| /* | 
 |  * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved. | 
 |  * Copyright (c) 2014, Intel Corporation. All Rights Reserved. | 
 |  * Copyright (c) 2015, CloudFlare, Inc. | 
 |  * | 
 |  * Licensed under the OpenSSL license (the "License").  You may not use | 
 |  * this file except in compliance with the License.  You can obtain a copy | 
 |  * in the file LICENSE in the source distribution or at | 
 |  * https://www.openssl.org/source/license.html | 
 |  * | 
 |  * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3) | 
 |  * (1) Intel Corporation, Israel Development Center, Haifa, Israel | 
 |  * (2) University of Haifa, Israel | 
 |  * (3) CloudFlare, Inc. | 
 |  * | 
 |  * Reference: | 
 |  * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with | 
 |  *                          256 Bit Primes" | 
 |  */ | 
 |  | 
 | #include <string.h> | 
 |  | 
 | #include "internal/cryptlib.h" | 
 | #include "internal/bn_int.h" | 
 | #include "ec_lcl.h" | 
 | #include "internal/refcount.h" | 
 |  | 
 | #if BN_BITS2 != 64 | 
 | # define TOBN(hi,lo)    lo,hi | 
 | #else | 
 | # define TOBN(hi,lo)    ((BN_ULONG)hi<<32|lo) | 
 | #endif | 
 |  | 
 | #if defined(__GNUC__) | 
 | # define ALIGN32        __attribute((aligned(32))) | 
 | #elif defined(_MSC_VER) | 
 | # define ALIGN32        __declspec(align(32)) | 
 | #else | 
 | # define ALIGN32 | 
 | #endif | 
 |  | 
 | #define ALIGNPTR(p,N)   ((unsigned char *)p+N-(size_t)p%N) | 
 | #define P256_LIMBS      (256/BN_BITS2) | 
 |  | 
 | typedef unsigned short u16; | 
 |  | 
 | typedef struct { | 
 |     BN_ULONG X[P256_LIMBS]; | 
 |     BN_ULONG Y[P256_LIMBS]; | 
 |     BN_ULONG Z[P256_LIMBS]; | 
 | } P256_POINT; | 
 |  | 
 | typedef struct { | 
 |     BN_ULONG X[P256_LIMBS]; | 
 |     BN_ULONG Y[P256_LIMBS]; | 
 | } P256_POINT_AFFINE; | 
 |  | 
 | typedef P256_POINT_AFFINE PRECOMP256_ROW[64]; | 
 |  | 
 | /* structure for precomputed multiples of the generator */ | 
 | struct nistz256_pre_comp_st { | 
 |     const EC_GROUP *group;      /* Parent EC_GROUP object */ | 
 |     size_t w;                   /* Window size */ | 
 |     /* | 
 |      * Constant time access to the X and Y coordinates of the pre-computed, | 
 |      * generator multiplies, in the Montgomery domain. Pre-calculated | 
 |      * multiplies are stored in affine form. | 
 |      */ | 
 |     PRECOMP256_ROW *precomp; | 
 |     void *precomp_storage; | 
 |     CRYPTO_REF_COUNT references; | 
 |     CRYPTO_RWLOCK *lock; | 
 | }; | 
 |  | 
 | /* Functions implemented in assembly */ | 
 | /* | 
 |  * Most of below mentioned functions *preserve* the property of inputs | 
 |  * being fully reduced, i.e. being in [0, modulus) range. Simply put if | 
 |  * inputs are fully reduced, then output is too. Note that reverse is | 
 |  * not true, in sense that given partially reduced inputs output can be | 
 |  * either, not unlikely reduced. And "most" in first sentence refers to | 
 |  * the fact that given the calculations flow one can tolerate that | 
 |  * addition, 1st function below, produces partially reduced result *if* | 
 |  * multiplications by 2 and 3, which customarily use addition, fully | 
 |  * reduce it. This effectively gives two options: a) addition produces | 
 |  * fully reduced result [as long as inputs are, just like remaining | 
 |  * functions]; b) addition is allowed to produce partially reduced | 
 |  * result, but multiplications by 2 and 3 perform additional reduction | 
 |  * step. Choice between the two can be platform-specific, but it was a) | 
 |  * in all cases so far... | 
 |  */ | 
 | /* Modular add: res = a+b mod P   */ | 
 | void ecp_nistz256_add(BN_ULONG res[P256_LIMBS], | 
 |                       const BN_ULONG a[P256_LIMBS], | 
 |                       const BN_ULONG b[P256_LIMBS]); | 
 | /* Modular mul by 2: res = 2*a mod P */ | 
 | void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS], | 
 |                            const BN_ULONG a[P256_LIMBS]); | 
 | /* Modular mul by 3: res = 3*a mod P */ | 
 | void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS], | 
 |                            const BN_ULONG a[P256_LIMBS]); | 
 |  | 
 | /* Modular div by 2: res = a/2 mod P */ | 
 | void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS], | 
 |                            const BN_ULONG a[P256_LIMBS]); | 
 | /* Modular sub: res = a-b mod P   */ | 
 | void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS], | 
 |                       const BN_ULONG a[P256_LIMBS], | 
 |                       const BN_ULONG b[P256_LIMBS]); | 
 | /* Modular neg: res = -a mod P    */ | 
 | void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); | 
 | /* Montgomery mul: res = a*b*2^-256 mod P */ | 
 | void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS], | 
 |                            const BN_ULONG a[P256_LIMBS], | 
 |                            const BN_ULONG b[P256_LIMBS]); | 
 | /* Montgomery sqr: res = a*a*2^-256 mod P */ | 
 | void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS], | 
 |                            const BN_ULONG a[P256_LIMBS]); | 
 | /* Convert a number from Montgomery domain, by multiplying with 1 */ | 
 | void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS], | 
 |                             const BN_ULONG in[P256_LIMBS]); | 
 | /* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/ | 
 | void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS], | 
 |                           const BN_ULONG in[P256_LIMBS]); | 
 | /* Functions that perform constant time access to the precomputed tables */ | 
 | void ecp_nistz256_scatter_w5(P256_POINT *val, | 
 |                              const P256_POINT *in_t, int idx); | 
 | void ecp_nistz256_gather_w5(P256_POINT *val, | 
 |                             const P256_POINT *in_t, int idx); | 
 | void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val, | 
 |                              const P256_POINT_AFFINE *in_t, int idx); | 
 | void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val, | 
 |                             const P256_POINT_AFFINE *in_t, int idx); | 
 |  | 
 | /* One converted into the Montgomery domain */ | 
 | static const BN_ULONG ONE[P256_LIMBS] = { | 
 |     TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000), | 
 |     TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe) | 
 | }; | 
 |  | 
 | static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group); | 
 |  | 
 | /* Precomputed tables for the default generator */ | 
 | extern const PRECOMP256_ROW ecp_nistz256_precomputed[37]; | 
 |  | 
 | /* Recode window to a signed digit, see ecp_nistputil.c for details */ | 
 | static unsigned int _booth_recode_w5(unsigned int in) | 
 | { | 
 |     unsigned int s, d; | 
 |  | 
 |     s = ~((in >> 5) - 1); | 
 |     d = (1 << 6) - in - 1; | 
 |     d = (d & s) | (in & ~s); | 
 |     d = (d >> 1) + (d & 1); | 
 |  | 
 |     return (d << 1) + (s & 1); | 
 | } | 
 |  | 
 | static unsigned int _booth_recode_w7(unsigned int in) | 
 | { | 
 |     unsigned int s, d; | 
 |  | 
 |     s = ~((in >> 7) - 1); | 
 |     d = (1 << 8) - in - 1; | 
 |     d = (d & s) | (in & ~s); | 
 |     d = (d >> 1) + (d & 1); | 
 |  | 
 |     return (d << 1) + (s & 1); | 
 | } | 
 |  | 
 | static void copy_conditional(BN_ULONG dst[P256_LIMBS], | 
 |                              const BN_ULONG src[P256_LIMBS], BN_ULONG move) | 
 | { | 
 |     BN_ULONG mask1 = 0-move; | 
 |     BN_ULONG mask2 = ~mask1; | 
 |  | 
 |     dst[0] = (src[0] & mask1) ^ (dst[0] & mask2); | 
 |     dst[1] = (src[1] & mask1) ^ (dst[1] & mask2); | 
 |     dst[2] = (src[2] & mask1) ^ (dst[2] & mask2); | 
 |     dst[3] = (src[3] & mask1) ^ (dst[3] & mask2); | 
 |     if (P256_LIMBS == 8) { | 
 |         dst[4] = (src[4] & mask1) ^ (dst[4] & mask2); | 
 |         dst[5] = (src[5] & mask1) ^ (dst[5] & mask2); | 
 |         dst[6] = (src[6] & mask1) ^ (dst[6] & mask2); | 
 |         dst[7] = (src[7] & mask1) ^ (dst[7] & mask2); | 
 |     } | 
 | } | 
 |  | 
 | static BN_ULONG is_zero(BN_ULONG in) | 
 | { | 
 |     in |= (0 - in); | 
 |     in = ~in; | 
 |     in >>= BN_BITS2 - 1; | 
 |     return in; | 
 | } | 
 |  | 
 | static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS], | 
 |                          const BN_ULONG b[P256_LIMBS]) | 
 | { | 
 |     BN_ULONG res; | 
 |  | 
 |     res = a[0] ^ b[0]; | 
 |     res |= a[1] ^ b[1]; | 
 |     res |= a[2] ^ b[2]; | 
 |     res |= a[3] ^ b[3]; | 
 |     if (P256_LIMBS == 8) { | 
 |         res |= a[4] ^ b[4]; | 
 |         res |= a[5] ^ b[5]; | 
 |         res |= a[6] ^ b[6]; | 
 |         res |= a[7] ^ b[7]; | 
 |     } | 
 |  | 
 |     return is_zero(res); | 
 | } | 
 |  | 
 | static BN_ULONG is_one(const BIGNUM *z) | 
 | { | 
 |     BN_ULONG res = 0; | 
 |     BN_ULONG *a = bn_get_words(z); | 
 |  | 
 |     if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) { | 
 |         res = a[0] ^ ONE[0]; | 
 |         res |= a[1] ^ ONE[1]; | 
 |         res |= a[2] ^ ONE[2]; | 
 |         res |= a[3] ^ ONE[3]; | 
 |         if (P256_LIMBS == 8) { | 
 |             res |= a[4] ^ ONE[4]; | 
 |             res |= a[5] ^ ONE[5]; | 
 |             res |= a[6] ^ ONE[6]; | 
 |             /* | 
 |              * no check for a[7] (being zero) on 32-bit platforms, | 
 |              * because value of "one" takes only 7 limbs. | 
 |              */ | 
 |         } | 
 |         res = is_zero(res); | 
 |     } | 
 |  | 
 |     return res; | 
 | } | 
 |  | 
 | /* | 
 |  * For reference, this macro is used only when new ecp_nistz256 assembly | 
 |  * module is being developed.  For example, configure with | 
 |  * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions | 
 |  * performing simplest arithmetic operations on 256-bit vectors. Then | 
 |  * work on implementation of higher-level functions performing point | 
 |  * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION | 
 |  * and never define it again. (The correct macro denoting presence of | 
 |  * ecp_nistz256 module is ECP_NISTZ256_ASM.) | 
 |  */ | 
 | #ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION | 
 | void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a); | 
 | void ecp_nistz256_point_add(P256_POINT *r, | 
 |                             const P256_POINT *a, const P256_POINT *b); | 
 | void ecp_nistz256_point_add_affine(P256_POINT *r, | 
 |                                    const P256_POINT *a, | 
 |                                    const P256_POINT_AFFINE *b); | 
 | #else | 
 | /* Point double: r = 2*a */ | 
 | static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a) | 
 | { | 
 |     BN_ULONG S[P256_LIMBS]; | 
 |     BN_ULONG M[P256_LIMBS]; | 
 |     BN_ULONG Zsqr[P256_LIMBS]; | 
 |     BN_ULONG tmp0[P256_LIMBS]; | 
 |  | 
 |     const BN_ULONG *in_x = a->X; | 
 |     const BN_ULONG *in_y = a->Y; | 
 |     const BN_ULONG *in_z = a->Z; | 
 |  | 
 |     BN_ULONG *res_x = r->X; | 
 |     BN_ULONG *res_y = r->Y; | 
 |     BN_ULONG *res_z = r->Z; | 
 |  | 
 |     ecp_nistz256_mul_by_2(S, in_y); | 
 |  | 
 |     ecp_nistz256_sqr_mont(Zsqr, in_z); | 
 |  | 
 |     ecp_nistz256_sqr_mont(S, S); | 
 |  | 
 |     ecp_nistz256_mul_mont(res_z, in_z, in_y); | 
 |     ecp_nistz256_mul_by_2(res_z, res_z); | 
 |  | 
 |     ecp_nistz256_add(M, in_x, Zsqr); | 
 |     ecp_nistz256_sub(Zsqr, in_x, Zsqr); | 
 |  | 
 |     ecp_nistz256_sqr_mont(res_y, S); | 
 |     ecp_nistz256_div_by_2(res_y, res_y); | 
 |  | 
 |     ecp_nistz256_mul_mont(M, M, Zsqr); | 
 |     ecp_nistz256_mul_by_3(M, M); | 
 |  | 
 |     ecp_nistz256_mul_mont(S, S, in_x); | 
 |     ecp_nistz256_mul_by_2(tmp0, S); | 
 |  | 
 |     ecp_nistz256_sqr_mont(res_x, M); | 
 |  | 
 |     ecp_nistz256_sub(res_x, res_x, tmp0); | 
 |     ecp_nistz256_sub(S, S, res_x); | 
 |  | 
 |     ecp_nistz256_mul_mont(S, S, M); | 
 |     ecp_nistz256_sub(res_y, S, res_y); | 
 | } | 
 |  | 
 | /* Point addition: r = a+b */ | 
 | static void ecp_nistz256_point_add(P256_POINT *r, | 
 |                                    const P256_POINT *a, const P256_POINT *b) | 
 | { | 
 |     BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS]; | 
 |     BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS]; | 
 |     BN_ULONG Z1sqr[P256_LIMBS]; | 
 |     BN_ULONG Z2sqr[P256_LIMBS]; | 
 |     BN_ULONG H[P256_LIMBS], R[P256_LIMBS]; | 
 |     BN_ULONG Hsqr[P256_LIMBS]; | 
 |     BN_ULONG Rsqr[P256_LIMBS]; | 
 |     BN_ULONG Hcub[P256_LIMBS]; | 
 |  | 
 |     BN_ULONG res_x[P256_LIMBS]; | 
 |     BN_ULONG res_y[P256_LIMBS]; | 
 |     BN_ULONG res_z[P256_LIMBS]; | 
 |  | 
 |     BN_ULONG in1infty, in2infty; | 
 |  | 
 |     const BN_ULONG *in1_x = a->X; | 
 |     const BN_ULONG *in1_y = a->Y; | 
 |     const BN_ULONG *in1_z = a->Z; | 
 |  | 
 |     const BN_ULONG *in2_x = b->X; | 
 |     const BN_ULONG *in2_y = b->Y; | 
 |     const BN_ULONG *in2_z = b->Z; | 
 |  | 
 |     /* | 
 |      * Infinity in encoded as (,,0) | 
 |      */ | 
 |     in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]); | 
 |     if (P256_LIMBS == 8) | 
 |         in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]); | 
 |  | 
 |     in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]); | 
 |     if (P256_LIMBS == 8) | 
 |         in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]); | 
 |  | 
 |     in1infty = is_zero(in1infty); | 
 |     in2infty = is_zero(in2infty); | 
 |  | 
 |     ecp_nistz256_sqr_mont(Z2sqr, in2_z);        /* Z2^2 */ | 
 |     ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */ | 
 |  | 
 |     ecp_nistz256_mul_mont(S1, Z2sqr, in2_z);    /* S1 = Z2^3 */ | 
 |     ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */ | 
 |  | 
 |     ecp_nistz256_mul_mont(S1, S1, in1_y);       /* S1 = Y1*Z2^3 */ | 
 |     ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */ | 
 |     ecp_nistz256_sub(R, S2, S1);                /* R = S2 - S1 */ | 
 |  | 
 |     ecp_nistz256_mul_mont(U1, in1_x, Z2sqr);    /* U1 = X1*Z2^2 */ | 
 |     ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */ | 
 |     ecp_nistz256_sub(H, U2, U1);                /* H = U2 - U1 */ | 
 |  | 
 |     /* | 
 |      * This should not happen during sign/ecdh, so no constant time violation | 
 |      */ | 
 |     if (is_equal(U1, U2) && !in1infty && !in2infty) { | 
 |         if (is_equal(S1, S2)) { | 
 |             ecp_nistz256_point_double(r, a); | 
 |             return; | 
 |         } else { | 
 |             memset(r, 0, sizeof(*r)); | 
 |             return; | 
 |         } | 
 |     } | 
 |  | 
 |     ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */ | 
 |     ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */ | 
 |     ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */ | 
 |     ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */ | 
 |     ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */ | 
 |  | 
 |     ecp_nistz256_mul_mont(U2, U1, Hsqr);        /* U1*H^2 */ | 
 |     ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */ | 
 |  | 
 |     ecp_nistz256_sub(res_x, Rsqr, Hsqr); | 
 |     ecp_nistz256_sub(res_x, res_x, Hcub); | 
 |  | 
 |     ecp_nistz256_sub(res_y, U2, res_x); | 
 |  | 
 |     ecp_nistz256_mul_mont(S2, S1, Hcub); | 
 |     ecp_nistz256_mul_mont(res_y, R, res_y); | 
 |     ecp_nistz256_sub(res_y, res_y, S2); | 
 |  | 
 |     copy_conditional(res_x, in2_x, in1infty); | 
 |     copy_conditional(res_y, in2_y, in1infty); | 
 |     copy_conditional(res_z, in2_z, in1infty); | 
 |  | 
 |     copy_conditional(res_x, in1_x, in2infty); | 
 |     copy_conditional(res_y, in1_y, in2infty); | 
 |     copy_conditional(res_z, in1_z, in2infty); | 
 |  | 
 |     memcpy(r->X, res_x, sizeof(res_x)); | 
 |     memcpy(r->Y, res_y, sizeof(res_y)); | 
 |     memcpy(r->Z, res_z, sizeof(res_z)); | 
 | } | 
 |  | 
 | /* Point addition when b is known to be affine: r = a+b */ | 
 | static void ecp_nistz256_point_add_affine(P256_POINT *r, | 
 |                                           const P256_POINT *a, | 
 |                                           const P256_POINT_AFFINE *b) | 
 | { | 
 |     BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS]; | 
 |     BN_ULONG Z1sqr[P256_LIMBS]; | 
 |     BN_ULONG H[P256_LIMBS], R[P256_LIMBS]; | 
 |     BN_ULONG Hsqr[P256_LIMBS]; | 
 |     BN_ULONG Rsqr[P256_LIMBS]; | 
 |     BN_ULONG Hcub[P256_LIMBS]; | 
 |  | 
 |     BN_ULONG res_x[P256_LIMBS]; | 
 |     BN_ULONG res_y[P256_LIMBS]; | 
 |     BN_ULONG res_z[P256_LIMBS]; | 
 |  | 
 |     BN_ULONG in1infty, in2infty; | 
 |  | 
 |     const BN_ULONG *in1_x = a->X; | 
 |     const BN_ULONG *in1_y = a->Y; | 
 |     const BN_ULONG *in1_z = a->Z; | 
 |  | 
 |     const BN_ULONG *in2_x = b->X; | 
 |     const BN_ULONG *in2_y = b->Y; | 
 |  | 
 |     /* | 
 |      * Infinity in encoded as (,,0) | 
 |      */ | 
 |     in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]); | 
 |     if (P256_LIMBS == 8) | 
 |         in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]); | 
 |  | 
 |     /* | 
 |      * In affine representation we encode infinity as (0,0), which is | 
 |      * not on the curve, so it is OK | 
 |      */ | 
 |     in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] | | 
 |                 in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]); | 
 |     if (P256_LIMBS == 8) | 
 |         in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] | | 
 |                      in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]); | 
 |  | 
 |     in1infty = is_zero(in1infty); | 
 |     in2infty = is_zero(in2infty); | 
 |  | 
 |     ecp_nistz256_sqr_mont(Z1sqr, in1_z);        /* Z1^2 */ | 
 |  | 
 |     ecp_nistz256_mul_mont(U2, in2_x, Z1sqr);    /* U2 = X2*Z1^2 */ | 
 |     ecp_nistz256_sub(H, U2, in1_x);             /* H = U2 - U1 */ | 
 |  | 
 |     ecp_nistz256_mul_mont(S2, Z1sqr, in1_z);    /* S2 = Z1^3 */ | 
 |  | 
 |     ecp_nistz256_mul_mont(res_z, H, in1_z);     /* Z3 = H*Z1*Z2 */ | 
 |  | 
 |     ecp_nistz256_mul_mont(S2, S2, in2_y);       /* S2 = Y2*Z1^3 */ | 
 |     ecp_nistz256_sub(R, S2, in1_y);             /* R = S2 - S1 */ | 
 |  | 
 |     ecp_nistz256_sqr_mont(Hsqr, H);             /* H^2 */ | 
 |     ecp_nistz256_sqr_mont(Rsqr, R);             /* R^2 */ | 
 |     ecp_nistz256_mul_mont(Hcub, Hsqr, H);       /* H^3 */ | 
 |  | 
 |     ecp_nistz256_mul_mont(U2, in1_x, Hsqr);     /* U1*H^2 */ | 
 |     ecp_nistz256_mul_by_2(Hsqr, U2);            /* 2*U1*H^2 */ | 
 |  | 
 |     ecp_nistz256_sub(res_x, Rsqr, Hsqr); | 
 |     ecp_nistz256_sub(res_x, res_x, Hcub); | 
 |     ecp_nistz256_sub(H, U2, res_x); | 
 |  | 
 |     ecp_nistz256_mul_mont(S2, in1_y, Hcub); | 
 |     ecp_nistz256_mul_mont(H, H, R); | 
 |     ecp_nistz256_sub(res_y, H, S2); | 
 |  | 
 |     copy_conditional(res_x, in2_x, in1infty); | 
 |     copy_conditional(res_x, in1_x, in2infty); | 
 |  | 
 |     copy_conditional(res_y, in2_y, in1infty); | 
 |     copy_conditional(res_y, in1_y, in2infty); | 
 |  | 
 |     copy_conditional(res_z, ONE, in1infty); | 
 |     copy_conditional(res_z, in1_z, in2infty); | 
 |  | 
 |     memcpy(r->X, res_x, sizeof(res_x)); | 
 |     memcpy(r->Y, res_y, sizeof(res_y)); | 
 |     memcpy(r->Z, res_z, sizeof(res_z)); | 
 | } | 
 | #endif | 
 |  | 
 | /* r = in^-1 mod p */ | 
 | static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS], | 
 |                                      const BN_ULONG in[P256_LIMBS]) | 
 | { | 
 |     /* | 
 |      * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff | 
 |      * ffffffff ffffffff We use FLT and used poly-2 as exponent | 
 |      */ | 
 |     BN_ULONG p2[P256_LIMBS]; | 
 |     BN_ULONG p4[P256_LIMBS]; | 
 |     BN_ULONG p8[P256_LIMBS]; | 
 |     BN_ULONG p16[P256_LIMBS]; | 
 |     BN_ULONG p32[P256_LIMBS]; | 
 |     BN_ULONG res[P256_LIMBS]; | 
 |     int i; | 
 |  | 
 |     ecp_nistz256_sqr_mont(res, in); | 
 |     ecp_nistz256_mul_mont(p2, res, in);         /* 3*p */ | 
 |  | 
 |     ecp_nistz256_sqr_mont(res, p2); | 
 |     ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_mul_mont(p4, res, p2);         /* f*p */ | 
 |  | 
 |     ecp_nistz256_sqr_mont(res, p4); | 
 |     ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_mul_mont(p8, res, p4);         /* ff*p */ | 
 |  | 
 |     ecp_nistz256_sqr_mont(res, p8); | 
 |     for (i = 0; i < 7; i++) | 
 |         ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_mul_mont(p16, res, p8);        /* ffff*p */ | 
 |  | 
 |     ecp_nistz256_sqr_mont(res, p16); | 
 |     for (i = 0; i < 15; i++) | 
 |         ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_mul_mont(p32, res, p16);       /* ffffffff*p */ | 
 |  | 
 |     ecp_nistz256_sqr_mont(res, p32); | 
 |     for (i = 0; i < 31; i++) | 
 |         ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_mul_mont(res, res, in); | 
 |  | 
 |     for (i = 0; i < 32 * 4; i++) | 
 |         ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_mul_mont(res, res, p32); | 
 |  | 
 |     for (i = 0; i < 32; i++) | 
 |         ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_mul_mont(res, res, p32); | 
 |  | 
 |     for (i = 0; i < 16; i++) | 
 |         ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_mul_mont(res, res, p16); | 
 |  | 
 |     for (i = 0; i < 8; i++) | 
 |         ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_mul_mont(res, res, p8); | 
 |  | 
 |     ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_mul_mont(res, res, p4); | 
 |  | 
 |     ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_mul_mont(res, res, p2); | 
 |  | 
 |     ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_sqr_mont(res, res); | 
 |     ecp_nistz256_mul_mont(res, res, in); | 
 |  | 
 |     memcpy(r, res, sizeof(res)); | 
 | } | 
 |  | 
 | /* | 
 |  * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and | 
 |  * returns one if it fits. Otherwise it returns zero. | 
 |  */ | 
 | __owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS], | 
 |                                                     const BIGNUM *in) | 
 | { | 
 |     return bn_copy_words(out, in, P256_LIMBS); | 
 | } | 
 |  | 
 | /* r = sum(scalar[i]*point[i]) */ | 
 | __owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group, | 
 |                                             P256_POINT *r, | 
 |                                             const BIGNUM **scalar, | 
 |                                             const EC_POINT **point, | 
 |                                             size_t num, BN_CTX *ctx) | 
 | { | 
 |     size_t i; | 
 |     int j, ret = 0; | 
 |     unsigned int idx; | 
 |     unsigned char (*p_str)[33] = NULL; | 
 |     const unsigned int window_size = 5; | 
 |     const unsigned int mask = (1 << (window_size + 1)) - 1; | 
 |     unsigned int wvalue; | 
 |     P256_POINT *temp;           /* place for 5 temporary points */ | 
 |     const BIGNUM **scalars = NULL; | 
 |     P256_POINT (*table)[16] = NULL; | 
 |     void *table_storage = NULL; | 
 |  | 
 |     if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT) | 
 |         || (table_storage = | 
 |             OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL | 
 |         || (p_str = | 
 |             OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL | 
 |         || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) { | 
 |         ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE); | 
 |         goto err; | 
 |     } | 
 |  | 
 |     table = (void *)ALIGNPTR(table_storage, 64); | 
 |     temp = (P256_POINT *)(table + num); | 
 |  | 
 |     for (i = 0; i < num; i++) { | 
 |         P256_POINT *row = table[i]; | 
 |  | 
 |         /* This is an unusual input, we don't guarantee constant-timeness. */ | 
 |         if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) { | 
 |             BIGNUM *mod; | 
 |  | 
 |             if ((mod = BN_CTX_get(ctx)) == NULL) | 
 |                 goto err; | 
 |             if (!BN_nnmod(mod, scalar[i], group->order, ctx)) { | 
 |                 ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB); | 
 |                 goto err; | 
 |             } | 
 |             scalars[i] = mod; | 
 |         } else | 
 |             scalars[i] = scalar[i]; | 
 |  | 
 |         for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) { | 
 |             BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES]; | 
 |  | 
 |             p_str[i][j + 0] = (unsigned char)d; | 
 |             p_str[i][j + 1] = (unsigned char)(d >> 8); | 
 |             p_str[i][j + 2] = (unsigned char)(d >> 16); | 
 |             p_str[i][j + 3] = (unsigned char)(d >>= 24); | 
 |             if (BN_BYTES == 8) { | 
 |                 d >>= 8; | 
 |                 p_str[i][j + 4] = (unsigned char)d; | 
 |                 p_str[i][j + 5] = (unsigned char)(d >> 8); | 
 |                 p_str[i][j + 6] = (unsigned char)(d >> 16); | 
 |                 p_str[i][j + 7] = (unsigned char)(d >> 24); | 
 |             } | 
 |         } | 
 |         for (; j < 33; j++) | 
 |             p_str[i][j] = 0; | 
 |  | 
 |         if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X) | 
 |             || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y) | 
 |             || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) { | 
 |             ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, | 
 |                   EC_R_COORDINATES_OUT_OF_RANGE); | 
 |             goto err; | 
 |         } | 
 |  | 
 |         /* | 
 |          * row[0] is implicitly (0,0,0) (the point at infinity), therefore it | 
 |          * is not stored. All other values are actually stored with an offset | 
 |          * of -1 in table. | 
 |          */ | 
 |  | 
 |         ecp_nistz256_scatter_w5  (row, &temp[0], 1); | 
 |         ecp_nistz256_point_double(&temp[1], &temp[0]);              /*1+1=2  */ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[1], 2); | 
 |         ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*2+1=3  */ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[2], 3); | 
 |         ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*2=4  */ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[1], 4); | 
 |         ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*3=6  */ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[2], 6); | 
 |         ecp_nistz256_point_add   (&temp[3], &temp[1], &temp[0]);    /*4+1=5  */ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[3], 5); | 
 |         ecp_nistz256_point_add   (&temp[4], &temp[2], &temp[0]);    /*6+1=7  */ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[4], 7); | 
 |         ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*4=8  */ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[1], 8); | 
 |         ecp_nistz256_point_double(&temp[2], &temp[2]);              /*2*6=12 */ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[2], 12); | 
 |         ecp_nistz256_point_double(&temp[3], &temp[3]);              /*2*5=10 */ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[3], 10); | 
 |         ecp_nistz256_point_double(&temp[4], &temp[4]);              /*2*7=14 */ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[4], 14); | 
 |         ecp_nistz256_point_add   (&temp[2], &temp[2], &temp[0]);    /*12+1=13*/ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[2], 13); | 
 |         ecp_nistz256_point_add   (&temp[3], &temp[3], &temp[0]);    /*10+1=11*/ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[3], 11); | 
 |         ecp_nistz256_point_add   (&temp[4], &temp[4], &temp[0]);    /*14+1=15*/ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[4], 15); | 
 |         ecp_nistz256_point_add   (&temp[2], &temp[1], &temp[0]);    /*8+1=9  */ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[2], 9); | 
 |         ecp_nistz256_point_double(&temp[1], &temp[1]);              /*2*8=16 */ | 
 |         ecp_nistz256_scatter_w5  (row, &temp[1], 16); | 
 |     } | 
 |  | 
 |     idx = 255; | 
 |  | 
 |     wvalue = p_str[0][(idx - 1) / 8]; | 
 |     wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |  | 
 |     /* | 
 |      * We gather to temp[0], because we know it's position relative | 
 |      * to table | 
 |      */ | 
 |     ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1); | 
 |     memcpy(r, &temp[0], sizeof(temp[0])); | 
 |  | 
 |     while (idx >= 5) { | 
 |         for (i = (idx == 255 ? 1 : 0); i < num; i++) { | 
 |             unsigned int off = (idx - 1) / 8; | 
 |  | 
 |             wvalue = p_str[i][off] | p_str[i][off + 1] << 8; | 
 |             wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |  | 
 |             wvalue = _booth_recode_w5(wvalue); | 
 |  | 
 |             ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1); | 
 |  | 
 |             ecp_nistz256_neg(temp[1].Y, temp[0].Y); | 
 |             copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1)); | 
 |  | 
 |             ecp_nistz256_point_add(r, r, &temp[0]); | 
 |         } | 
 |  | 
 |         idx -= window_size; | 
 |  | 
 |         ecp_nistz256_point_double(r, r); | 
 |         ecp_nistz256_point_double(r, r); | 
 |         ecp_nistz256_point_double(r, r); | 
 |         ecp_nistz256_point_double(r, r); | 
 |         ecp_nistz256_point_double(r, r); | 
 |     } | 
 |  | 
 |     /* Final window */ | 
 |     for (i = 0; i < num; i++) { | 
 |         wvalue = p_str[i][0]; | 
 |         wvalue = (wvalue << 1) & mask; | 
 |  | 
 |         wvalue = _booth_recode_w5(wvalue); | 
 |  | 
 |         ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1); | 
 |  | 
 |         ecp_nistz256_neg(temp[1].Y, temp[0].Y); | 
 |         copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1); | 
 |  | 
 |         ecp_nistz256_point_add(r, r, &temp[0]); | 
 |     } | 
 |  | 
 |     ret = 1; | 
 |  err: | 
 |     OPENSSL_free(table_storage); | 
 |     OPENSSL_free(p_str); | 
 |     OPENSSL_free(scalars); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* Coordinates of G, for which we have precomputed tables */ | 
 | static const BN_ULONG def_xG[P256_LIMBS] = { | 
 |     TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601), | 
 |     TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6) | 
 | }; | 
 |  | 
 | static const BN_ULONG def_yG[P256_LIMBS] = { | 
 |     TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c), | 
 |     TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85) | 
 | }; | 
 |  | 
 | /* | 
 |  * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256 | 
 |  * generator. | 
 |  */ | 
 | static int ecp_nistz256_is_affine_G(const EC_POINT *generator) | 
 | { | 
 |     return (bn_get_top(generator->X) == P256_LIMBS) && | 
 |         (bn_get_top(generator->Y) == P256_LIMBS) && | 
 |         is_equal(bn_get_words(generator->X), def_xG) && | 
 |         is_equal(bn_get_words(generator->Y), def_yG) && | 
 |         is_one(generator->Z); | 
 | } | 
 |  | 
 | __owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx) | 
 | { | 
 |     /* | 
 |      * We precompute a table for a Booth encoded exponent (wNAF) based | 
 |      * computation. Each table holds 64 values for safe access, with an | 
 |      * implicit value of infinity at index zero. We use window of size 7, and | 
 |      * therefore require ceil(256/7) = 37 tables. | 
 |      */ | 
 |     const BIGNUM *order; | 
 |     EC_POINT *P = NULL, *T = NULL; | 
 |     const EC_POINT *generator; | 
 |     NISTZ256_PRE_COMP *pre_comp; | 
 |     BN_CTX *new_ctx = NULL; | 
 |     int i, j, k, ret = 0; | 
 |     size_t w; | 
 |  | 
 |     PRECOMP256_ROW *preComputedTable = NULL; | 
 |     unsigned char *precomp_storage = NULL; | 
 |  | 
 |     /* if there is an old NISTZ256_PRE_COMP object, throw it away */ | 
 |     EC_pre_comp_free(group); | 
 |     generator = EC_GROUP_get0_generator(group); | 
 |     if (generator == NULL) { | 
 |         ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     if (ecp_nistz256_is_affine_G(generator)) { | 
 |         /* | 
 |          * No need to calculate tables for the standard generator because we | 
 |          * have them statically. | 
 |          */ | 
 |         return 1; | 
 |     } | 
 |  | 
 |     if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL) | 
 |         return 0; | 
 |  | 
 |     if (ctx == NULL) { | 
 |         ctx = new_ctx = BN_CTX_new(); | 
 |         if (ctx == NULL) | 
 |             goto err; | 
 |     } | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |  | 
 |     order = EC_GROUP_get0_order(group); | 
 |     if (order == NULL) | 
 |         goto err; | 
 |  | 
 |     if (BN_is_zero(order)) { | 
 |         ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER); | 
 |         goto err; | 
 |     } | 
 |  | 
 |     w = 7; | 
 |  | 
 |     if ((precomp_storage = | 
 |          OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) { | 
 |         ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE); | 
 |         goto err; | 
 |     } | 
 |  | 
 |     preComputedTable = (void *)ALIGNPTR(precomp_storage, 64); | 
 |  | 
 |     P = EC_POINT_new(group); | 
 |     T = EC_POINT_new(group); | 
 |     if (P == NULL || T == NULL) | 
 |         goto err; | 
 |  | 
 |     /* | 
 |      * The zero entry is implicitly infinity, and we skip it, storing other | 
 |      * values with -1 offset. | 
 |      */ | 
 |     if (!EC_POINT_copy(T, generator)) | 
 |         goto err; | 
 |  | 
 |     for (k = 0; k < 64; k++) { | 
 |         if (!EC_POINT_copy(P, T)) | 
 |             goto err; | 
 |         for (j = 0; j < 37; j++) { | 
 |             P256_POINT_AFFINE temp; | 
 |             /* | 
 |              * It would be faster to use EC_POINTs_make_affine and | 
 |              * make multiple points affine at the same time. | 
 |              */ | 
 |             if (!EC_POINT_make_affine(group, P, ctx)) | 
 |                 goto err; | 
 |             if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) || | 
 |                 !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) { | 
 |                 ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, | 
 |                       EC_R_COORDINATES_OUT_OF_RANGE); | 
 |                 goto err; | 
 |             } | 
 |             ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k); | 
 |             for (i = 0; i < 7; i++) { | 
 |                 if (!EC_POINT_dbl(group, P, P, ctx)) | 
 |                     goto err; | 
 |             } | 
 |         } | 
 |         if (!EC_POINT_add(group, T, T, generator, ctx)) | 
 |             goto err; | 
 |     } | 
 |  | 
 |     pre_comp->group = group; | 
 |     pre_comp->w = w; | 
 |     pre_comp->precomp = preComputedTable; | 
 |     pre_comp->precomp_storage = precomp_storage; | 
 |     precomp_storage = NULL; | 
 |     SETPRECOMP(group, nistz256, pre_comp); | 
 |     pre_comp = NULL; | 
 |     ret = 1; | 
 |  | 
 |  err: | 
 |     if (ctx != NULL) | 
 |         BN_CTX_end(ctx); | 
 |     BN_CTX_free(new_ctx); | 
 |  | 
 |     EC_nistz256_pre_comp_free(pre_comp); | 
 |     OPENSSL_free(precomp_storage); | 
 |     EC_POINT_free(P); | 
 |     EC_POINT_free(T); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Note that by default ECP_NISTZ256_AVX2 is undefined. While it's great | 
 |  * code processing 4 points in parallel, corresponding serial operation | 
 |  * is several times slower, because it uses 29x29=58-bit multiplication | 
 |  * as opposite to 64x64=128-bit in integer-only scalar case. As result | 
 |  * it doesn't provide *significant* performance improvement. Note that | 
 |  * just defining ECP_NISTZ256_AVX2 is not sufficient to make it work, | 
 |  * you'd need to compile even asm/ecp_nistz256-avx.pl module. | 
 |  */ | 
 | #if defined(ECP_NISTZ256_AVX2) | 
 | # if !(defined(__x86_64) || defined(__x86_64__) || \ | 
 |        defined(_M_AMD64) || defined(_M_X64)) || \ | 
 |      !(defined(__GNUC__) || defined(_MSC_VER)) /* this is for ALIGN32 */ | 
 | #  undef ECP_NISTZ256_AVX2 | 
 | # else | 
 | /* Constant time access, loading four values, from four consecutive tables */ | 
 | void ecp_nistz256_avx2_multi_gather_w7(void *result, const void *in, | 
 |                                        int index0, int index1, int index2, | 
 |                                        int index3); | 
 | void ecp_nistz256_avx2_transpose_convert(void *RESULTx4, const void *in); | 
 | void ecp_nistz256_avx2_convert_transpose_back(void *result, const void *Ax4); | 
 | void ecp_nistz256_avx2_point_add_affine_x4(void *RESULTx4, const void *Ax4, | 
 |                                            const void *Bx4); | 
 | void ecp_nistz256_avx2_point_add_affines_x4(void *RESULTx4, const void *Ax4, | 
 |                                             const void *Bx4); | 
 | void ecp_nistz256_avx2_to_mont(void *RESULTx4, const void *Ax4); | 
 | void ecp_nistz256_avx2_from_mont(void *RESULTx4, const void *Ax4); | 
 | void ecp_nistz256_avx2_set1(void *RESULTx4); | 
 | int ecp_nistz_avx2_eligible(void); | 
 |  | 
 | static void booth_recode_w7(unsigned char *sign, | 
 |                             unsigned char *digit, unsigned char in) | 
 | { | 
 |     unsigned char s, d; | 
 |  | 
 |     s = ~((in >> 7) - 1); | 
 |     d = (1 << 8) - in - 1; | 
 |     d = (d & s) | (in & ~s); | 
 |     d = (d >> 1) + (d & 1); | 
 |  | 
 |     *sign = s & 1; | 
 |     *digit = d; | 
 | } | 
 |  | 
 | /* | 
 |  * ecp_nistz256_avx2_mul_g performs multiplication by G, using only the | 
 |  * precomputed table. It does 4 affine point additions in parallel, | 
 |  * significantly speeding up point multiplication for a fixed value. | 
 |  */ | 
 | static void ecp_nistz256_avx2_mul_g(P256_POINT *r, | 
 |                                     unsigned char p_str[33], | 
 |                                     const P256_POINT_AFFINE(*preComputedTable)[64]) | 
 | { | 
 |     const unsigned int window_size = 7; | 
 |     const unsigned int mask = (1 << (window_size + 1)) - 1; | 
 |     unsigned int wvalue; | 
 |     /* Using 4 windows at a time */ | 
 |     unsigned char sign0, digit0; | 
 |     unsigned char sign1, digit1; | 
 |     unsigned char sign2, digit2; | 
 |     unsigned char sign3, digit3; | 
 |     unsigned int idx = 0; | 
 |     BN_ULONG tmp[P256_LIMBS]; | 
 |     int i; | 
 |  | 
 |     ALIGN32 BN_ULONG aX4[4 * 9 * 3] = { 0 }; | 
 |     ALIGN32 BN_ULONG bX4[4 * 9 * 2] = { 0 }; | 
 |     ALIGN32 P256_POINT_AFFINE point_arr[4]; | 
 |     ALIGN32 P256_POINT res_point_arr[4]; | 
 |  | 
 |     /* Initial four windows */ | 
 |     wvalue = *((u16 *) & p_str[0]); | 
 |     wvalue = (wvalue << 1) & mask; | 
 |     idx += window_size; | 
 |     booth_recode_w7(&sign0, &digit0, wvalue); | 
 |     wvalue = *((u16 *) & p_str[(idx - 1) / 8]); | 
 |     wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |     idx += window_size; | 
 |     booth_recode_w7(&sign1, &digit1, wvalue); | 
 |     wvalue = *((u16 *) & p_str[(idx - 1) / 8]); | 
 |     wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |     idx += window_size; | 
 |     booth_recode_w7(&sign2, &digit2, wvalue); | 
 |     wvalue = *((u16 *) & p_str[(idx - 1) / 8]); | 
 |     wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |     idx += window_size; | 
 |     booth_recode_w7(&sign3, &digit3, wvalue); | 
 |  | 
 |     ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[0], | 
 |                                       digit0, digit1, digit2, digit3); | 
 |  | 
 |     ecp_nistz256_neg(tmp, point_arr[0].Y); | 
 |     copy_conditional(point_arr[0].Y, tmp, sign0); | 
 |     ecp_nistz256_neg(tmp, point_arr[1].Y); | 
 |     copy_conditional(point_arr[1].Y, tmp, sign1); | 
 |     ecp_nistz256_neg(tmp, point_arr[2].Y); | 
 |     copy_conditional(point_arr[2].Y, tmp, sign2); | 
 |     ecp_nistz256_neg(tmp, point_arr[3].Y); | 
 |     copy_conditional(point_arr[3].Y, tmp, sign3); | 
 |  | 
 |     ecp_nistz256_avx2_transpose_convert(aX4, point_arr); | 
 |     ecp_nistz256_avx2_to_mont(aX4, aX4); | 
 |     ecp_nistz256_avx2_to_mont(&aX4[4 * 9], &aX4[4 * 9]); | 
 |     ecp_nistz256_avx2_set1(&aX4[4 * 9 * 2]); | 
 |  | 
 |     wvalue = *((u16 *) & p_str[(idx - 1) / 8]); | 
 |     wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |     idx += window_size; | 
 |     booth_recode_w7(&sign0, &digit0, wvalue); | 
 |     wvalue = *((u16 *) & p_str[(idx - 1) / 8]); | 
 |     wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |     idx += window_size; | 
 |     booth_recode_w7(&sign1, &digit1, wvalue); | 
 |     wvalue = *((u16 *) & p_str[(idx - 1) / 8]); | 
 |     wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |     idx += window_size; | 
 |     booth_recode_w7(&sign2, &digit2, wvalue); | 
 |     wvalue = *((u16 *) & p_str[(idx - 1) / 8]); | 
 |     wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |     idx += window_size; | 
 |     booth_recode_w7(&sign3, &digit3, wvalue); | 
 |  | 
 |     ecp_nistz256_avx2_multi_gather_w7(point_arr, preComputedTable[4 * 1], | 
 |                                       digit0, digit1, digit2, digit3); | 
 |  | 
 |     ecp_nistz256_neg(tmp, point_arr[0].Y); | 
 |     copy_conditional(point_arr[0].Y, tmp, sign0); | 
 |     ecp_nistz256_neg(tmp, point_arr[1].Y); | 
 |     copy_conditional(point_arr[1].Y, tmp, sign1); | 
 |     ecp_nistz256_neg(tmp, point_arr[2].Y); | 
 |     copy_conditional(point_arr[2].Y, tmp, sign2); | 
 |     ecp_nistz256_neg(tmp, point_arr[3].Y); | 
 |     copy_conditional(point_arr[3].Y, tmp, sign3); | 
 |  | 
 |     ecp_nistz256_avx2_transpose_convert(bX4, point_arr); | 
 |     ecp_nistz256_avx2_to_mont(bX4, bX4); | 
 |     ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]); | 
 |     /* Optimized when both inputs are affine */ | 
 |     ecp_nistz256_avx2_point_add_affines_x4(aX4, aX4, bX4); | 
 |  | 
 |     for (i = 2; i < 9; i++) { | 
 |         wvalue = *((u16 *) & p_str[(idx - 1) / 8]); | 
 |         wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |         idx += window_size; | 
 |         booth_recode_w7(&sign0, &digit0, wvalue); | 
 |         wvalue = *((u16 *) & p_str[(idx - 1) / 8]); | 
 |         wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |         idx += window_size; | 
 |         booth_recode_w7(&sign1, &digit1, wvalue); | 
 |         wvalue = *((u16 *) & p_str[(idx - 1) / 8]); | 
 |         wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |         idx += window_size; | 
 |         booth_recode_w7(&sign2, &digit2, wvalue); | 
 |         wvalue = *((u16 *) & p_str[(idx - 1) / 8]); | 
 |         wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |         idx += window_size; | 
 |         booth_recode_w7(&sign3, &digit3, wvalue); | 
 |  | 
 |         ecp_nistz256_avx2_multi_gather_w7(point_arr, | 
 |                                           preComputedTable[4 * i], | 
 |                                           digit0, digit1, digit2, digit3); | 
 |  | 
 |         ecp_nistz256_neg(tmp, point_arr[0].Y); | 
 |         copy_conditional(point_arr[0].Y, tmp, sign0); | 
 |         ecp_nistz256_neg(tmp, point_arr[1].Y); | 
 |         copy_conditional(point_arr[1].Y, tmp, sign1); | 
 |         ecp_nistz256_neg(tmp, point_arr[2].Y); | 
 |         copy_conditional(point_arr[2].Y, tmp, sign2); | 
 |         ecp_nistz256_neg(tmp, point_arr[3].Y); | 
 |         copy_conditional(point_arr[3].Y, tmp, sign3); | 
 |  | 
 |         ecp_nistz256_avx2_transpose_convert(bX4, point_arr); | 
 |         ecp_nistz256_avx2_to_mont(bX4, bX4); | 
 |         ecp_nistz256_avx2_to_mont(&bX4[4 * 9], &bX4[4 * 9]); | 
 |  | 
 |         ecp_nistz256_avx2_point_add_affine_x4(aX4, aX4, bX4); | 
 |     } | 
 |  | 
 |     ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 0], &aX4[4 * 9 * 0]); | 
 |     ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 1], &aX4[4 * 9 * 1]); | 
 |     ecp_nistz256_avx2_from_mont(&aX4[4 * 9 * 2], &aX4[4 * 9 * 2]); | 
 |  | 
 |     ecp_nistz256_avx2_convert_transpose_back(res_point_arr, aX4); | 
 |     /* Last window is performed serially */ | 
 |     wvalue = *((u16 *) & p_str[(idx - 1) / 8]); | 
 |     wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |     booth_recode_w7(&sign0, &digit0, wvalue); | 
 |     ecp_nistz256_gather_w7((P256_POINT_AFFINE *)r, | 
 |                            preComputedTable[36], digit0); | 
 |     ecp_nistz256_neg(tmp, r->Y); | 
 |     copy_conditional(r->Y, tmp, sign0); | 
 |     memcpy(r->Z, ONE, sizeof(ONE)); | 
 |     /* Sum the four windows */ | 
 |     ecp_nistz256_point_add(r, r, &res_point_arr[0]); | 
 |     ecp_nistz256_point_add(r, r, &res_point_arr[1]); | 
 |     ecp_nistz256_point_add(r, r, &res_point_arr[2]); | 
 |     ecp_nistz256_point_add(r, r, &res_point_arr[3]); | 
 | } | 
 | # endif | 
 | #endif | 
 |  | 
 | __owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group, | 
 |                                                const P256_POINT_AFFINE *in, | 
 |                                                BN_CTX *ctx) | 
 | { | 
 |     BIGNUM *x, *y; | 
 |     BN_ULONG d_x[P256_LIMBS], d_y[P256_LIMBS]; | 
 |     int ret = 0; | 
 |  | 
 |     x = BN_new(); | 
 |     if (x == NULL) | 
 |         return 0; | 
 |     y = BN_new(); | 
 |     if (y == NULL) { | 
 |         BN_free(x); | 
 |         return 0; | 
 |     } | 
 |     memcpy(d_x, in->X, sizeof(d_x)); | 
 |     bn_set_static_words(x, d_x, P256_LIMBS); | 
 |  | 
 |     memcpy(d_y, in->Y, sizeof(d_y)); | 
 |     bn_set_static_words(y, d_y, P256_LIMBS); | 
 |  | 
 |     ret = EC_POINT_set_affine_coordinates_GFp(group, out, x, y, ctx); | 
 |  | 
 |     BN_free(x); | 
 |     BN_free(y); | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | /* r = scalar*G + sum(scalars[i]*points[i]) */ | 
 | __owur static int ecp_nistz256_points_mul(const EC_GROUP *group, | 
 |                                           EC_POINT *r, | 
 |                                           const BIGNUM *scalar, | 
 |                                           size_t num, | 
 |                                           const EC_POINT *points[], | 
 |                                           const BIGNUM *scalars[], BN_CTX *ctx) | 
 | { | 
 |     int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0; | 
 |     size_t j; | 
 |     unsigned char p_str[33] = { 0 }; | 
 |     const PRECOMP256_ROW *preComputedTable = NULL; | 
 |     const NISTZ256_PRE_COMP *pre_comp = NULL; | 
 |     const EC_POINT *generator = NULL; | 
 |     BN_CTX *new_ctx = NULL; | 
 |     const BIGNUM **new_scalars = NULL; | 
 |     const EC_POINT **new_points = NULL; | 
 |     unsigned int idx = 0; | 
 |     const unsigned int window_size = 7; | 
 |     const unsigned int mask = (1 << (window_size + 1)) - 1; | 
 |     unsigned int wvalue; | 
 |     ALIGN32 union { | 
 |         P256_POINT p; | 
 |         P256_POINT_AFFINE a; | 
 |     } t, p; | 
 |     BIGNUM *tmp_scalar; | 
 |  | 
 |     if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) { | 
 |         ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     if (group->meth != r->meth) { | 
 |         ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     if ((scalar == NULL) && (num == 0)) | 
 |         return EC_POINT_set_to_infinity(group, r); | 
 |  | 
 |     for (j = 0; j < num; j++) { | 
 |         if (group->meth != points[j]->meth) { | 
 |             ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS); | 
 |             return 0; | 
 |         } | 
 |     } | 
 |  | 
 |     if (ctx == NULL) { | 
 |         ctx = new_ctx = BN_CTX_new(); | 
 |         if (ctx == NULL) | 
 |             goto err; | 
 |     } | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |  | 
 |     if (scalar) { | 
 |         generator = EC_GROUP_get0_generator(group); | 
 |         if (generator == NULL) { | 
 |             ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR); | 
 |             goto err; | 
 |         } | 
 |  | 
 |         /* look if we can use precomputed multiples of generator */ | 
 |         pre_comp = group->pre_comp.nistz256; | 
 |  | 
 |         if (pre_comp) { | 
 |             /* | 
 |              * If there is a precomputed table for the generator, check that | 
 |              * it was generated with the same generator. | 
 |              */ | 
 |             EC_POINT *pre_comp_generator = EC_POINT_new(group); | 
 |             if (pre_comp_generator == NULL) | 
 |                 goto err; | 
 |  | 
 |             if (!ecp_nistz256_set_from_affine(pre_comp_generator, | 
 |                                               group, pre_comp->precomp[0], | 
 |                                               ctx)) { | 
 |                 EC_POINT_free(pre_comp_generator); | 
 |                 goto err; | 
 |             } | 
 |  | 
 |             if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx)) | 
 |                 preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp; | 
 |  | 
 |             EC_POINT_free(pre_comp_generator); | 
 |         } | 
 |  | 
 |         if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) { | 
 |             /* | 
 |              * If there is no precomputed data, but the generator is the | 
 |              * default, a hardcoded table of precomputed data is used. This | 
 |              * is because applications, such as Apache, do not use | 
 |              * EC_KEY_precompute_mult. | 
 |              */ | 
 |             preComputedTable = ecp_nistz256_precomputed; | 
 |         } | 
 |  | 
 |         if (preComputedTable) { | 
 |             if ((BN_num_bits(scalar) > 256) | 
 |                 || BN_is_negative(scalar)) { | 
 |                 if ((tmp_scalar = BN_CTX_get(ctx)) == NULL) | 
 |                     goto err; | 
 |  | 
 |                 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { | 
 |                     ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB); | 
 |                     goto err; | 
 |                 } | 
 |                 scalar = tmp_scalar; | 
 |             } | 
 |  | 
 |             for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) { | 
 |                 BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES]; | 
 |  | 
 |                 p_str[i + 0] = (unsigned char)d; | 
 |                 p_str[i + 1] = (unsigned char)(d >> 8); | 
 |                 p_str[i + 2] = (unsigned char)(d >> 16); | 
 |                 p_str[i + 3] = (unsigned char)(d >>= 24); | 
 |                 if (BN_BYTES == 8) { | 
 |                     d >>= 8; | 
 |                     p_str[i + 4] = (unsigned char)d; | 
 |                     p_str[i + 5] = (unsigned char)(d >> 8); | 
 |                     p_str[i + 6] = (unsigned char)(d >> 16); | 
 |                     p_str[i + 7] = (unsigned char)(d >> 24); | 
 |                 } | 
 |             } | 
 |  | 
 |             for (; i < 33; i++) | 
 |                 p_str[i] = 0; | 
 |  | 
 | #if defined(ECP_NISTZ256_AVX2) | 
 |             if (ecp_nistz_avx2_eligible()) { | 
 |                 ecp_nistz256_avx2_mul_g(&p.p, p_str, preComputedTable); | 
 |             } else | 
 | #endif | 
 |             { | 
 |                 BN_ULONG infty; | 
 |  | 
 |                 /* First window */ | 
 |                 wvalue = (p_str[0] << 1) & mask; | 
 |                 idx += window_size; | 
 |  | 
 |                 wvalue = _booth_recode_w7(wvalue); | 
 |  | 
 |                 ecp_nistz256_gather_w7(&p.a, preComputedTable[0], | 
 |                                        wvalue >> 1); | 
 |  | 
 |                 ecp_nistz256_neg(p.p.Z, p.p.Y); | 
 |                 copy_conditional(p.p.Y, p.p.Z, wvalue & 1); | 
 |  | 
 |                 /* | 
 |                  * Since affine infinity is encoded as (0,0) and | 
 |                  * Jacobian ias (,,0), we need to harmonize them | 
 |                  * by assigning "one" or zero to Z. | 
 |                  */ | 
 |                 infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] | | 
 |                          p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]); | 
 |                 if (P256_LIMBS == 8) | 
 |                     infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] | | 
 |                               p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]); | 
 |  | 
 |                 infty = 0 - is_zero(infty); | 
 |                 infty = ~infty; | 
 |  | 
 |                 p.p.Z[0] = ONE[0] & infty; | 
 |                 p.p.Z[1] = ONE[1] & infty; | 
 |                 p.p.Z[2] = ONE[2] & infty; | 
 |                 p.p.Z[3] = ONE[3] & infty; | 
 |                 if (P256_LIMBS == 8) { | 
 |                     p.p.Z[4] = ONE[4] & infty; | 
 |                     p.p.Z[5] = ONE[5] & infty; | 
 |                     p.p.Z[6] = ONE[6] & infty; | 
 |                     p.p.Z[7] = ONE[7] & infty; | 
 |                 } | 
 |  | 
 |                 for (i = 1; i < 37; i++) { | 
 |                     unsigned int off = (idx - 1) / 8; | 
 |                     wvalue = p_str[off] | p_str[off + 1] << 8; | 
 |                     wvalue = (wvalue >> ((idx - 1) % 8)) & mask; | 
 |                     idx += window_size; | 
 |  | 
 |                     wvalue = _booth_recode_w7(wvalue); | 
 |  | 
 |                     ecp_nistz256_gather_w7(&t.a, | 
 |                                            preComputedTable[i], wvalue >> 1); | 
 |  | 
 |                     ecp_nistz256_neg(t.p.Z, t.a.Y); | 
 |                     copy_conditional(t.a.Y, t.p.Z, wvalue & 1); | 
 |  | 
 |                     ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a); | 
 |                 } | 
 |             } | 
 |         } else { | 
 |             p_is_infinity = 1; | 
 |             no_precomp_for_generator = 1; | 
 |         } | 
 |     } else | 
 |         p_is_infinity = 1; | 
 |  | 
 |     if (no_precomp_for_generator) { | 
 |         /* | 
 |          * Without a precomputed table for the generator, it has to be | 
 |          * handled like a normal point. | 
 |          */ | 
 |         new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *)); | 
 |         if (new_scalars == NULL) { | 
 |             ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE); | 
 |             goto err; | 
 |         } | 
 |  | 
 |         new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *)); | 
 |         if (new_points == NULL) { | 
 |             ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE); | 
 |             goto err; | 
 |         } | 
 |  | 
 |         memcpy(new_scalars, scalars, num * sizeof(BIGNUM *)); | 
 |         new_scalars[num] = scalar; | 
 |         memcpy(new_points, points, num * sizeof(EC_POINT *)); | 
 |         new_points[num] = generator; | 
 |  | 
 |         scalars = new_scalars; | 
 |         points = new_points; | 
 |         num++; | 
 |     } | 
 |  | 
 |     if (num) { | 
 |         P256_POINT *out = &t.p; | 
 |         if (p_is_infinity) | 
 |             out = &p.p; | 
 |  | 
 |         if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx)) | 
 |             goto err; | 
 |  | 
 |         if (!p_is_infinity) | 
 |             ecp_nistz256_point_add(&p.p, &p.p, out); | 
 |     } | 
 |  | 
 |     /* Not constant-time, but we're only operating on the public output. */ | 
 |     if (!bn_set_words(r->X, p.p.X, P256_LIMBS) || | 
 |         !bn_set_words(r->Y, p.p.Y, P256_LIMBS) || | 
 |         !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) { | 
 |         goto err; | 
 |     } | 
 |     r->Z_is_one = is_one(r->Z) & 1; | 
 |  | 
 |     ret = 1; | 
 |  | 
 | err: | 
 |     if (ctx) | 
 |         BN_CTX_end(ctx); | 
 |     BN_CTX_free(new_ctx); | 
 |     OPENSSL_free(new_points); | 
 |     OPENSSL_free(new_scalars); | 
 |     return ret; | 
 | } | 
 |  | 
 | __owur static int ecp_nistz256_get_affine(const EC_GROUP *group, | 
 |                                           const EC_POINT *point, | 
 |                                           BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | 
 | { | 
 |     BN_ULONG z_inv2[P256_LIMBS]; | 
 |     BN_ULONG z_inv3[P256_LIMBS]; | 
 |     BN_ULONG x_aff[P256_LIMBS]; | 
 |     BN_ULONG y_aff[P256_LIMBS]; | 
 |     BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS]; | 
 |     BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS]; | 
 |  | 
 |     if (EC_POINT_is_at_infinity(group, point)) { | 
 |         ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) || | 
 |         !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) || | 
 |         !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) { | 
 |         ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     ecp_nistz256_mod_inverse(z_inv3, point_z); | 
 |     ecp_nistz256_sqr_mont(z_inv2, z_inv3); | 
 |     ecp_nistz256_mul_mont(x_aff, z_inv2, point_x); | 
 |  | 
 |     if (x != NULL) { | 
 |         ecp_nistz256_from_mont(x_ret, x_aff); | 
 |         if (!bn_set_words(x, x_ret, P256_LIMBS)) | 
 |             return 0; | 
 |     } | 
 |  | 
 |     if (y != NULL) { | 
 |         ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2); | 
 |         ecp_nistz256_mul_mont(y_aff, z_inv3, point_y); | 
 |         ecp_nistz256_from_mont(y_ret, y_aff); | 
 |         if (!bn_set_words(y, y_ret, P256_LIMBS)) | 
 |             return 0; | 
 |     } | 
 |  | 
 |     return 1; | 
 | } | 
 |  | 
 | static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group) | 
 | { | 
 |     NISTZ256_PRE_COMP *ret = NULL; | 
 |  | 
 |     if (!group) | 
 |         return NULL; | 
 |  | 
 |     ret = OPENSSL_zalloc(sizeof(*ret)); | 
 |  | 
 |     if (ret == NULL) { | 
 |         ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | 
 |         return ret; | 
 |     } | 
 |  | 
 |     ret->group = group; | 
 |     ret->w = 6;                 /* default */ | 
 |     ret->references = 1; | 
 |  | 
 |     ret->lock = CRYPTO_THREAD_lock_new(); | 
 |     if (ret->lock == NULL) { | 
 |         ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | 
 |         OPENSSL_free(ret); | 
 |         return NULL; | 
 |     } | 
 |     return ret; | 
 | } | 
 |  | 
 | NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p) | 
 | { | 
 |     int i; | 
 |     if (p != NULL) | 
 |         CRYPTO_UP_REF(&p->references, &i, p->lock); | 
 |     return p; | 
 | } | 
 |  | 
 | void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre) | 
 | { | 
 |     int i; | 
 |  | 
 |     if (pre == NULL) | 
 |         return; | 
 |  | 
 |     CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); | 
 |     REF_PRINT_COUNT("EC_nistz256", x); | 
 |     if (i > 0) | 
 |         return; | 
 |     REF_ASSERT_ISNT(i < 0); | 
 |  | 
 |     OPENSSL_free(pre->precomp_storage); | 
 |     CRYPTO_THREAD_lock_free(pre->lock); | 
 |     OPENSSL_free(pre); | 
 | } | 
 |  | 
 |  | 
 | static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group) | 
 | { | 
 |     /* There is a hard-coded table for the default generator. */ | 
 |     const EC_POINT *generator = EC_GROUP_get0_generator(group); | 
 |  | 
 |     if (generator != NULL && ecp_nistz256_is_affine_G(generator)) { | 
 |         /* There is a hard-coded table for the default generator. */ | 
 |         return 1; | 
 |     } | 
 |  | 
 |     return HAVEPRECOMP(group, nistz256); | 
 | } | 
 |  | 
 | #if defined(__x86_64) || defined(__x86_64__) || \ | 
 |     defined(_M_AMD64) || defined(_M_X64) || \ | 
 |     defined(__powerpc64__) || defined(_ARCH_PP64) || \ | 
 |     defined(__aarch64__) | 
 | /* | 
 |  * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P) | 
 |  */ | 
 | void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS], | 
 |                                const BN_ULONG a[P256_LIMBS], | 
 |                                const BN_ULONG b[P256_LIMBS]); | 
 | void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS], | 
 |                                const BN_ULONG a[P256_LIMBS], | 
 |                                int rep); | 
 |  | 
 | static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r, | 
 |                                     BIGNUM *x, BN_CTX *ctx) | 
 | { | 
 |     /* RR = 2^512 mod ord(p256) */ | 
 |     static const BN_ULONG RR[P256_LIMBS]  = { | 
 |         TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6), | 
 |         TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620) | 
 |     }; | 
 |     /* The constant 1 (unlike ONE that is one in Montgomery representation) */ | 
 |     static const BN_ULONG one[P256_LIMBS] = { | 
 |         TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0) | 
 |     }; | 
 |     /* | 
 |      * We don't use entry 0 in the table, so we omit it and address | 
 |      * with -1 offset. | 
 |      */ | 
 |     BN_ULONG table[15][P256_LIMBS]; | 
 |     BN_ULONG out[P256_LIMBS], t[P256_LIMBS]; | 
 |     int i, ret = 0; | 
 |     enum { | 
 |         i_1 = 0, i_10,     i_11,     i_101, i_111, i_1010, i_1111, | 
 |         i_10101, i_101010, i_101111, i_x6,  i_x8,  i_x16,  i_x32 | 
 |     }; | 
 |  | 
 |     /* | 
 |      * Catch allocation failure early. | 
 |      */ | 
 |     if (bn_wexpand(r, P256_LIMBS) == NULL) { | 
 |         ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB); | 
 |         goto err; | 
 |     } | 
 |  | 
 |     if ((BN_num_bits(x) > 256) || BN_is_negative(x)) { | 
 |         BIGNUM *tmp; | 
 |  | 
 |         if ((tmp = BN_CTX_get(ctx)) == NULL | 
 |             || !BN_nnmod(tmp, x, group->order, ctx)) { | 
 |             ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB); | 
 |             goto err; | 
 |         } | 
 |         x = tmp; | 
 |     } | 
 |  | 
 |     if (!ecp_nistz256_bignum_to_field_elem(t, x)) { | 
 |         ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, EC_R_COORDINATES_OUT_OF_RANGE); | 
 |         goto err; | 
 |     } | 
 |  | 
 |     ecp_nistz256_ord_mul_mont(table[0], t, RR); | 
 | #if 0 | 
 |     /* | 
 |      * Original sparse-then-fixed-window algorithm, retained for reference. | 
 |      */ | 
 |     for (i = 2; i < 16; i += 2) { | 
 |         ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1); | 
 |         ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]); | 
 |     } | 
 |  | 
 |     /* | 
 |      * The top 128bit of the exponent are highly redudndant, so we | 
 |      * perform an optimized flow | 
 |      */ | 
 |     ecp_nistz256_ord_sqr_mont(t, table[15-1], 4);   /* f0 */ | 
 |     ecp_nistz256_ord_mul_mont(t, t, table[15-1]);   /* ff */ | 
 |  | 
 |     ecp_nistz256_ord_sqr_mont(out, t, 8);           /* ff00 */ | 
 |     ecp_nistz256_ord_mul_mont(out, out, t);         /* ffff */ | 
 |  | 
 |     ecp_nistz256_ord_sqr_mont(t, out, 16);          /* ffff0000 */ | 
 |     ecp_nistz256_ord_mul_mont(t, t, out);           /* ffffffff */ | 
 |  | 
 |     ecp_nistz256_ord_sqr_mont(out, t, 64);          /* ffffffff0000000000000000 */ | 
 |     ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffff */ | 
 |  | 
 |     ecp_nistz256_ord_sqr_mont(out, out, 32);        /* ffffffff00000000ffffffff00000000 */ | 
 |     ecp_nistz256_ord_mul_mont(out, out, t);         /* ffffffff00000000ffffffffffffffff */ | 
 |  | 
 |     /* | 
 |      * The bottom 128 bit of the exponent are processed with fixed 4-bit window | 
 |      */ | 
 |     for(i = 0; i < 32; i++) { | 
 |         /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2), | 
 |          * split into nibbles */ | 
 |         static const unsigned char expLo[32]  = { | 
 |             0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4, | 
 |             0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf | 
 |         }; | 
 |  | 
 |         ecp_nistz256_ord_sqr_mont(out, out, 4); | 
 |         /* The exponent is public, no need in constant-time access */ | 
 |         ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]); | 
 |     } | 
 | #else | 
 |     /* | 
 |      * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion | 
 |      * | 
 |      * Even though this code path spares 12 squarings, 4.5%, and 13 | 
 |      * multiplications, 25%, on grand scale sign operation is not that | 
 |      * much faster, not more that 2%... | 
 |      */ | 
 |  | 
 |     /* pre-calculate powers */ | 
 |     ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1); | 
 |  | 
 |     ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]); | 
 |  | 
 |     ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]); | 
 |  | 
 |     ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]); | 
 |  | 
 |     ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1); | 
 |  | 
 |     ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]); | 
 |  | 
 |     ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1); | 
 |     ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]); | 
 |  | 
 |     ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1); | 
 |  | 
 |     ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]); | 
 |  | 
 |     ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]); | 
 |  | 
 |     ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2); | 
 |     ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]); | 
 |  | 
 |     ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8); | 
 |     ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]); | 
 |  | 
 |     ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16); | 
 |     ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]); | 
 |  | 
 |     /* calculations */ | 
 |     ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64); | 
 |     ecp_nistz256_ord_mul_mont(out, out, table[i_x32]); | 
 |  | 
 |     for (i = 0; i < 27; i++) { | 
 |         static const struct { unsigned char p, i; } chain[27] = { | 
 |             { 32, i_x32 }, { 6,  i_101111 }, { 5,  i_111    }, | 
 |             { 4,  i_11  }, { 5,  i_1111   }, { 5,  i_10101  }, | 
 |             { 4,  i_101 }, { 3,  i_101    }, { 3,  i_101    }, | 
 |             { 5,  i_111 }, { 9,  i_101111 }, { 6,  i_1111   }, | 
 |             { 2,  i_1   }, { 5,  i_1      }, { 6,  i_1111   }, | 
 |             { 5,  i_111 }, { 4,  i_111    }, { 5,  i_111    }, | 
 |             { 5,  i_101 }, { 3,  i_11     }, { 10, i_101111 }, | 
 |             { 2,  i_11  }, { 5,  i_11     }, { 5,  i_11     }, | 
 |             { 3,  i_1   }, { 7,  i_10101  }, { 6,  i_1111   } | 
 |         }; | 
 |  | 
 |         ecp_nistz256_ord_sqr_mont(out, out, chain[i].p); | 
 |         ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]); | 
 |     } | 
 | #endif | 
 |     ecp_nistz256_ord_mul_mont(out, out, one); | 
 |  | 
 |     /* | 
 |      * Can't fail, but check return code to be consistent anyway. | 
 |      */ | 
 |     if (!bn_set_words(r, out, P256_LIMBS)) | 
 |         goto err; | 
 |  | 
 |     ret = 1; | 
 | err: | 
 |     return ret; | 
 | } | 
 | #else | 
 | # define ecp_nistz256_inv_mod_ord NULL | 
 | #endif | 
 |  | 
 | const EC_METHOD *EC_GFp_nistz256_method(void) | 
 | { | 
 |     static const EC_METHOD ret = { | 
 |         EC_FLAGS_DEFAULT_OCT, | 
 |         NID_X9_62_prime_field, | 
 |         ec_GFp_mont_group_init, | 
 |         ec_GFp_mont_group_finish, | 
 |         ec_GFp_mont_group_clear_finish, | 
 |         ec_GFp_mont_group_copy, | 
 |         ec_GFp_mont_group_set_curve, | 
 |         ec_GFp_simple_group_get_curve, | 
 |         ec_GFp_simple_group_get_degree, | 
 |         ec_group_simple_order_bits, | 
 |         ec_GFp_simple_group_check_discriminant, | 
 |         ec_GFp_simple_point_init, | 
 |         ec_GFp_simple_point_finish, | 
 |         ec_GFp_simple_point_clear_finish, | 
 |         ec_GFp_simple_point_copy, | 
 |         ec_GFp_simple_point_set_to_infinity, | 
 |         ec_GFp_simple_set_Jprojective_coordinates_GFp, | 
 |         ec_GFp_simple_get_Jprojective_coordinates_GFp, | 
 |         ec_GFp_simple_point_set_affine_coordinates, | 
 |         ecp_nistz256_get_affine, | 
 |         0, 0, 0, | 
 |         ec_GFp_simple_add, | 
 |         ec_GFp_simple_dbl, | 
 |         ec_GFp_simple_invert, | 
 |         ec_GFp_simple_is_at_infinity, | 
 |         ec_GFp_simple_is_on_curve, | 
 |         ec_GFp_simple_cmp, | 
 |         ec_GFp_simple_make_affine, | 
 |         ec_GFp_simple_points_make_affine, | 
 |         ecp_nistz256_points_mul,                    /* mul */ | 
 |         ecp_nistz256_mult_precompute,               /* precompute_mult */ | 
 |         ecp_nistz256_window_have_precompute_mult,   /* have_precompute_mult */ | 
 |         ec_GFp_mont_field_mul, | 
 |         ec_GFp_mont_field_sqr, | 
 |         0,                                          /* field_div */ | 
 |         ec_GFp_mont_field_encode, | 
 |         ec_GFp_mont_field_decode, | 
 |         ec_GFp_mont_field_set_to_one, | 
 |         ec_key_simple_priv2oct, | 
 |         ec_key_simple_oct2priv, | 
 |         0, /* set private */ | 
 |         ec_key_simple_generate_key, | 
 |         ec_key_simple_check_key, | 
 |         ec_key_simple_generate_public_key, | 
 |         0, /* keycopy */ | 
 |         0, /* keyfinish */ | 
 |         ecdh_simple_compute_key, | 
 |         ecp_nistz256_inv_mod_ord                    /* can be #define-d NULL */ | 
 |     }; | 
 |  | 
 |     return &ret; | 
 | } |