) { |
| TEST_info("Failed to parse %s value", pp->key); |
| return 0; |
| } |
| |
| nid = OBJ_txt2nid(strnid); |
| if (nid == NID_undef) { |
| TEST_info("Uncrecognised algorithm NID"); |
| return 0; |
| } |
| if (!parse_bin(keydata, &keybin, &keylen)) { |
| TEST_info("Failed to create binary key"); |
| return 0; |
| } |
| if (klist == &private_keys) |
| pkey = EVP_PKEY_new_raw_private_key(nid, NULL, keybin, keylen); |
| else |
| pkey = EVP_PKEY_new_raw_public_key(nid, NULL, keybin, keylen); |
| if (pkey == NULL && !key_unsupported()) { |
| TEST_info("Can't read %s data", pp->key); |
| OPENSSL_free(keybin); |
| TEST_openssl_errors(); |
| return 0; |
| } |
| OPENSSL_free(keybin); |
| } |
| |
| /* If we have a key add to list */ |
| if (klist != NULL) { |
| if (find_key(NULL, pp->value, *klist)) { |
| TEST_info("Duplicate key %s", pp->value); |
| return 0; |
| } |
| if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key)))) |
| return 0; |
| key->name = take_value(pp); |
| |
| /* Hack to detect SM2 keys */ |
| if(pkey != NULL && strstr(key->name, "SM2") != NULL) { |
| #ifdef OPENSSL_NO_SM2 |
| EVP_PKEY_free(pkey); |
| pkey = NULL; |
| #else |
| EVP_PKEY_set_alias_type(pkey, EVP_PKEY_SM2); |
| #endif |
| } |
| |
| key->key = pkey; |
| key->next = *klist; |
| *klist = key; |
| |
| /* Go back and start a new stanza. */ |
| if (t->s.numpairs != 1) |
| TEST_info("Line %d: missing blank line\n", t->s.curr); |
| goto top; |
| } |
| |
| /* Find the test, based on first keyword. */ |
| if (!TEST_ptr(t->meth = find_test(pp->key))) |
| return 0; |
| if (!t->meth->init(t, pp->value)) { |
| TEST_error("unknown %s: %s\n", pp->key, pp->value); |
| return 0; |
| } |
| if (t->skip == 1) { |
| /* TEST_info("skipping %s %s", pp->key, pp->value); */ |
| return 0; |
| } |
| |
| for (pp++, i = 1; i < t->s.numpairs; pp++, i++) { |
| if (strcmp(pp->key, "Result") == 0) { |
| if (t->expected_err != NULL) { |
| TEST_info("Line %d: multiple result lines", t->s.curr); |
| return 0; |
| } |
| t->expected_err = take_value(pp); |
| } else if (strcmp(pp->key, "Function") == 0) { |
| if (t->func != NULL) { |
| TEST_info("Line %d: multiple function lines\n", t->s.curr); |
| return 0; |
| } |
| t->func = take_value(pp); |
| } else if (strcmp(pp->key, "Reason") == 0) { |
| if (t->reason != NULL) { |
| TEST_info("Line %d: multiple reason lines", t->s.curr); |
| return 0; |
| } |
| t->reason = take_value(pp); |
| } else { |
| /* Must be test specific line: try to parse it */ |
| int rv = t->meth->parse(t, pp->key, pp->value); |
| |
| if (rv == 0) { |
| TEST_info("Line %d: unknown keyword %s", t->s.curr, pp->key); |
| return 0; |
| } |
| if (rv < 0) { |
| TEST_info("Line %d: error processing keyword %s = %s\n", |
| t->s.curr, pp->key, pp->value); |
| return 0; |
| } |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int run_file_tests(int i) |
| { |
| EVP_TEST *t; |
| const char *testfile = test_get_argument(i); |
| int c; |
| |
| if (!TEST_ptr(t = OPENSSL_zalloc(sizeof(*t)))) |
| return 0; |
| if (!test_start_file(&t->s, testfile)) { |
| OPENSSL_free(t); |
| return 0; |
| } |
| |
| while (!BIO_eof(t->s.fp)) { |
| c = parse(t); |
| if (t->skip) |
| continue; |
| if (c == 0 || !run_test(t)) { |
| t->s.errors++; |
| break; |
| } |
| } |
| test_end_file(&t->s); |
| clear_test(t); |
| |
| free_key_list(public_keys); |
| free_key_list(private_keys); |
| BIO_free(t->s.key); |
| c = t->s.errors; |
| OPENSSL_free(t); |
| return c == 0; |
| } |
| |
| OPT_TEST_DECLARE_USAGE("file...\n") |
| |
| int setup_tests(void) |
| { |
| size_t n = test_get_argument_count(); |
| |
| if (n == 0) |
| return 0; |
| |
| ADD_ALL_TESTS(run_file_tests, n); |
| return 1; |
| } |