|  | /* | 
|  | * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | /* ==================================================================== | 
|  | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | 
|  | * Portions of this software developed by SUN MICROSYSTEMS, INC., | 
|  | * and contributed to the OpenSSL project. | 
|  | */ | 
|  |  | 
|  | #include <string.h> | 
|  | #include <openssl/err.h> | 
|  |  | 
|  | #include "internal/cryptlib.h" | 
|  | #include "internal/bn_int.h" | 
|  | #include "ec_lcl.h" | 
|  |  | 
|  | /* | 
|  | * This file implements the wNAF-based interleaving multi-exponentiation method | 
|  | * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>); | 
|  | * for multiplication with precomputation, we use wNAF splitting | 
|  | * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>). | 
|  | */ | 
|  |  | 
|  | /* structure for precomputed multiples of the generator */ | 
|  | struct ec_pre_comp_st { | 
|  | const EC_GROUP *group;      /* parent EC_GROUP object */ | 
|  | size_t blocksize;           /* block size for wNAF splitting */ | 
|  | size_t numblocks;           /* max. number of blocks for which we have | 
|  | * precomputation */ | 
|  | size_t w;                   /* window size */ | 
|  | EC_POINT **points;          /* array with pre-calculated multiples of | 
|  | * generator: 'num' pointers to EC_POINT | 
|  | * objects followed by a NULL */ | 
|  | size_t num;                 /* numblocks * 2^(w-1) */ | 
|  | CRYPTO_REF_COUNT references; | 
|  | CRYPTO_RWLOCK *lock; | 
|  | }; | 
|  |  | 
|  | static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group) | 
|  | { | 
|  | EC_PRE_COMP *ret = NULL; | 
|  |  | 
|  | if (!group) | 
|  | return NULL; | 
|  |  | 
|  | ret = OPENSSL_zalloc(sizeof(*ret)); | 
|  | if (ret == NULL) { | 
|  | ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret->group = group; | 
|  | ret->blocksize = 8;         /* default */ | 
|  | ret->w = 4;                 /* default */ | 
|  | ret->references = 1; | 
|  |  | 
|  | ret->lock = CRYPTO_THREAD_lock_new(); | 
|  | if (ret->lock == NULL) { | 
|  | ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); | 
|  | OPENSSL_free(ret); | 
|  | return NULL; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre) | 
|  | { | 
|  | int i; | 
|  | if (pre != NULL) | 
|  | CRYPTO_UP_REF(&pre->references, &i, pre->lock); | 
|  | return pre; | 
|  | } | 
|  |  | 
|  | void EC_ec_pre_comp_free(EC_PRE_COMP *pre) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (pre == NULL) | 
|  | return; | 
|  |  | 
|  | CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); | 
|  | REF_PRINT_COUNT("EC_ec", pre); | 
|  | if (i > 0) | 
|  | return; | 
|  | REF_ASSERT_ISNT(i < 0); | 
|  |  | 
|  | if (pre->points != NULL) { | 
|  | EC_POINT **pts; | 
|  |  | 
|  | for (pts = pre->points; *pts != NULL; pts++) | 
|  | EC_POINT_free(*pts); | 
|  | OPENSSL_free(pre->points); | 
|  | } | 
|  | CRYPTO_THREAD_lock_free(pre->lock); | 
|  | OPENSSL_free(pre); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO: table should be optimised for the wNAF-based implementation, | 
|  | * sometimes smaller windows will give better performance (thus the | 
|  | * boundaries should be increased) | 
|  | */ | 
|  | #define EC_window_bits_for_scalar_size(b) \ | 
|  | ((size_t) \ | 
|  | ((b) >= 2000 ? 6 : \ | 
|  | (b) >=  800 ? 5 : \ | 
|  | (b) >=  300 ? 4 : \ | 
|  | (b) >=   70 ? 3 : \ | 
|  | (b) >=   20 ? 2 : \ | 
|  | 1)) | 
|  |  | 
|  | /*- | 
|  | * Compute | 
|  | *      \sum scalars[i]*points[i], | 
|  | * also including | 
|  | *      scalar*generator | 
|  | * in the addition if scalar != NULL | 
|  | */ | 
|  | int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | 
|  | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], | 
|  | BN_CTX *ctx) | 
|  | { | 
|  | BN_CTX *new_ctx = NULL; | 
|  | const EC_POINT *generator = NULL; | 
|  | EC_POINT *tmp = NULL; | 
|  | size_t totalnum; | 
|  | size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */ | 
|  | size_t pre_points_per_block = 0; | 
|  | size_t i, j; | 
|  | int k; | 
|  | int r_is_inverted = 0; | 
|  | int r_is_at_infinity = 1; | 
|  | size_t *wsize = NULL;       /* individual window sizes */ | 
|  | signed char **wNAF = NULL;  /* individual wNAFs */ | 
|  | size_t *wNAF_len = NULL; | 
|  | size_t max_len = 0; | 
|  | size_t num_val; | 
|  | EC_POINT **val = NULL;      /* precomputation */ | 
|  | EC_POINT **v; | 
|  | EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or | 
|  | * 'pre_comp->points' */ | 
|  | const EC_PRE_COMP *pre_comp = NULL; | 
|  | int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be | 
|  | * treated like other scalars, i.e. | 
|  | * precomputation is not available */ | 
|  | int ret = 0; | 
|  |  | 
|  | if (group->meth != r->meth) { | 
|  | ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((scalar == NULL) && (num == 0)) { | 
|  | return EC_POINT_set_to_infinity(group, r); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num; i++) { | 
|  | if (group->meth != points[i]->meth) { | 
|  | ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (scalar != NULL) { | 
|  | generator = EC_GROUP_get0_generator(group); | 
|  | if (generator == NULL) { | 
|  | ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* look if we can use precomputed multiples of generator */ | 
|  |  | 
|  | pre_comp = group->pre_comp.ec; | 
|  | if (pre_comp && pre_comp->numblocks | 
|  | && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == | 
|  | 0)) { | 
|  | blocksize = pre_comp->blocksize; | 
|  |  | 
|  | /* | 
|  | * determine maximum number of blocks that wNAF splitting may | 
|  | * yield (NB: maximum wNAF length is bit length plus one) | 
|  | */ | 
|  | numblocks = (BN_num_bits(scalar) / blocksize) + 1; | 
|  |  | 
|  | /* | 
|  | * we cannot use more blocks than we have precomputation for | 
|  | */ | 
|  | if (numblocks > pre_comp->numblocks) | 
|  | numblocks = pre_comp->numblocks; | 
|  |  | 
|  | pre_points_per_block = (size_t)1 << (pre_comp->w - 1); | 
|  |  | 
|  | /* check that pre_comp looks sane */ | 
|  | if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) { | 
|  | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  | } else { | 
|  | /* can't use precomputation */ | 
|  | pre_comp = NULL; | 
|  | numblocks = 1; | 
|  | num_scalar = 1;     /* treat 'scalar' like 'num'-th element of | 
|  | * 'scalars' */ | 
|  | } | 
|  | } | 
|  |  | 
|  | totalnum = num + numblocks; | 
|  |  | 
|  | wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]); | 
|  | wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]); | 
|  | wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space | 
|  | * for pivot */ | 
|  | val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]); | 
|  |  | 
|  | /* Ensure wNAF is initialised in case we end up going to err */ | 
|  | if (wNAF != NULL) | 
|  | wNAF[0] = NULL;         /* preliminary pivot */ | 
|  |  | 
|  | if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) { | 
|  | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * num_val will be the total number of temporarily precomputed points | 
|  | */ | 
|  | num_val = 0; | 
|  |  | 
|  | for (i = 0; i < num + num_scalar; i++) { | 
|  | size_t bits; | 
|  |  | 
|  | bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); | 
|  | wsize[i] = EC_window_bits_for_scalar_size(bits); | 
|  | num_val += (size_t)1 << (wsize[i] - 1); | 
|  | wNAF[i + 1] = NULL;     /* make sure we always have a pivot */ | 
|  | wNAF[i] = | 
|  | bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], | 
|  | &wNAF_len[i]); | 
|  | if (wNAF[i] == NULL) | 
|  | goto err; | 
|  | if (wNAF_len[i] > max_len) | 
|  | max_len = wNAF_len[i]; | 
|  | } | 
|  |  | 
|  | if (numblocks) { | 
|  | /* we go here iff scalar != NULL */ | 
|  |  | 
|  | if (pre_comp == NULL) { | 
|  | if (num_scalar != 1) { | 
|  | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  | /* we have already generated a wNAF for 'scalar' */ | 
|  | } else { | 
|  | signed char *tmp_wNAF = NULL; | 
|  | size_t tmp_len = 0; | 
|  |  | 
|  | if (num_scalar != 0) { | 
|  | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * use the window size for which we have precomputation | 
|  | */ | 
|  | wsize[num] = pre_comp->w; | 
|  | tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len); | 
|  | if (!tmp_wNAF) | 
|  | goto err; | 
|  |  | 
|  | if (tmp_len <= max_len) { | 
|  | /* | 
|  | * One of the other wNAFs is at least as long as the wNAF | 
|  | * belonging to the generator, so wNAF splitting will not buy | 
|  | * us anything. | 
|  | */ | 
|  |  | 
|  | numblocks = 1; | 
|  | totalnum = num + 1; /* don't use wNAF splitting */ | 
|  | wNAF[num] = tmp_wNAF; | 
|  | wNAF[num + 1] = NULL; | 
|  | wNAF_len[num] = tmp_len; | 
|  | /* | 
|  | * pre_comp->points starts with the points that we need here: | 
|  | */ | 
|  | val_sub[num] = pre_comp->points; | 
|  | } else { | 
|  | /* | 
|  | * don't include tmp_wNAF directly into wNAF array - use wNAF | 
|  | * splitting and include the blocks | 
|  | */ | 
|  |  | 
|  | signed char *pp; | 
|  | EC_POINT **tmp_points; | 
|  |  | 
|  | if (tmp_len < numblocks * blocksize) { | 
|  | /* | 
|  | * possibly we can do with fewer blocks than estimated | 
|  | */ | 
|  | numblocks = (tmp_len + blocksize - 1) / blocksize; | 
|  | if (numblocks > pre_comp->numblocks) { | 
|  | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | 
|  | OPENSSL_free(tmp_wNAF); | 
|  | goto err; | 
|  | } | 
|  | totalnum = num + numblocks; | 
|  | } | 
|  |  | 
|  | /* split wNAF in 'numblocks' parts */ | 
|  | pp = tmp_wNAF; | 
|  | tmp_points = pre_comp->points; | 
|  |  | 
|  | for (i = num; i < totalnum; i++) { | 
|  | if (i < totalnum - 1) { | 
|  | wNAF_len[i] = blocksize; | 
|  | if (tmp_len < blocksize) { | 
|  | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | 
|  | OPENSSL_free(tmp_wNAF); | 
|  | goto err; | 
|  | } | 
|  | tmp_len -= blocksize; | 
|  | } else | 
|  | /* | 
|  | * last block gets whatever is left (this could be | 
|  | * more or less than 'blocksize'!) | 
|  | */ | 
|  | wNAF_len[i] = tmp_len; | 
|  |  | 
|  | wNAF[i + 1] = NULL; | 
|  | wNAF[i] = OPENSSL_malloc(wNAF_len[i]); | 
|  | if (wNAF[i] == NULL) { | 
|  | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | 
|  | OPENSSL_free(tmp_wNAF); | 
|  | goto err; | 
|  | } | 
|  | memcpy(wNAF[i], pp, wNAF_len[i]); | 
|  | if (wNAF_len[i] > max_len) | 
|  | max_len = wNAF_len[i]; | 
|  |  | 
|  | if (*tmp_points == NULL) { | 
|  | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | 
|  | OPENSSL_free(tmp_wNAF); | 
|  | goto err; | 
|  | } | 
|  | val_sub[i] = tmp_points; | 
|  | tmp_points += pre_points_per_block; | 
|  | pp += blocksize; | 
|  | } | 
|  | OPENSSL_free(tmp_wNAF); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All points we precompute now go into a single array 'val'. | 
|  | * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a | 
|  | * subarray of 'pre_comp->points' if we already have precomputation. | 
|  | */ | 
|  | val = OPENSSL_malloc((num_val + 1) * sizeof val[0]); | 
|  | if (val == NULL) { | 
|  | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  | val[num_val] = NULL;        /* pivot element */ | 
|  |  | 
|  | /* allocate points for precomputation */ | 
|  | v = val; | 
|  | for (i = 0; i < num + num_scalar; i++) { | 
|  | val_sub[i] = v; | 
|  | for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) { | 
|  | *v = EC_POINT_new(group); | 
|  | if (*v == NULL) | 
|  | goto err; | 
|  | v++; | 
|  | } | 
|  | } | 
|  | if (!(v == val + num_val)) { | 
|  | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if ((tmp = EC_POINT_new(group)) == NULL) | 
|  | goto err; | 
|  |  | 
|  | /*- | 
|  | * prepare precomputed values: | 
|  | *    val_sub[i][0] :=     points[i] | 
|  | *    val_sub[i][1] := 3 * points[i] | 
|  | *    val_sub[i][2] := 5 * points[i] | 
|  | *    ... | 
|  | */ | 
|  | for (i = 0; i < num + num_scalar; i++) { | 
|  | if (i < num) { | 
|  | if (!EC_POINT_copy(val_sub[i][0], points[i])) | 
|  | goto err; | 
|  | } else { | 
|  | if (!EC_POINT_copy(val_sub[i][0], generator)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (wsize[i] > 1) { | 
|  | if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) | 
|  | goto err; | 
|  | for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) { | 
|  | if (!EC_POINT_add | 
|  | (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!EC_POINTs_make_affine(group, num_val, val, ctx)) | 
|  | goto err; | 
|  |  | 
|  | r_is_at_infinity = 1; | 
|  |  | 
|  | for (k = max_len - 1; k >= 0; k--) { | 
|  | if (!r_is_at_infinity) { | 
|  | if (!EC_POINT_dbl(group, r, r, ctx)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < totalnum; i++) { | 
|  | if (wNAF_len[i] > (size_t)k) { | 
|  | int digit = wNAF[i][k]; | 
|  | int is_neg; | 
|  |  | 
|  | if (digit) { | 
|  | is_neg = digit < 0; | 
|  |  | 
|  | if (is_neg) | 
|  | digit = -digit; | 
|  |  | 
|  | if (is_neg != r_is_inverted) { | 
|  | if (!r_is_at_infinity) { | 
|  | if (!EC_POINT_invert(group, r, ctx)) | 
|  | goto err; | 
|  | } | 
|  | r_is_inverted = !r_is_inverted; | 
|  | } | 
|  |  | 
|  | /* digit > 0 */ | 
|  |  | 
|  | if (r_is_at_infinity) { | 
|  | if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) | 
|  | goto err; | 
|  | r_is_at_infinity = 0; | 
|  | } else { | 
|  | if (!EC_POINT_add | 
|  | (group, r, r, val_sub[i][digit >> 1], ctx)) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (r_is_at_infinity) { | 
|  | if (!EC_POINT_set_to_infinity(group, r)) | 
|  | goto err; | 
|  | } else { | 
|  | if (r_is_inverted) | 
|  | if (!EC_POINT_invert(group, r, ctx)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_free(new_ctx); | 
|  | EC_POINT_free(tmp); | 
|  | OPENSSL_free(wsize); | 
|  | OPENSSL_free(wNAF_len); | 
|  | if (wNAF != NULL) { | 
|  | signed char **w; | 
|  |  | 
|  | for (w = wNAF; *w != NULL; w++) | 
|  | OPENSSL_free(*w); | 
|  |  | 
|  | OPENSSL_free(wNAF); | 
|  | } | 
|  | if (val != NULL) { | 
|  | for (v = val; *v != NULL; v++) | 
|  | EC_POINT_clear_free(*v); | 
|  |  | 
|  | OPENSSL_free(val); | 
|  | } | 
|  | OPENSSL_free(val_sub); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /*- | 
|  | * ec_wNAF_precompute_mult() | 
|  | * creates an EC_PRE_COMP object with preprecomputed multiples of the generator | 
|  | * for use with wNAF splitting as implemented in ec_wNAF_mul(). | 
|  | * | 
|  | * 'pre_comp->points' is an array of multiples of the generator | 
|  | * of the following form: | 
|  | * points[0] =     generator; | 
|  | * points[1] = 3 * generator; | 
|  | * ... | 
|  | * points[2^(w-1)-1] =     (2^(w-1)-1) * generator; | 
|  | * points[2^(w-1)]   =     2^blocksize * generator; | 
|  | * points[2^(w-1)+1] = 3 * 2^blocksize * generator; | 
|  | * ... | 
|  | * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator | 
|  | * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator | 
|  | * ... | 
|  | * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator | 
|  | * points[2^(w-1)*numblocks]       = NULL | 
|  | */ | 
|  | int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | 
|  | { | 
|  | const EC_POINT *generator; | 
|  | EC_POINT *tmp_point = NULL, *base = NULL, **var; | 
|  | BN_CTX *new_ctx = NULL; | 
|  | const BIGNUM *order; | 
|  | size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num; | 
|  | EC_POINT **points = NULL; | 
|  | EC_PRE_COMP *pre_comp; | 
|  | int ret = 0; | 
|  |  | 
|  | /* if there is an old EC_PRE_COMP object, throw it away */ | 
|  | EC_pre_comp_free(group); | 
|  | if ((pre_comp = ec_pre_comp_new(group)) == NULL) | 
|  | return 0; | 
|  |  | 
|  | generator = EC_GROUP_get0_generator(group); | 
|  | if (generator == NULL) { | 
|  | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  |  | 
|  | order = EC_GROUP_get0_order(group); | 
|  | if (order == NULL) | 
|  | goto err; | 
|  | if (BN_is_zero(order)) { | 
|  | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | bits = BN_num_bits(order); | 
|  | /* | 
|  | * The following parameters mean we precompute (approximately) one point | 
|  | * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other | 
|  | * bit lengths, other parameter combinations might provide better | 
|  | * efficiency. | 
|  | */ | 
|  | blocksize = 8; | 
|  | w = 4; | 
|  | if (EC_window_bits_for_scalar_size(bits) > w) { | 
|  | /* let's not make the window too small ... */ | 
|  | w = EC_window_bits_for_scalar_size(bits); | 
|  | } | 
|  |  | 
|  | numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks | 
|  | * to use for wNAF | 
|  | * splitting */ | 
|  |  | 
|  | pre_points_per_block = (size_t)1 << (w - 1); | 
|  | num = pre_points_per_block * numblocks; /* number of points to compute | 
|  | * and store */ | 
|  |  | 
|  | points = OPENSSL_malloc(sizeof(*points) * (num + 1)); | 
|  | if (points == NULL) { | 
|  | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | var = points; | 
|  | var[num] = NULL;            /* pivot */ | 
|  | for (i = 0; i < num; i++) { | 
|  | if ((var[i] = EC_POINT_new(group)) == NULL) { | 
|  | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((tmp_point = EC_POINT_new(group)) == NULL | 
|  | || (base = EC_POINT_new(group)) == NULL) { | 
|  | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!EC_POINT_copy(base, generator)) | 
|  | goto err; | 
|  |  | 
|  | /* do the precomputation */ | 
|  | for (i = 0; i < numblocks; i++) { | 
|  | size_t j; | 
|  |  | 
|  | if (!EC_POINT_dbl(group, tmp_point, base, ctx)) | 
|  | goto err; | 
|  |  | 
|  | if (!EC_POINT_copy(*var++, base)) | 
|  | goto err; | 
|  |  | 
|  | for (j = 1; j < pre_points_per_block; j++, var++) { | 
|  | /* | 
|  | * calculate odd multiples of the current base point | 
|  | */ | 
|  | if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (i < numblocks - 1) { | 
|  | /* | 
|  | * get the next base (multiply current one by 2^blocksize) | 
|  | */ | 
|  | size_t k; | 
|  |  | 
|  | if (blocksize <= 2) { | 
|  | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!EC_POINT_dbl(group, base, tmp_point, ctx)) | 
|  | goto err; | 
|  | for (k = 2; k < blocksize; k++) { | 
|  | if (!EC_POINT_dbl(group, base, base, ctx)) | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!EC_POINTs_make_affine(group, num, points, ctx)) | 
|  | goto err; | 
|  |  | 
|  | pre_comp->group = group; | 
|  | pre_comp->blocksize = blocksize; | 
|  | pre_comp->numblocks = numblocks; | 
|  | pre_comp->w = w; | 
|  | pre_comp->points = points; | 
|  | points = NULL; | 
|  | pre_comp->num = num; | 
|  | SETPRECOMP(group, ec, pre_comp); | 
|  | pre_comp = NULL; | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | if (ctx != NULL) | 
|  | BN_CTX_end(ctx); | 
|  | BN_CTX_free(new_ctx); | 
|  | EC_ec_pre_comp_free(pre_comp); | 
|  | if (points) { | 
|  | EC_POINT **p; | 
|  |  | 
|  | for (p = points; *p != NULL; p++) | 
|  | EC_POINT_free(*p); | 
|  | OPENSSL_free(points); | 
|  | } | 
|  | EC_POINT_free(tmp_point); | 
|  | EC_POINT_free(base); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ec_wNAF_have_precompute_mult(const EC_GROUP *group) | 
|  | { | 
|  | return HAVEPRECOMP(group, ec); | 
|  | } |