| /* |
| * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #define _GNU_SOURCE |
| #include "e_os.h" |
| #include <stdio.h> |
| #include "internal/cryptlib.h" |
| #include <openssl/rand.h> |
| #include "rand_lcl.h" |
| #include "internal/rand_int.h" |
| #include <stdio.h> |
| #include "internal/dso.h" |
| #if defined(__linux) |
| # include <sys/syscall.h> |
| #endif |
| #if defined(__FreeBSD__) |
| # include <sys/types.h> |
| # include <sys/sysctl.h> |
| # include <sys/param.h> |
| #endif |
| #if defined(__OpenBSD__) || defined(__NetBSD__) |
| # include <sys/param.h> |
| #endif |
| #ifdef OPENSSL_SYS_UNIX |
| # include <sys/types.h> |
| # include <unistd.h> |
| # include <sys/time.h> |
| |
| static uint64_t get_time_stamp(void); |
| static uint64_t get_timer_bits(void); |
| |
| /* Macro to convert two thirty two bit values into a sixty four bit one */ |
| # define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b)) |
| |
| /* |
| * Check for the existence and support of POSIX timers. The standard |
| * says that the _POSIX_TIMERS macro will have a positive value if they |
| * are available. |
| * |
| * However, we want an additional constraint: that the timer support does |
| * not require an extra library dependency. Early versions of glibc |
| * require -lrt to be specified on the link line to access the timers, |
| * so this needs to be checked for. |
| * |
| * It is worse because some libraries define __GLIBC__ but don't |
| * support the version testing macro (e.g. uClibc). This means |
| * an extra check is needed. |
| * |
| * The final condition is: |
| * "have posix timers and either not glibc or glibc without -lrt" |
| * |
| * The nested #if sequences are required to avoid using a parameterised |
| * macro that might be undefined. |
| */ |
| # undef OSSL_POSIX_TIMER_OKAY |
| # if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0 |
| # if defined(__GLIBC__) |
| # if defined(__GLIBC_PREREQ) |
| # if __GLIBC_PREREQ(2, 17) |
| # define OSSL_POSIX_TIMER_OKAY |
| # endif |
| # endif |
| # else |
| # define OSSL_POSIX_TIMER_OKAY |
| # endif |
| # endif |
| #endif |
| |
| int syscall_random(void *buf, size_t buflen); |
| |
| #if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \ |
| !defined(OPENSSL_RAND_SEED_NONE) |
| # error "UEFI and VXWorks only support seeding NONE" |
| #endif |
| |
| #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \ |
| || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \ |
| || defined(OPENSSL_SYS_UEFI)) |
| |
| # if defined(OPENSSL_SYS_VOS) |
| |
| # ifndef OPENSSL_RAND_SEED_OS |
| # error "Unsupported seeding method configured; must be os" |
| # endif |
| |
| # if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32) |
| # error "Unsupported HP-PA and IA32 at the same time." |
| # endif |
| # if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32) |
| # error "Must have one of HP-PA or IA32" |
| # endif |
| |
| /* |
| * The following algorithm repeatedly samples the real-time clock (RTC) to |
| * generate a sequence of unpredictable data. The algorithm relies upon the |
| * uneven execution speed of the code (due to factors such as cache misses, |
| * interrupts, bus activity, and scheduling) and upon the rather large |
| * relative difference between the speed of the clock and the rate at which |
| * it can be read. If it is ported to an environment where execution speed |
| * is more constant or where the RTC ticks at a much slower rate, or the |
| * clock can be read with fewer instructions, it is likely that the results |
| * would be far more predictable. This should only be used for legacy |
| * platforms. |
| * |
| * As a precaution, we assume only 2 bits of entropy per byte. |
| */ |
| size_t rand_pool_acquire_entropy(RAND_POOL *pool) |
| { |
| short int code; |
| int i, k; |
| size_t bytes_needed; |
| struct timespec ts; |
| unsigned char v; |
| # ifdef OPENSSL_SYS_VOS_HPPA |
| long duration; |
| extern void s$sleep(long *_duration, short int *_code); |
| # else |
| long long duration; |
| extern void s$sleep2(long long *_duration, short int *_code); |
| # endif |
| |
| bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/); |
| |
| for (i = 0; i < bytes_needed; i++) { |
| /* |
| * burn some cpu; hope for interrupts, cache collisions, bus |
| * interference, etc. |
| */ |
| for (k = 0; k < 99; k++) |
| ts.tv_nsec = random(); |
| |
| # ifdef OPENSSL_SYS_VOS_HPPA |
| /* sleep for 1/1024 of a second (976 us). */ |
| duration = 1; |
| s$sleep(&duration, &code); |
| # else |
| /* sleep for 1/65536 of a second (15 us). */ |
| duration = 1; |
| s$sleep2(&duration, &code); |
| # endif |
| |
| /* Get wall clock time, take 8 bits. */ |
| clock_gettime(CLOCK_REALTIME, &ts); |
| v = (unsigned char)(ts.tv_nsec & 0xFF); |
| rand_pool_add(pool, arg, &v, sizeof(v) , 2); |
| } |
| return rand_pool_entropy_available(pool); |
| } |
| |
| # else |
| |
| # if defined(OPENSSL_RAND_SEED_EGD) && \ |
| (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD)) |
| # error "Seeding uses EGD but EGD is turned off or no device given" |
| # endif |
| |
| # if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM) |
| # error "Seeding uses urandom but DEVRANDOM is not configured" |
| # endif |
| |
| # if defined(__GLIBC__) && defined(__GLIBC_PREREQ) |
| # if __GLIBC_PREREQ(2, 25) |
| # define OPENSSL_HAVE_GETRANDOM |
| # endif |
| # endif |
| |
| # if (defined(__FreeBSD__) && __FreeBSD_version >= 1200061) |
| # define OPENSSL_HAVE_GETRANDOM |
| # endif |
| |
| # if defined(OPENSSL_HAVE_GETRANDOM) |
| # include <sys/random.h> |
| # endif |
| |
| # if defined(OPENSSL_RAND_SEED_OS) |
| # if !defined(DEVRANDOM) |
| # error "OS seeding requires DEVRANDOM to be configured" |
| # endif |
| # define OPENSSL_RAND_SEED_GETRANDOM |
| # define OPENSSL_RAND_SEED_DEVRANDOM |
| # endif |
| |
| # if defined(OPENSSL_RAND_SEED_LIBRANDOM) |
| # error "librandom not (yet) supported" |
| # endif |
| |
| # if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND) |
| /* |
| * sysctl_random(): Use sysctl() to read a random number from the kernel |
| * Returns the size on success, 0 on failure. |
| */ |
| static size_t sysctl_random(char *buf, size_t buflen) |
| { |
| int mib[2]; |
| size_t done = 0; |
| size_t len; |
| |
| /* |
| * On FreeBSD old implementations returned longs, newer versions support |
| * variable sizes up to 256 byte. The code below would not work properly |
| * when the sysctl returns long and we want to request something not a |
| * multiple of longs, which should never be the case. |
| */ |
| if (!ossl_assert(buflen % sizeof(long) == 0)) |
| return 0; |
| |
| /* |
| * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only |
| * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0 |
| * it returns a variable number of bytes with the current version supporting |
| * up to 256 bytes. |
| * Just return an error on older NetBSD versions. |
| */ |
| #if defined(__NetBSD__) && __NetBSD_Version__ < 400000000 |
| return 0; |
| #endif |
| |
| mib[0] = CTL_KERN; |
| mib[1] = KERN_ARND; |
| |
| do { |
| len = buflen; |
| if (sysctl(mib, 2, buf, &len, NULL, 0) == -1) |
| return done; |
| done += len; |
| buf += len; |
| buflen -= len; |
| } while (buflen > 0); |
| |
| return done; |
| } |
| # endif |
| |
| /* |
| * syscall_random(): Try to get random data using a system call |
| * returns the number of bytes returned in buf, or <= 0 on error. |
| */ |
| int syscall_random(void *buf, size_t buflen) |
| { |
| union { |
| void *p; |
| int (*f)(void *buffer, size_t length); |
| } p_getentropy; |
| |
| /* |
| * Do runtime detection to find getentropy(). |
| * |
| * We could cache the result of the lookup, but we normally don't |
| * call this function often. |
| * |
| * Known OSs that should support this: |
| * - Darwin since 16 (OSX 10.12, IOS 10.0). |
| * - Solaris since 11.3 |
| * - OpenBSD since 5.6 |
| * - Linux since 3.17 with glibc 2.25 |
| * - FreeBSD since 12.0 (1200061) |
| */ |
| p_getentropy.p = DSO_global_lookup("getentropy"); |
| if (p_getentropy.p != NULL) |
| return p_getentropy.f(buf, buflen); |
| |
| # if defined(OPENSSL_HAVE_GETRANDOM) |
| return (int)getrandom(buf, buflen, 0); |
| # endif |
| |
| /* Linux supports this since version 3.17 */ |
| # if defined(__linux) && defined(SYS_getrandom) |
| return (int)syscall(SYS_getrandom, buf, buflen, 0); |
| # endif |
| |
| # if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND) |
| return (int)sysctl_random(buf, buflen); |
| # endif |
| |
| return -1; |
| } |
| |
| /* |
| * Try the various seeding methods in turn, exit when successful. |
| * |
| * TODO(DRBG): If more than one entropy source is available, is it |
| * preferable to stop as soon as enough entropy has been collected |
| * (as favored by @rsalz) or should one rather be defensive and add |
| * more entropy than requested and/or from different sources? |
| * |
| * Currently, the user can select multiple entropy sources in the |
| * configure step, yet in practice only the first available source |
| * will be used. A more flexible solution has been requested, but |
| * currently it is not clear how this can be achieved without |
| * overengineering the problem. There are many parameters which |
| * could be taken into account when selecting the order and amount |
| * of input from the different entropy sources (trust, quality, |
| * possibility of blocking). |
| */ |
| size_t rand_pool_acquire_entropy(RAND_POOL *pool) |
| { |
| # ifdef OPENSSL_RAND_SEED_NONE |
| return rand_pool_entropy_available(pool); |
| # else |
| size_t bytes_needed; |
| size_t entropy_available = 0; |
| unsigned char *buffer; |
| |
| # ifdef OPENSSL_RAND_SEED_GETRANDOM |
| bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
| buffer = rand_pool_add_begin(pool, bytes_needed); |
| if (buffer != NULL) { |
| size_t bytes = 0; |
| |
| if (syscall_random(buffer, bytes_needed) == (int)bytes_needed) |
| bytes = bytes_needed; |
| |
| rand_pool_add_end(pool, bytes, 8 * bytes); |
| entropy_available = rand_pool_entropy_available(pool); |
| } |
| if (entropy_available > 0) |
| return entropy_available; |
| # endif |
| |
| # if defined(OPENSSL_RAND_SEED_LIBRANDOM) |
| { |
| /* Not yet implemented. */ |
| } |
| # endif |
| |
| # ifdef OPENSSL_RAND_SEED_DEVRANDOM |
| bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
| if (bytes_needed > 0) { |
| static const char *paths[] = { DEVRANDOM, NULL }; |
| FILE *fp; |
| int i; |
| |
| for (i = 0; paths[i] != NULL; i++) { |
| if ((fp = fopen(paths[i], "rb")) == NULL) |
| continue; |
| setbuf(fp, NULL); |
| buffer = rand_pool_add_begin(pool, bytes_needed); |
| if (buffer != NULL) { |
| size_t bytes = 0; |
| if (fread(buffer, 1, bytes_needed, fp) == bytes_needed) |
| bytes = bytes_needed; |
| |
| rand_pool_add_end(pool, bytes, 8 * bytes); |
| entropy_available = rand_pool_entropy_available(pool); |
| } |
| fclose(fp); |
| if (entropy_available > 0) |
| return entropy_available; |
| |
| bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
| } |
| } |
| # endif |
| |
| # ifdef OPENSSL_RAND_SEED_RDTSC |
| entropy_available = rand_acquire_entropy_from_tsc(pool); |
| if (entropy_available > 0) |
| return entropy_available; |
| # endif |
| |
| # ifdef OPENSSL_RAND_SEED_RDCPU |
| entropy_available = rand_acquire_entropy_from_cpu(pool); |
| if (entropy_available > 0) |
| return entropy_available; |
| # endif |
| |
| # ifdef OPENSSL_RAND_SEED_EGD |
| bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
| if (bytes_needed > 0) { |
| static const char *paths[] = { DEVRANDOM_EGD, NULL }; |
| int i; |
| |
| for (i = 0; paths[i] != NULL; i++) { |
| buffer = rand_pool_add_begin(pool, bytes_needed); |
| if (buffer != NULL) { |
| size_t bytes = 0; |
| int num = RAND_query_egd_bytes(paths[i], |
| buffer, (int)bytes_needed); |
| if (num == (int)bytes_needed) |
| bytes = bytes_needed; |
| |
| rand_pool_add_end(pool, bytes, 8 * bytes); |
| entropy_available = rand_pool_entropy_available(pool); |
| } |
| if (entropy_available > 0) |
| return entropy_available; |
| } |
| } |
| # endif |
| |
| return rand_pool_entropy_available(pool); |
| # endif |
| } |
| # endif |
| #endif |
| |
| #ifdef OPENSSL_SYS_UNIX |
| int rand_pool_add_nonce_data(RAND_POOL *pool) |
| { |
| struct { |
| pid_t pid; |
| CRYPTO_THREAD_ID tid; |
| uint64_t time; |
| } data = { 0 }; |
| |
| /* |
| * Add process id, thread id, and a high resolution timestamp to |
| * ensure that the nonce is unique whith high probability for |
| * different process instances. |
| */ |
| data.pid = getpid(); |
| data.tid = CRYPTO_THREAD_get_current_id(); |
| data.time = get_time_stamp(); |
| |
| return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0); |
| } |
| |
| int rand_pool_add_additional_data(RAND_POOL *pool) |
| { |
| struct { |
| CRYPTO_THREAD_ID tid; |
| uint64_t time; |
| } data = { 0 }; |
| |
| /* |
| * Add some noise from the thread id and a high resolution timer. |
| * The thread id adds a little randomness if the drbg is accessed |
| * concurrently (which is the case for the <master> drbg). |
| */ |
| data.tid = CRYPTO_THREAD_get_current_id(); |
| data.time = get_timer_bits(); |
| |
| return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0); |
| } |
| |
| |
| |
| /* |
| * Get the current time with the highest possible resolution |
| * |
| * The time stamp is added to the nonce, so it is optimized for not repeating. |
| * The current time is ideal for this purpose, provided the computer's clock |
| * is synchronized. |
| */ |
| static uint64_t get_time_stamp(void) |
| { |
| # if defined(OSSL_POSIX_TIMER_OKAY) |
| { |
| struct timespec ts; |
| |
| if (clock_gettime(CLOCK_REALTIME, &ts) == 0) |
| return TWO32TO64(ts.tv_sec, ts.tv_nsec); |
| } |
| # endif |
| # if defined(__unix__) \ |
| || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L) |
| { |
| struct timeval tv; |
| |
| if (gettimeofday(&tv, NULL) == 0) |
| return TWO32TO64(tv.tv_sec, tv.tv_usec); |
| } |
| # endif |
| return time(NULL); |
| } |
| |
| /* |
| * Get an arbitrary timer value of the highest possible resolution |
| * |
| * The timer value is added as random noise to the additional data, |
| * which is not considered a trusted entropy sourec, so any result |
| * is acceptable. |
| */ |
| static uint64_t get_timer_bits(void) |
| { |
| uint64_t res = OPENSSL_rdtsc(); |
| |
| if (res != 0) |
| return res; |
| |
| # if defined(__sun) || defined(__hpux) |
| return gethrtime(); |
| # elif defined(_AIX) |
| { |
| timebasestruct_t t; |
| |
| read_wall_time(&t, TIMEBASE_SZ); |
| return TWO32TO64(t.tb_high, t.tb_low); |
| } |
| # elif defined(OSSL_POSIX_TIMER_OKAY) |
| { |
| struct timespec ts; |
| |
| # ifdef CLOCK_BOOTTIME |
| # define CLOCK_TYPE CLOCK_BOOTTIME |
| # elif defined(_POSIX_MONOTONIC_CLOCK) |
| # define CLOCK_TYPE CLOCK_MONOTONIC |
| # else |
| # define CLOCK_TYPE CLOCK_REALTIME |
| # endif |
| |
| if (clock_gettime(CLOCK_TYPE, &ts) == 0) |
| return TWO32TO64(ts.tv_sec, ts.tv_nsec); |
| } |
| # endif |
| # if defined(__unix__) \ |
| || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L) |
| { |
| struct timeval tv; |
| |
| if (gettimeofday(&tv, NULL) == 0) |
| return TWO32TO64(tv.tv_sec, tv.tv_usec); |
| } |
| # endif |
| return time(NULL); |
| } |
| #endif |