|  | /* crypto/ec/ec2_mult.c */ | 
|  | /* ==================================================================== | 
|  | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | 
|  | * | 
|  | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | 
|  | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | 
|  | * to the OpenSSL project. | 
|  | * | 
|  | * The ECC Code is licensed pursuant to the OpenSSL open source | 
|  | * license provided below. | 
|  | * | 
|  | * The software is originally written by Sheueling Chang Shantz and | 
|  | * Douglas Stebila of Sun Microsystems Laboratories. | 
|  | * | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <openssl/err.h> | 
|  |  | 
|  | #include "ec_lcl.h" | 
|  |  | 
|  |  | 
|  | /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective | 
|  | * coordinates. | 
|  | * Uses algorithm Mdouble in appendix of | 
|  | *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over | 
|  | *     GF(2^m) without precomputation" (CHES '99, LNCS 1717). | 
|  | * modified to not require precomputation of c=b^{2^{m-1}}. | 
|  | */ | 
|  | static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) | 
|  | { | 
|  | BIGNUM *t1; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Since Mdouble is static we can guarantee that ctx != NULL. */ | 
|  | BN_CTX_start(ctx); | 
|  | t1 = BN_CTX_get(ctx); | 
|  | if (t1 == NULL) goto err; | 
|  |  | 
|  | if (!group->meth->field_sqr(group, x, x, ctx)) goto err; | 
|  | if (!group->meth->field_sqr(group, t1, z, ctx)) goto err; | 
|  | if (!group->meth->field_mul(group, z, x, t1, ctx)) goto err; | 
|  | if (!group->meth->field_sqr(group, x, x, ctx)) goto err; | 
|  | if (!group->meth->field_sqr(group, t1, t1, ctx)) goto err; | 
|  | if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) goto err; | 
|  | if (!BN_GF2m_add(x, x, t1)) goto err; | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery | 
|  | * projective coordinates. | 
|  | * Uses algorithm Madd in appendix of | 
|  | *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over | 
|  | *     GF(2^m) without precomputation" (CHES '99, LNCS 1717). | 
|  | */ | 
|  | static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, | 
|  | const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) | 
|  | { | 
|  | BIGNUM *t1, *t2; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Since Madd is static we can guarantee that ctx != NULL. */ | 
|  | BN_CTX_start(ctx); | 
|  | t1 = BN_CTX_get(ctx); | 
|  | t2 = BN_CTX_get(ctx); | 
|  | if (t2 == NULL) goto err; | 
|  |  | 
|  | if (!BN_copy(t1, x)) goto err; | 
|  | if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err; | 
|  | if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err; | 
|  | if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err; | 
|  | if (!BN_GF2m_add(z1, z1, x1)) goto err; | 
|  | if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err; | 
|  | if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err; | 
|  | if (!BN_GF2m_add(x1, x1, t2)) goto err; | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) | 
|  | * using Montgomery point multiplication algorithm Mxy() in appendix of | 
|  | *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over | 
|  | *     GF(2^m) without precomputation" (CHES '99, LNCS 1717). | 
|  | * Returns: | 
|  | *     0 on error | 
|  | *     1 if return value should be the point at infinity | 
|  | *     2 otherwise | 
|  | */ | 
|  | static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, | 
|  | BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx) | 
|  | { | 
|  | BIGNUM *t3, *t4, *t5; | 
|  | int ret = 0; | 
|  |  | 
|  | if (BN_is_zero(z1)) | 
|  | { | 
|  | BN_zero(x2); | 
|  | BN_zero(z2); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (BN_is_zero(z2)) | 
|  | { | 
|  | if (!BN_copy(x2, x)) return 0; | 
|  | if (!BN_GF2m_add(z2, x, y)) return 0; | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* Since Mxy is static we can guarantee that ctx != NULL. */ | 
|  | BN_CTX_start(ctx); | 
|  | t3 = BN_CTX_get(ctx); | 
|  | t4 = BN_CTX_get(ctx); | 
|  | t5 = BN_CTX_get(ctx); | 
|  | if (t5 == NULL) goto err; | 
|  |  | 
|  | if (!BN_one(t5)) goto err; | 
|  |  | 
|  | if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err; | 
|  |  | 
|  | if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err; | 
|  | if (!BN_GF2m_add(z1, z1, x1)) goto err; | 
|  | if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err; | 
|  | if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err; | 
|  | if (!BN_GF2m_add(z2, z2, x2)) goto err; | 
|  |  | 
|  | if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err; | 
|  | if (!group->meth->field_sqr(group, t4, x, ctx)) goto err; | 
|  | if (!BN_GF2m_add(t4, t4, y)) goto err; | 
|  | if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err; | 
|  | if (!BN_GF2m_add(t4, t4, z2)) goto err; | 
|  |  | 
|  | if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err; | 
|  | if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err; | 
|  | if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err; | 
|  | if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err; | 
|  | if (!BN_GF2m_add(z2, x2, x)) goto err; | 
|  |  | 
|  | if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err; | 
|  | if (!BN_GF2m_add(z2, z2, y)) goto err; | 
|  |  | 
|  | ret = 2; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Computes scalar*point and stores the result in r. | 
|  | * point can not equal r. | 
|  | * Uses algorithm 2P of | 
|  | *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over | 
|  | *     GF(2^m) without precomputation" (CHES '99, LNCS 1717). | 
|  | */ | 
|  | static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | 
|  | const EC_POINT *point, BN_CTX *ctx) | 
|  | { | 
|  | BIGNUM *x1, *x2, *z1, *z2; | 
|  | int ret = 0, i, j; | 
|  | BN_ULONG mask; | 
|  |  | 
|  | if (r == point) | 
|  | { | 
|  | ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* if result should be point at infinity */ | 
|  | if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || | 
|  | EC_POINT_is_at_infinity(group, point)) | 
|  | { | 
|  | return EC_POINT_set_to_infinity(group, r); | 
|  | } | 
|  |  | 
|  | /* only support affine coordinates */ | 
|  | if (!point->Z_is_one) return 0; | 
|  |  | 
|  | /* Since point_multiply is static we can guarantee that ctx != NULL. */ | 
|  | BN_CTX_start(ctx); | 
|  | x1 = BN_CTX_get(ctx); | 
|  | z1 = BN_CTX_get(ctx); | 
|  | if (z1 == NULL) goto err; | 
|  |  | 
|  | x2 = &r->X; | 
|  | z2 = &r->Y; | 
|  |  | 
|  | if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */ | 
|  | if (!BN_one(z1)) goto err; /* z1 = 1 */ | 
|  | if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */ | 
|  | if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err; | 
|  | if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */ | 
|  |  | 
|  | /* find top most bit and go one past it */ | 
|  | i = scalar->top - 1; j = BN_BITS2 - 1; | 
|  | mask = BN_TBIT; | 
|  | while (!(scalar->d[i] & mask)) { mask >>= 1; j--; } | 
|  | mask >>= 1; j--; | 
|  | /* if top most bit was at word break, go to next word */ | 
|  | if (!mask) | 
|  | { | 
|  | i--; j = BN_BITS2 - 1; | 
|  | mask = BN_TBIT; | 
|  | } | 
|  |  | 
|  | for (; i >= 0; i--) | 
|  | { | 
|  | for (; j >= 0; j--) | 
|  | { | 
|  | if (scalar->d[i] & mask) | 
|  | { | 
|  | if (!gf2m_Madd(group, &point->X, x1, z1, x2, z2, ctx)) goto err; | 
|  | if (!gf2m_Mdouble(group, x2, z2, ctx)) goto err; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err; | 
|  | if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err; | 
|  | } | 
|  | mask >>= 1; | 
|  | } | 
|  | j = BN_BITS2 - 1; | 
|  | mask = BN_TBIT; | 
|  | } | 
|  |  | 
|  | /* convert out of "projective" coordinates */ | 
|  | i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); | 
|  | if (i == 0) goto err; | 
|  | else if (i == 1) | 
|  | { | 
|  | if (!EC_POINT_set_to_infinity(group, r)) goto err; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!BN_one(&r->Z)) goto err; | 
|  | r->Z_is_one = 1; | 
|  | } | 
|  |  | 
|  | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ | 
|  | BN_set_negative(&r->X, 0); | 
|  | BN_set_negative(&r->Y, 0); | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Computes the sum | 
|  | *     scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] | 
|  | * gracefully ignoring NULL scalar values. | 
|  | */ | 
|  | int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | 
|  | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) | 
|  | { | 
|  | BN_CTX *new_ctx = NULL; | 
|  | int ret = 0; | 
|  | size_t i; | 
|  | EC_POINT *p=NULL; | 
|  |  | 
|  | if (ctx == NULL) | 
|  | { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This implementation is more efficient than the wNAF implementation for 2 | 
|  | * or fewer points.  Use the ec_wNAF_mul implementation for 3 or more points, | 
|  | * or if we can perform a fast multiplication based on precomputation. | 
|  | */ | 
|  | if ((scalar && (num > 1)) || (num > 2) || (num == 0 && EC_GROUP_have_precompute_mult(group))) | 
|  | { | 
|  | ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if ((p = EC_POINT_new(group)) == NULL) goto err; | 
|  |  | 
|  | if (!EC_POINT_set_to_infinity(group, r)) goto err; | 
|  |  | 
|  | if (scalar) | 
|  | { | 
|  | if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) goto err; | 
|  | if (BN_is_negative(scalar)) | 
|  | if (!group->meth->invert(group, p, ctx)) goto err; | 
|  | if (!group->meth->add(group, r, r, p, ctx)) goto err; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num; i++) | 
|  | { | 
|  | if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) goto err; | 
|  | if (BN_is_negative(scalars[i])) | 
|  | if (!group->meth->invert(group, p, ctx)) goto err; | 
|  | if (!group->meth->add(group, r, r, p, ctx)) goto err; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | if (p) EC_POINT_free(p); | 
|  | if (new_ctx != NULL) | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Precomputation for point multiplication: fall back to wNAF methods | 
|  | * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */ | 
|  |  | 
|  | int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | 
|  | { | 
|  | return ec_wNAF_precompute_mult(group, ctx); | 
|  | } | 
|  |  | 
|  | int ec_GF2m_have_precompute_mult(const EC_GROUP *group) | 
|  | { | 
|  | return ec_wNAF_have_precompute_mult(group); | 
|  | } |