blob: 649d25d6c6d0fe738a67d90fc5ef617649f315f7 [file] [log] [blame]
/*
* Copyright 2004-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* SHA256 low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <openssl/opensslconf.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/sha.h>
#include <openssl/opensslv.h>
#include "internal/endian.h"
int SHA224_Init(SHA256_CTX *c)
{
memset(c, 0, sizeof(*c));
c->h[0] = 0xc1059ed8UL;
c->h[1] = 0x367cd507UL;
c->h[2] = 0x3070dd17UL;
c->h[3] = 0xf70e5939UL;
c->h[4] = 0xffc00b31UL;
c->h[5] = 0x68581511UL;
c->h[6] = 0x64f98fa7UL;
c->h[7] = 0xbefa4fa4UL;
c->md_len = SHA224_DIGEST_LENGTH;
return 1;
}
int SHA256_Init(SHA256_CTX *c)
{
memset(c, 0, sizeof(*c));
c->h[0] = 0x6a09e667UL;
c->h[1] = 0xbb67ae85UL;
c->h[2] = 0x3c6ef372UL;
c->h[3] = 0xa54ff53aUL;
c->h[4] = 0x510e527fUL;
c->h[5] = 0x9b05688cUL;
c->h[6] = 0x1f83d9abUL;
c->h[7] = 0x5be0cd19UL;
c->md_len = SHA256_DIGEST_LENGTH;
return 1;
}
int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
{
return SHA256_Update(c, data, len);
}
int SHA224_Final(unsigned char *md, SHA256_CTX *c)
{
return SHA256_Final(md, c);
}
#define DATA_ORDER_IS_BIG_ENDIAN
#define HASH_LONG SHA_LONG
#define HASH_CTX SHA256_CTX
#define HASH_CBLOCK SHA_CBLOCK
/*
* Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
* default: case below covers for it. It's not clear however if it's
* permitted to truncate to amount of bytes not divisible by 4. I bet not,
* but if it is, then default: case shall be extended. For reference.
* Idea behind separate cases for pre-defined lengths is to let the
* compiler decide if it's appropriate to unroll small loops.
*/
#define HASH_MAKE_STRING(c,s) do { \
unsigned long ll; \
unsigned int nn; \
switch ((c)->md_len) \
{ case SHA224_DIGEST_LENGTH: \
for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \
{ ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
break; \
case SHA256_DIGEST_LENGTH: \
for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \
{ ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
break; \
default: \
if ((c)->md_len > SHA256_DIGEST_LENGTH) \
return 0; \
for (nn=0;nn<(c)->md_len/4;nn++) \
{ ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
break; \
} \
} while (0)
#define HASH_UPDATE SHA256_Update
#define HASH_TRANSFORM SHA256_Transform
#define HASH_FINAL SHA256_Final
#define HASH_BLOCK_DATA_ORDER sha256_block_data_order
#ifndef SHA256_ASM
static
#endif
void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num);
#include "crypto/md32_common.h"
#ifndef SHA256_ASM
static const SHA_LONG K256[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
# ifndef PEDANTIC
# if defined(__GNUC__) && __GNUC__>=2 && \
!defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
# if defined(__riscv_zknh)
# define Sigma0(x) ({ MD32_REG_T ret; \
asm ("sha256sum0 %0, %1" \
: "=r"(ret) \
: "r"(x)); ret; })
# define Sigma1(x) ({ MD32_REG_T ret; \
asm ("sha256sum1 %0, %1" \
: "=r"(ret) \
: "r"(x)); ret; })
# define sigma0(x) ({ MD32_REG_T ret; \
asm ("sha256sig0 %0, %1" \
: "=r"(ret) \
: "r"(x)); ret; })
# define sigma1(x) ({ MD32_REG_T ret; \
asm ("sha256sig1 %0, %1" \
: "=r"(ret) \
: "r"(x)); ret; })
# endif
# if defined(__riscv_zbt) || defined(__riscv_zpn)
# define Ch(x,y,z) ({ MD32_REG_T ret; \
asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\
: "=r"(ret) \
: "r"(x), "r"(y), "r"(z)); ret; })
# define Maj(x,y,z) ({ MD32_REG_T ret; \
asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\
: "=r"(ret) \
: "r"(x^z), "r"(y), "r"(x)); ret; })
# endif
# endif
# endif
/*
* FIPS specification refers to right rotations, while our ROTATE macro
* is left one. This is why you might notice that rotation coefficients
* differ from those observed in FIPS document by 32-N...
*/
# ifndef Sigma0
# define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
# endif
# ifndef Sigma1
# define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
# endif
# ifndef sigma0
# define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
# endif
# ifndef sigma1
# define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
# endif
# ifndef Ch
# define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
# endif
# ifndef Maj
# define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
# endif
# ifdef OPENSSL_SMALL_FOOTPRINT
static void sha256_block_data_order(SHA256_CTX *ctx, const void *in,
size_t num)
{
unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1, T2;
SHA_LONG X[16], l;
int i;
const unsigned char *data = in;
while (num--) {
a = ctx->h[0];
b = ctx->h[1];
c = ctx->h[2];
d = ctx->h[3];
e = ctx->h[4];
f = ctx->h[5];
g = ctx->h[6];
h = ctx->h[7];
for (i = 0; i < 16; i++) {
(void)HOST_c2l(data, l);
T1 = X[i] = l;
T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i];
T2 = Sigma0(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
}
for (; i < 64; i++) {
s0 = X[(i + 1) & 0x0f];
s0 = sigma0(s0);
s1 = X[(i + 14) & 0x0f];
s1 = sigma1(s1);
T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf];
T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i];
T2 = Sigma0(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
}
ctx->h[0] += a;
ctx->h[1] += b;
ctx->h[2] += c;
ctx->h[3] += d;
ctx->h[4] += e;
ctx->h[5] += f;
ctx->h[6] += g;
ctx->h[7] += h;
}
}
# else
# define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \
h = Sigma0(a) + Maj(a,b,c); \
d += T1; h += T1; } while (0)
# define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \
s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
static void sha256_block_data_order(SHA256_CTX *ctx, const void *in,
size_t num)
{
unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1;
SHA_LONG X[16];
int i;
const unsigned char *data = in;
DECLARE_IS_ENDIAN;
while (num--) {
a = ctx->h[0];
b = ctx->h[1];
c = ctx->h[2];
d = ctx->h[3];
e = ctx->h[4];
f = ctx->h[5];
g = ctx->h[6];
h = ctx->h[7];
if (!IS_LITTLE_ENDIAN && sizeof(SHA_LONG) == 4
&& ((size_t)in % 4) == 0) {
const SHA_LONG *W = (const SHA_LONG *)data;
T1 = X[0] = W[0];
ROUND_00_15(0, a, b, c, d, e, f, g, h);
T1 = X[1] = W[1];
ROUND_00_15(1, h, a, b, c, d, e, f, g);
T1 = X[2] = W[2];
ROUND_00_15(2, g, h, a, b, c, d, e, f);
T1 = X[3] = W[3];
ROUND_00_15(3, f, g, h, a, b, c, d, e);
T1 = X[4] = W[4];
ROUND_00_15(4, e, f, g, h, a, b, c, d);
T1 = X[5] = W[5];
ROUND_00_15(5, d, e, f, g, h, a, b, c);
T1 = X[6] = W[6];
ROUND_00_15(6, c, d, e, f, g, h, a, b);
T1 = X[7] = W[7];
ROUND_00_15(7, b, c, d, e, f, g, h, a);
T1 = X[8] = W[8];
ROUND_00_15(8, a, b, c, d, e, f, g, h);
T1 = X[9] = W[9];
ROUND_00_15(9, h, a, b, c, d, e, f, g);
T1 = X[10] = W[10];
ROUND_00_15(10, g, h, a, b, c, d, e, f);
T1 = X[11] = W[11];
ROUND_00_15(11, f, g, h, a, b, c, d, e);
T1 = X[12] = W[12];
ROUND_00_15(12, e, f, g, h, a, b, c, d);
T1 = X[13] = W[13];
ROUND_00_15(13, d, e, f, g, h, a, b, c);
T1 = X[14] = W[14];
ROUND_00_15(14, c, d, e, f, g, h, a, b);
T1 = X[15] = W[15];
ROUND_00_15(15, b, c, d, e, f, g, h, a);
data += SHA256_CBLOCK;
} else {
SHA_LONG l;
(void)HOST_c2l(data, l);
T1 = X[0] = l;
ROUND_00_15(0, a, b, c, d, e, f, g, h);
(void)HOST_c2l(data, l);
T1 = X[1] = l;
ROUND_00_15(1, h, a, b, c, d, e, f, g);
(void)HOST_c2l(data, l);
T1 = X[2] = l;
ROUND_00_15(2, g, h, a, b, c, d, e, f);
(void)HOST_c2l(data, l);
T1 = X[3] = l;
ROUND_00_15(3, f, g, h, a, b, c, d, e);
(void)HOST_c2l(data, l);
T1 = X[4] = l;
ROUND_00_15(4, e, f, g, h, a, b, c, d);
(void)HOST_c2l(data, l);
T1 = X[5] = l;
ROUND_00_15(5, d, e, f, g, h, a, b, c);
(void)HOST_c2l(data, l);
T1 = X[6] = l;
ROUND_00_15(6, c, d, e, f, g, h, a, b);
(void)HOST_c2l(data, l);
T1 = X[7] = l;
ROUND_00_15(7, b, c, d, e, f, g, h, a);
(void)HOST_c2l(data, l);
T1 = X[8] = l;
ROUND_00_15(8, a, b, c, d, e, f, g, h);
(void)HOST_c2l(data, l);
T1 = X[9] = l;
ROUND_00_15(9, h, a, b, c, d, e, f, g);
(void)HOST_c2l(data, l);
T1 = X[10] = l;
ROUND_00_15(10, g, h, a, b, c, d, e, f);
(void)HOST_c2l(data, l);
T1 = X[11] = l;
ROUND_00_15(11, f, g, h, a, b, c, d, e);
(void)HOST_c2l(data, l);
T1 = X[12] = l;
ROUND_00_15(12, e, f, g, h, a, b, c, d);
(void)HOST_c2l(data, l);
T1 = X[13] = l;
ROUND_00_15(13, d, e, f, g, h, a, b, c);
(void)HOST_c2l(data, l);
T1 = X[14] = l;
ROUND_00_15(14, c, d, e, f, g, h, a, b);
(void)HOST_c2l(data, l);
T1 = X[15] = l;
ROUND_00_15(15, b, c, d, e, f, g, h, a);
}
for (i = 16; i < 64; i += 8) {
ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X);
ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X);
ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X);
ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X);
ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X);
ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X);
ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X);
ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X);
}
ctx->h[0] += a;
ctx->h[1] += b;
ctx->h[2] += c;
ctx->h[3] += d;
ctx->h[4] += e;
ctx->h[5] += f;
ctx->h[6] += g;
ctx->h[7] += h;
}
}
# endif
#endif /* SHA256_ASM */