|  | /* | 
|  | * Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * The Whirlpool hashing function. | 
|  | * | 
|  | * <P> | 
|  | * <b>References</b> | 
|  | * | 
|  | * <P> | 
|  | * The Whirlpool algorithm was developed by | 
|  | * <a href="mailto:pbarreto@scopus.com.br">Paulo S. L. M. Barreto</a> and | 
|  | * <a href="mailto:vincent.rijmen@cryptomathic.com">Vincent Rijmen</a>. | 
|  | * | 
|  | * See | 
|  | *      P.S.L.M. Barreto, V. Rijmen, | 
|  | *      ``The Whirlpool hashing function,'' | 
|  | *      NESSIE submission, 2000 (tweaked version, 2001), | 
|  | *      <https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/whirlpool.zip> | 
|  | * | 
|  | * Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and | 
|  | * Vincent Rijmen. Lookup "reference implementations" on | 
|  | * <http://planeta.terra.com.br/informatica/paulobarreto/> | 
|  | * | 
|  | * ============================================================================= | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS | 
|  | * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | 
|  | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE | 
|  | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | 
|  | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | 
|  | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE | 
|  | * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, | 
|  | * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "wp_locl.h" | 
|  | #include <string.h> | 
|  |  | 
|  | typedef unsigned char u8; | 
|  | #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32) | 
|  | typedef unsigned __int64 u64; | 
|  | #elif defined(__arch64__) | 
|  | typedef unsigned long u64; | 
|  | #else | 
|  | typedef unsigned long long u64; | 
|  | #endif | 
|  |  | 
|  | #define ROUNDS  10 | 
|  |  | 
|  | #define STRICT_ALIGNMENT | 
|  | #if !defined(PEDANTIC) && (defined(__i386) || defined(__i386__) || \ | 
|  | defined(__x86_64) || defined(__x86_64__) || \ | 
|  | defined(_M_IX86) || defined(_M_AMD64) || \ | 
|  | defined(_M_X64)) | 
|  | /* | 
|  | * Well, formally there're couple of other architectures, which permit | 
|  | * unaligned loads, specifically those not crossing cache lines, IA-64 and | 
|  | * PowerPC... | 
|  | */ | 
|  | # undef STRICT_ALIGNMENT | 
|  | #endif | 
|  |  | 
|  | #undef SMALL_REGISTER_BANK | 
|  | #if defined(__i386) || defined(__i386__) || defined(_M_IX86) | 
|  | # define SMALL_REGISTER_BANK | 
|  | # if defined(WHIRLPOOL_ASM) | 
|  | #  ifndef OPENSSL_SMALL_FOOTPRINT | 
|  | /* | 
|  | * it appears that for elder non-MMX | 
|  | * CPUs this is actually faster! | 
|  | */ | 
|  | #   define OPENSSL_SMALL_FOOTPRINT | 
|  | #  endif | 
|  | #  define GO_FOR_MMX(ctx,inp,num)     do {                    \ | 
|  | extern unsigned long OPENSSL_ia32cap_P[];               \ | 
|  | void whirlpool_block_mmx(void *,const void *,size_t);   \ | 
|  | if (!(OPENSSL_ia32cap_P[0] & (1<<23)))  break;          \ | 
|  | whirlpool_block_mmx(ctx->H.c,inp,num);  return;         \ | 
|  | } while (0) | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | #undef ROTATE | 
|  | #ifndef PEDANTIC | 
|  | # if defined(_MSC_VER) | 
|  | #  if defined(_WIN64)            /* applies to both IA-64 and AMD64 */ | 
|  | #   pragma intrinsic(_rotl64) | 
|  | #   define ROTATE(a,n) _rotl64((a),n) | 
|  | #  endif | 
|  | # elif defined(__GNUC__) && __GNUC__>=2 | 
|  | #  if defined(__x86_64) || defined(__x86_64__) | 
|  | #   if defined(L_ENDIAN) | 
|  | #    define ROTATE(a,n)       ({ u64 ret; asm ("rolq %1,%0"   \ | 
|  | : "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; }) | 
|  | #   elif defined(B_ENDIAN) | 
|  | /* | 
|  | * Most will argue that x86_64 is always little-endian. Well, yes, but | 
|  | * then we have stratus.com who has modified gcc to "emulate" | 
|  | * big-endian on x86. Is there evidence that they [or somebody else] | 
|  | * won't do same for x86_64? Naturally no. And this line is waiting | 
|  | * ready for that brave soul:-) | 
|  | */ | 
|  | #    define ROTATE(a,n)       ({ u64 ret; asm ("rorq %1,%0"   \ | 
|  | : "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; }) | 
|  | #   endif | 
|  | #  elif defined(__ia64) || defined(__ia64__) | 
|  | #   if defined(L_ENDIAN) | 
|  | #    define ROTATE(a,n)       ({ u64 ret; asm ("shrp %0=%1,%1,%2"     \ | 
|  | : "=r"(ret) : "r"(a),"M"(64-(n))); ret; }) | 
|  | #   elif defined(B_ENDIAN) | 
|  | #    define ROTATE(a,n)       ({ u64 ret; asm ("shrp %0=%1,%1,%2"     \ | 
|  | : "=r"(ret) : "r"(a),"M"(n)); ret; }) | 
|  | #   endif | 
|  | #  endif | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | #if defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | # if !defined(ROTATE) | 
|  | #  if defined(L_ENDIAN)         /* little-endians have to rotate left */ | 
|  | #   define ROTATE(i,n)       ((i)<<(n) ^ (i)>>(64-n)) | 
|  | #  elif defined(B_ENDIAN)       /* big-endians have to rotate right */ | 
|  | #   define ROTATE(i,n)       ((i)>>(n) ^ (i)<<(64-n)) | 
|  | #  endif | 
|  | # endif | 
|  | # if defined(ROTATE) && !defined(STRICT_ALIGNMENT) | 
|  | #  define STRICT_ALIGNMENT      /* ensure smallest table size */ | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Table size depends on STRICT_ALIGNMENT and whether or not endian- | 
|  | * specific ROTATE macro is defined. If STRICT_ALIGNMENT is not | 
|  | * defined, which is normally the case on x86[_64] CPUs, the table is | 
|  | * 4KB large unconditionally. Otherwise if ROTATE is defined, the | 
|  | * table is 2KB large, and otherwise - 16KB. 2KB table requires a | 
|  | * whole bunch of additional rotations, but I'm willing to "trade," | 
|  | * because 16KB table certainly trashes L1 cache. I wish all CPUs | 
|  | * could handle unaligned load as 4KB table doesn't trash the cache, | 
|  | * nor does it require additional rotations. | 
|  | */ | 
|  | /* | 
|  | * Note that every Cn macro expands as two loads: one byte load and | 
|  | * one quadword load. One can argue that that many single-byte loads | 
|  | * is too excessive, as one could load a quadword and "milk" it for | 
|  | * eight 8-bit values instead. Well, yes, but in order to do so *and* | 
|  | * avoid excessive loads you have to accommodate a handful of 64-bit | 
|  | * values in the register bank and issue a bunch of shifts and mask. | 
|  | * It's a tradeoff: loads vs. shift and mask in big register bank[!]. | 
|  | * On most CPUs eight single-byte loads are faster and I let other | 
|  | * ones to depend on smart compiler to fold byte loads if beneficial. | 
|  | * Hand-coded assembler would be another alternative:-) | 
|  | */ | 
|  | #ifdef STRICT_ALIGNMENT | 
|  | # if defined(ROTATE) | 
|  | #  define N   1 | 
|  | #  define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7 | 
|  | #  define C0(K,i)     (Cx.q[K.c[(i)*8+0]]) | 
|  | #  define C1(K,i)     ROTATE(Cx.q[K.c[(i)*8+1]],8) | 
|  | #  define C2(K,i)     ROTATE(Cx.q[K.c[(i)*8+2]],16) | 
|  | #  define C3(K,i)     ROTATE(Cx.q[K.c[(i)*8+3]],24) | 
|  | #  define C4(K,i)     ROTATE(Cx.q[K.c[(i)*8+4]],32) | 
|  | #  define C5(K,i)     ROTATE(Cx.q[K.c[(i)*8+5]],40) | 
|  | #  define C6(K,i)     ROTATE(Cx.q[K.c[(i)*8+6]],48) | 
|  | #  define C7(K,i)     ROTATE(Cx.q[K.c[(i)*8+7]],56) | 
|  | # else | 
|  | #  define N   8 | 
|  | #  define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \ | 
|  | c7,c0,c1,c2,c3,c4,c5,c6, \ | 
|  | c6,c7,c0,c1,c2,c3,c4,c5, \ | 
|  | c5,c6,c7,c0,c1,c2,c3,c4, \ | 
|  | c4,c5,c6,c7,c0,c1,c2,c3, \ | 
|  | c3,c4,c5,c6,c7,c0,c1,c2, \ | 
|  | c2,c3,c4,c5,c6,c7,c0,c1, \ | 
|  | c1,c2,c3,c4,c5,c6,c7,c0 | 
|  | #  define C0(K,i)     (Cx.q[0+8*K.c[(i)*8+0]]) | 
|  | #  define C1(K,i)     (Cx.q[1+8*K.c[(i)*8+1]]) | 
|  | #  define C2(K,i)     (Cx.q[2+8*K.c[(i)*8+2]]) | 
|  | #  define C3(K,i)     (Cx.q[3+8*K.c[(i)*8+3]]) | 
|  | #  define C4(K,i)     (Cx.q[4+8*K.c[(i)*8+4]]) | 
|  | #  define C5(K,i)     (Cx.q[5+8*K.c[(i)*8+5]]) | 
|  | #  define C6(K,i)     (Cx.q[6+8*K.c[(i)*8+6]]) | 
|  | #  define C7(K,i)     (Cx.q[7+8*K.c[(i)*8+7]]) | 
|  | # endif | 
|  | #else | 
|  | # define N     2 | 
|  | # define LL(c0,c1,c2,c3,c4,c5,c6,c7)   c0,c1,c2,c3,c4,c5,c6,c7, \ | 
|  | c0,c1,c2,c3,c4,c5,c6,c7 | 
|  | # define C0(K,i)       (((u64*)(Cx.c+0))[2*K.c[(i)*8+0]]) | 
|  | # define C1(K,i)       (((u64*)(Cx.c+7))[2*K.c[(i)*8+1]]) | 
|  | # define C2(K,i)       (((u64*)(Cx.c+6))[2*K.c[(i)*8+2]]) | 
|  | # define C3(K,i)       (((u64*)(Cx.c+5))[2*K.c[(i)*8+3]]) | 
|  | # define C4(K,i)       (((u64*)(Cx.c+4))[2*K.c[(i)*8+4]]) | 
|  | # define C5(K,i)       (((u64*)(Cx.c+3))[2*K.c[(i)*8+5]]) | 
|  | # define C6(K,i)       (((u64*)(Cx.c+2))[2*K.c[(i)*8+6]]) | 
|  | # define C7(K,i)       (((u64*)(Cx.c+1))[2*K.c[(i)*8+7]]) | 
|  | #endif | 
|  |  | 
|  | static const | 
|  | union { | 
|  | u8 c[(256 * N + ROUNDS) * sizeof(u64)]; | 
|  | u64 q[(256 * N + ROUNDS)]; | 
|  | } Cx = { | 
|  | { | 
|  | /* Note endian-neutral representation:-) */ | 
|  | LL(0x18, 0x18, 0x60, 0x18, 0xc0, 0x78, 0x30, 0xd8), | 
|  | LL(0x23, 0x23, 0x8c, 0x23, 0x05, 0xaf, 0x46, 0x26), | 
|  | LL(0xc6, 0xc6, 0x3f, 0xc6, 0x7e, 0xf9, 0x91, 0xb8), | 
|  | LL(0xe8, 0xe8, 0x87, 0xe8, 0x13, 0x6f, 0xcd, 0xfb), | 
|  | LL(0x87, 0x87, 0x26, 0x87, 0x4c, 0xa1, 0x13, 0xcb), | 
|  | LL(0xb8, 0xb8, 0xda, 0xb8, 0xa9, 0x62, 0x6d, 0x11), | 
|  | LL(0x01, 0x01, 0x04, 0x01, 0x08, 0x05, 0x02, 0x09), | 
|  | LL(0x4f, 0x4f, 0x21, 0x4f, 0x42, 0x6e, 0x9e, 0x0d), | 
|  | LL(0x36, 0x36, 0xd8, 0x36, 0xad, 0xee, 0x6c, 0x9b), | 
|  | LL(0xa6, 0xa6, 0xa2, 0xa6, 0x59, 0x04, 0x51, 0xff), | 
|  | LL(0xd2, 0xd2, 0x6f, 0xd2, 0xde, 0xbd, 0xb9, 0x0c), | 
|  | LL(0xf5, 0xf5, 0xf3, 0xf5, 0xfb, 0x06, 0xf7, 0x0e), | 
|  | LL(0x79, 0x79, 0xf9, 0x79, 0xef, 0x80, 0xf2, 0x96), | 
|  | LL(0x6f, 0x6f, 0xa1, 0x6f, 0x5f, 0xce, 0xde, 0x30), | 
|  | LL(0x91, 0x91, 0x7e, 0x91, 0xfc, 0xef, 0x3f, 0x6d), | 
|  | LL(0x52, 0x52, 0x55, 0x52, 0xaa, 0x07, 0xa4, 0xf8), | 
|  | LL(0x60, 0x60, 0x9d, 0x60, 0x27, 0xfd, 0xc0, 0x47), | 
|  | LL(0xbc, 0xbc, 0xca, 0xbc, 0x89, 0x76, 0x65, 0x35), | 
|  | LL(0x9b, 0x9b, 0x56, 0x9b, 0xac, 0xcd, 0x2b, 0x37), | 
|  | LL(0x8e, 0x8e, 0x02, 0x8e, 0x04, 0x8c, 0x01, 0x8a), | 
|  | LL(0xa3, 0xa3, 0xb6, 0xa3, 0x71, 0x15, 0x5b, 0xd2), | 
|  | LL(0x0c, 0x0c, 0x30, 0x0c, 0x60, 0x3c, 0x18, 0x6c), | 
|  | LL(0x7b, 0x7b, 0xf1, 0x7b, 0xff, 0x8a, 0xf6, 0x84), | 
|  | LL(0x35, 0x35, 0xd4, 0x35, 0xb5, 0xe1, 0x6a, 0x80), | 
|  | LL(0x1d, 0x1d, 0x74, 0x1d, 0xe8, 0x69, 0x3a, 0xf5), | 
|  | LL(0xe0, 0xe0, 0xa7, 0xe0, 0x53, 0x47, 0xdd, 0xb3), | 
|  | LL(0xd7, 0xd7, 0x7b, 0xd7, 0xf6, 0xac, 0xb3, 0x21), | 
|  | LL(0xc2, 0xc2, 0x2f, 0xc2, 0x5e, 0xed, 0x99, 0x9c), | 
|  | LL(0x2e, 0x2e, 0xb8, 0x2e, 0x6d, 0x96, 0x5c, 0x43), | 
|  | LL(0x4b, 0x4b, 0x31, 0x4b, 0x62, 0x7a, 0x96, 0x29), | 
|  | LL(0xfe, 0xfe, 0xdf, 0xfe, 0xa3, 0x21, 0xe1, 0x5d), | 
|  | LL(0x57, 0x57, 0x41, 0x57, 0x82, 0x16, 0xae, 0xd5), | 
|  | LL(0x15, 0x15, 0x54, 0x15, 0xa8, 0x41, 0x2a, 0xbd), | 
|  | LL(0x77, 0x77, 0xc1, 0x77, 0x9f, 0xb6, 0xee, 0xe8), | 
|  | LL(0x37, 0x37, 0xdc, 0x37, 0xa5, 0xeb, 0x6e, 0x92), | 
|  | LL(0xe5, 0xe5, 0xb3, 0xe5, 0x7b, 0x56, 0xd7, 0x9e), | 
|  | LL(0x9f, 0x9f, 0x46, 0x9f, 0x8c, 0xd9, 0x23, 0x13), | 
|  | LL(0xf0, 0xf0, 0xe7, 0xf0, 0xd3, 0x17, 0xfd, 0x23), | 
|  | LL(0x4a, 0x4a, 0x35, 0x4a, 0x6a, 0x7f, 0x94, 0x20), | 
|  | LL(0xda, 0xda, 0x4f, 0xda, 0x9e, 0x95, 0xa9, 0x44), | 
|  | LL(0x58, 0x58, 0x7d, 0x58, 0xfa, 0x25, 0xb0, 0xa2), | 
|  | LL(0xc9, 0xc9, 0x03, 0xc9, 0x06, 0xca, 0x8f, 0xcf), | 
|  | LL(0x29, 0x29, 0xa4, 0x29, 0x55, 0x8d, 0x52, 0x7c), | 
|  | LL(0x0a, 0x0a, 0x28, 0x0a, 0x50, 0x22, 0x14, 0x5a), | 
|  | LL(0xb1, 0xb1, 0xfe, 0xb1, 0xe1, 0x4f, 0x7f, 0x50), | 
|  | LL(0xa0, 0xa0, 0xba, 0xa0, 0x69, 0x1a, 0x5d, 0xc9), | 
|  | LL(0x6b, 0x6b, 0xb1, 0x6b, 0x7f, 0xda, 0xd6, 0x14), | 
|  | LL(0x85, 0x85, 0x2e, 0x85, 0x5c, 0xab, 0x17, 0xd9), | 
|  | LL(0xbd, 0xbd, 0xce, 0xbd, 0x81, 0x73, 0x67, 0x3c), | 
|  | LL(0x5d, 0x5d, 0x69, 0x5d, 0xd2, 0x34, 0xba, 0x8f), | 
|  | LL(0x10, 0x10, 0x40, 0x10, 0x80, 0x50, 0x20, 0x90), | 
|  | LL(0xf4, 0xf4, 0xf7, 0xf4, 0xf3, 0x03, 0xf5, 0x07), | 
|  | LL(0xcb, 0xcb, 0x0b, 0xcb, 0x16, 0xc0, 0x8b, 0xdd), | 
|  | LL(0x3e, 0x3e, 0xf8, 0x3e, 0xed, 0xc6, 0x7c, 0xd3), | 
|  | LL(0x05, 0x05, 0x14, 0x05, 0x28, 0x11, 0x0a, 0x2d), | 
|  | LL(0x67, 0x67, 0x81, 0x67, 0x1f, 0xe6, 0xce, 0x78), | 
|  | LL(0xe4, 0xe4, 0xb7, 0xe4, 0x73, 0x53, 0xd5, 0x97), | 
|  | LL(0x27, 0x27, 0x9c, 0x27, 0x25, 0xbb, 0x4e, 0x02), | 
|  | LL(0x41, 0x41, 0x19, 0x41, 0x32, 0x58, 0x82, 0x73), | 
|  | LL(0x8b, 0x8b, 0x16, 0x8b, 0x2c, 0x9d, 0x0b, 0xa7), | 
|  | LL(0xa7, 0xa7, 0xa6, 0xa7, 0x51, 0x01, 0x53, 0xf6), | 
|  | LL(0x7d, 0x7d, 0xe9, 0x7d, 0xcf, 0x94, 0xfa, 0xb2), | 
|  | LL(0x95, 0x95, 0x6e, 0x95, 0xdc, 0xfb, 0x37, 0x49), | 
|  | LL(0xd8, 0xd8, 0x47, 0xd8, 0x8e, 0x9f, 0xad, 0x56), | 
|  | LL(0xfb, 0xfb, 0xcb, 0xfb, 0x8b, 0x30, 0xeb, 0x70), | 
|  | LL(0xee, 0xee, 0x9f, 0xee, 0x23, 0x71, 0xc1, 0xcd), | 
|  | LL(0x7c, 0x7c, 0xed, 0x7c, 0xc7, 0x91, 0xf8, 0xbb), | 
|  | LL(0x66, 0x66, 0x85, 0x66, 0x17, 0xe3, 0xcc, 0x71), | 
|  | LL(0xdd, 0xdd, 0x53, 0xdd, 0xa6, 0x8e, 0xa7, 0x7b), | 
|  | LL(0x17, 0x17, 0x5c, 0x17, 0xb8, 0x4b, 0x2e, 0xaf), | 
|  | LL(0x47, 0x47, 0x01, 0x47, 0x02, 0x46, 0x8e, 0x45), | 
|  | LL(0x9e, 0x9e, 0x42, 0x9e, 0x84, 0xdc, 0x21, 0x1a), | 
|  | LL(0xca, 0xca, 0x0f, 0xca, 0x1e, 0xc5, 0x89, 0xd4), | 
|  | LL(0x2d, 0x2d, 0xb4, 0x2d, 0x75, 0x99, 0x5a, 0x58), | 
|  | LL(0xbf, 0xbf, 0xc6, 0xbf, 0x91, 0x79, 0x63, 0x2e), | 
|  | LL(0x07, 0x07, 0x1c, 0x07, 0x38, 0x1b, 0x0e, 0x3f), | 
|  | LL(0xad, 0xad, 0x8e, 0xad, 0x01, 0x23, 0x47, 0xac), | 
|  | LL(0x5a, 0x5a, 0x75, 0x5a, 0xea, 0x2f, 0xb4, 0xb0), | 
|  | LL(0x83, 0x83, 0x36, 0x83, 0x6c, 0xb5, 0x1b, 0xef), | 
|  | LL(0x33, 0x33, 0xcc, 0x33, 0x85, 0xff, 0x66, 0xb6), | 
|  | LL(0x63, 0x63, 0x91, 0x63, 0x3f, 0xf2, 0xc6, 0x5c), | 
|  | LL(0x02, 0x02, 0x08, 0x02, 0x10, 0x0a, 0x04, 0x12), | 
|  | LL(0xaa, 0xaa, 0x92, 0xaa, 0x39, 0x38, 0x49, 0x93), | 
|  | LL(0x71, 0x71, 0xd9, 0x71, 0xaf, 0xa8, 0xe2, 0xde), | 
|  | LL(0xc8, 0xc8, 0x07, 0xc8, 0x0e, 0xcf, 0x8d, 0xc6), | 
|  | LL(0x19, 0x19, 0x64, 0x19, 0xc8, 0x7d, 0x32, 0xd1), | 
|  | LL(0x49, 0x49, 0x39, 0x49, 0x72, 0x70, 0x92, 0x3b), | 
|  | LL(0xd9, 0xd9, 0x43, 0xd9, 0x86, 0x9a, 0xaf, 0x5f), | 
|  | LL(0xf2, 0xf2, 0xef, 0xf2, 0xc3, 0x1d, 0xf9, 0x31), | 
|  | LL(0xe3, 0xe3, 0xab, 0xe3, 0x4b, 0x48, 0xdb, 0xa8), | 
|  | LL(0x5b, 0x5b, 0x71, 0x5b, 0xe2, 0x2a, 0xb6, 0xb9), | 
|  | LL(0x88, 0x88, 0x1a, 0x88, 0x34, 0x92, 0x0d, 0xbc), | 
|  | LL(0x9a, 0x9a, 0x52, 0x9a, 0xa4, 0xc8, 0x29, 0x3e), | 
|  | LL(0x26, 0x26, 0x98, 0x26, 0x2d, 0xbe, 0x4c, 0x0b), | 
|  | LL(0x32, 0x32, 0xc8, 0x32, 0x8d, 0xfa, 0x64, 0xbf), | 
|  | LL(0xb0, 0xb0, 0xfa, 0xb0, 0xe9, 0x4a, 0x7d, 0x59), | 
|  | LL(0xe9, 0xe9, 0x83, 0xe9, 0x1b, 0x6a, 0xcf, 0xf2), | 
|  | LL(0x0f, 0x0f, 0x3c, 0x0f, 0x78, 0x33, 0x1e, 0x77), | 
|  | LL(0xd5, 0xd5, 0x73, 0xd5, 0xe6, 0xa6, 0xb7, 0x33), | 
|  | LL(0x80, 0x80, 0x3a, 0x80, 0x74, 0xba, 0x1d, 0xf4), | 
|  | LL(0xbe, 0xbe, 0xc2, 0xbe, 0x99, 0x7c, 0x61, 0x27), | 
|  | LL(0xcd, 0xcd, 0x13, 0xcd, 0x26, 0xde, 0x87, 0xeb), | 
|  | LL(0x34, 0x34, 0xd0, 0x34, 0xbd, 0xe4, 0x68, 0x89), | 
|  | LL(0x48, 0x48, 0x3d, 0x48, 0x7a, 0x75, 0x90, 0x32), | 
|  | LL(0xff, 0xff, 0xdb, 0xff, 0xab, 0x24, 0xe3, 0x54), | 
|  | LL(0x7a, 0x7a, 0xf5, 0x7a, 0xf7, 0x8f, 0xf4, 0x8d), | 
|  | LL(0x90, 0x90, 0x7a, 0x90, 0xf4, 0xea, 0x3d, 0x64), | 
|  | LL(0x5f, 0x5f, 0x61, 0x5f, 0xc2, 0x3e, 0xbe, 0x9d), | 
|  | LL(0x20, 0x20, 0x80, 0x20, 0x1d, 0xa0, 0x40, 0x3d), | 
|  | LL(0x68, 0x68, 0xbd, 0x68, 0x67, 0xd5, 0xd0, 0x0f), | 
|  | LL(0x1a, 0x1a, 0x68, 0x1a, 0xd0, 0x72, 0x34, 0xca), | 
|  | LL(0xae, 0xae, 0x82, 0xae, 0x19, 0x2c, 0x41, 0xb7), | 
|  | LL(0xb4, 0xb4, 0xea, 0xb4, 0xc9, 0x5e, 0x75, 0x7d), | 
|  | LL(0x54, 0x54, 0x4d, 0x54, 0x9a, 0x19, 0xa8, 0xce), | 
|  | LL(0x93, 0x93, 0x76, 0x93, 0xec, 0xe5, 0x3b, 0x7f), | 
|  | LL(0x22, 0x22, 0x88, 0x22, 0x0d, 0xaa, 0x44, 0x2f), | 
|  | LL(0x64, 0x64, 0x8d, 0x64, 0x07, 0xe9, 0xc8, 0x63), | 
|  | LL(0xf1, 0xf1, 0xe3, 0xf1, 0xdb, 0x12, 0xff, 0x2a), | 
|  | LL(0x73, 0x73, 0xd1, 0x73, 0xbf, 0xa2, 0xe6, 0xcc), | 
|  | LL(0x12, 0x12, 0x48, 0x12, 0x90, 0x5a, 0x24, 0x82), | 
|  | LL(0x40, 0x40, 0x1d, 0x40, 0x3a, 0x5d, 0x80, 0x7a), | 
|  | LL(0x08, 0x08, 0x20, 0x08, 0x40, 0x28, 0x10, 0x48), | 
|  | LL(0xc3, 0xc3, 0x2b, 0xc3, 0x56, 0xe8, 0x9b, 0x95), | 
|  | LL(0xec, 0xec, 0x97, 0xec, 0x33, 0x7b, 0xc5, 0xdf), | 
|  | LL(0xdb, 0xdb, 0x4b, 0xdb, 0x96, 0x90, 0xab, 0x4d), | 
|  | LL(0xa1, 0xa1, 0xbe, 0xa1, 0x61, 0x1f, 0x5f, 0xc0), | 
|  | LL(0x8d, 0x8d, 0x0e, 0x8d, 0x1c, 0x83, 0x07, 0x91), | 
|  | LL(0x3d, 0x3d, 0xf4, 0x3d, 0xf5, 0xc9, 0x7a, 0xc8), | 
|  | LL(0x97, 0x97, 0x66, 0x97, 0xcc, 0xf1, 0x33, 0x5b), | 
|  | LL(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00), | 
|  | LL(0xcf, 0xcf, 0x1b, 0xcf, 0x36, 0xd4, 0x83, 0xf9), | 
|  | LL(0x2b, 0x2b, 0xac, 0x2b, 0x45, 0x87, 0x56, 0x6e), | 
|  | LL(0x76, 0x76, 0xc5, 0x76, 0x97, 0xb3, 0xec, 0xe1), | 
|  | LL(0x82, 0x82, 0x32, 0x82, 0x64, 0xb0, 0x19, 0xe6), | 
|  | LL(0xd6, 0xd6, 0x7f, 0xd6, 0xfe, 0xa9, 0xb1, 0x28), | 
|  | LL(0x1b, 0x1b, 0x6c, 0x1b, 0xd8, 0x77, 0x36, 0xc3), | 
|  | LL(0xb5, 0xb5, 0xee, 0xb5, 0xc1, 0x5b, 0x77, 0x74), | 
|  | LL(0xaf, 0xaf, 0x86, 0xaf, 0x11, 0x29, 0x43, 0xbe), | 
|  | LL(0x6a, 0x6a, 0xb5, 0x6a, 0x77, 0xdf, 0xd4, 0x1d), | 
|  | LL(0x50, 0x50, 0x5d, 0x50, 0xba, 0x0d, 0xa0, 0xea), | 
|  | LL(0x45, 0x45, 0x09, 0x45, 0x12, 0x4c, 0x8a, 0x57), | 
|  | LL(0xf3, 0xf3, 0xeb, 0xf3, 0xcb, 0x18, 0xfb, 0x38), | 
|  | LL(0x30, 0x30, 0xc0, 0x30, 0x9d, 0xf0, 0x60, 0xad), | 
|  | LL(0xef, 0xef, 0x9b, 0xef, 0x2b, 0x74, 0xc3, 0xc4), | 
|  | LL(0x3f, 0x3f, 0xfc, 0x3f, 0xe5, 0xc3, 0x7e, 0xda), | 
|  | LL(0x55, 0x55, 0x49, 0x55, 0x92, 0x1c, 0xaa, 0xc7), | 
|  | LL(0xa2, 0xa2, 0xb2, 0xa2, 0x79, 0x10, 0x59, 0xdb), | 
|  | LL(0xea, 0xea, 0x8f, 0xea, 0x03, 0x65, 0xc9, 0xe9), | 
|  | LL(0x65, 0x65, 0x89, 0x65, 0x0f, 0xec, 0xca, 0x6a), | 
|  | LL(0xba, 0xba, 0xd2, 0xba, 0xb9, 0x68, 0x69, 0x03), | 
|  | LL(0x2f, 0x2f, 0xbc, 0x2f, 0x65, 0x93, 0x5e, 0x4a), | 
|  | LL(0xc0, 0xc0, 0x27, 0xc0, 0x4e, 0xe7, 0x9d, 0x8e), | 
|  | LL(0xde, 0xde, 0x5f, 0xde, 0xbe, 0x81, 0xa1, 0x60), | 
|  | LL(0x1c, 0x1c, 0x70, 0x1c, 0xe0, 0x6c, 0x38, 0xfc), | 
|  | LL(0xfd, 0xfd, 0xd3, 0xfd, 0xbb, 0x2e, 0xe7, 0x46), | 
|  | LL(0x4d, 0x4d, 0x29, 0x4d, 0x52, 0x64, 0x9a, 0x1f), | 
|  | LL(0x92, 0x92, 0x72, 0x92, 0xe4, 0xe0, 0x39, 0x76), | 
|  | LL(0x75, 0x75, 0xc9, 0x75, 0x8f, 0xbc, 0xea, 0xfa), | 
|  | LL(0x06, 0x06, 0x18, 0x06, 0x30, 0x1e, 0x0c, 0x36), | 
|  | LL(0x8a, 0x8a, 0x12, 0x8a, 0x24, 0x98, 0x09, 0xae), | 
|  | LL(0xb2, 0xb2, 0xf2, 0xb2, 0xf9, 0x40, 0x79, 0x4b), | 
|  | LL(0xe6, 0xe6, 0xbf, 0xe6, 0x63, 0x59, 0xd1, 0x85), | 
|  | LL(0x0e, 0x0e, 0x38, 0x0e, 0x70, 0x36, 0x1c, 0x7e), | 
|  | LL(0x1f, 0x1f, 0x7c, 0x1f, 0xf8, 0x63, 0x3e, 0xe7), | 
|  | LL(0x62, 0x62, 0x95, 0x62, 0x37, 0xf7, 0xc4, 0x55), | 
|  | LL(0xd4, 0xd4, 0x77, 0xd4, 0xee, 0xa3, 0xb5, 0x3a), | 
|  | LL(0xa8, 0xa8, 0x9a, 0xa8, 0x29, 0x32, 0x4d, 0x81), | 
|  | LL(0x96, 0x96, 0x62, 0x96, 0xc4, 0xf4, 0x31, 0x52), | 
|  | LL(0xf9, 0xf9, 0xc3, 0xf9, 0x9b, 0x3a, 0xef, 0x62), | 
|  | LL(0xc5, 0xc5, 0x33, 0xc5, 0x66, 0xf6, 0x97, 0xa3), | 
|  | LL(0x25, 0x25, 0x94, 0x25, 0x35, 0xb1, 0x4a, 0x10), | 
|  | LL(0x59, 0x59, 0x79, 0x59, 0xf2, 0x20, 0xb2, 0xab), | 
|  | LL(0x84, 0x84, 0x2a, 0x84, 0x54, 0xae, 0x15, 0xd0), | 
|  | LL(0x72, 0x72, 0xd5, 0x72, 0xb7, 0xa7, 0xe4, 0xc5), | 
|  | LL(0x39, 0x39, 0xe4, 0x39, 0xd5, 0xdd, 0x72, 0xec), | 
|  | LL(0x4c, 0x4c, 0x2d, 0x4c, 0x5a, 0x61, 0x98, 0x16), | 
|  | LL(0x5e, 0x5e, 0x65, 0x5e, 0xca, 0x3b, 0xbc, 0x94), | 
|  | LL(0x78, 0x78, 0xfd, 0x78, 0xe7, 0x85, 0xf0, 0x9f), | 
|  | LL(0x38, 0x38, 0xe0, 0x38, 0xdd, 0xd8, 0x70, 0xe5), | 
|  | LL(0x8c, 0x8c, 0x0a, 0x8c, 0x14, 0x86, 0x05, 0x98), | 
|  | LL(0xd1, 0xd1, 0x63, 0xd1, 0xc6, 0xb2, 0xbf, 0x17), | 
|  | LL(0xa5, 0xa5, 0xae, 0xa5, 0x41, 0x0b, 0x57, 0xe4), | 
|  | LL(0xe2, 0xe2, 0xaf, 0xe2, 0x43, 0x4d, 0xd9, 0xa1), | 
|  | LL(0x61, 0x61, 0x99, 0x61, 0x2f, 0xf8, 0xc2, 0x4e), | 
|  | LL(0xb3, 0xb3, 0xf6, 0xb3, 0xf1, 0x45, 0x7b, 0x42), | 
|  | LL(0x21, 0x21, 0x84, 0x21, 0x15, 0xa5, 0x42, 0x34), | 
|  | LL(0x9c, 0x9c, 0x4a, 0x9c, 0x94, 0xd6, 0x25, 0x08), | 
|  | LL(0x1e, 0x1e, 0x78, 0x1e, 0xf0, 0x66, 0x3c, 0xee), | 
|  | LL(0x43, 0x43, 0x11, 0x43, 0x22, 0x52, 0x86, 0x61), | 
|  | LL(0xc7, 0xc7, 0x3b, 0xc7, 0x76, 0xfc, 0x93, 0xb1), | 
|  | LL(0xfc, 0xfc, 0xd7, 0xfc, 0xb3, 0x2b, 0xe5, 0x4f), | 
|  | LL(0x04, 0x04, 0x10, 0x04, 0x20, 0x14, 0x08, 0x24), | 
|  | LL(0x51, 0x51, 0x59, 0x51, 0xb2, 0x08, 0xa2, 0xe3), | 
|  | LL(0x99, 0x99, 0x5e, 0x99, 0xbc, 0xc7, 0x2f, 0x25), | 
|  | LL(0x6d, 0x6d, 0xa9, 0x6d, 0x4f, 0xc4, 0xda, 0x22), | 
|  | LL(0x0d, 0x0d, 0x34, 0x0d, 0x68, 0x39, 0x1a, 0x65), | 
|  | LL(0xfa, 0xfa, 0xcf, 0xfa, 0x83, 0x35, 0xe9, 0x79), | 
|  | LL(0xdf, 0xdf, 0x5b, 0xdf, 0xb6, 0x84, 0xa3, 0x69), | 
|  | LL(0x7e, 0x7e, 0xe5, 0x7e, 0xd7, 0x9b, 0xfc, 0xa9), | 
|  | LL(0x24, 0x24, 0x90, 0x24, 0x3d, 0xb4, 0x48, 0x19), | 
|  | LL(0x3b, 0x3b, 0xec, 0x3b, 0xc5, 0xd7, 0x76, 0xfe), | 
|  | LL(0xab, 0xab, 0x96, 0xab, 0x31, 0x3d, 0x4b, 0x9a), | 
|  | LL(0xce, 0xce, 0x1f, 0xce, 0x3e, 0xd1, 0x81, 0xf0), | 
|  | LL(0x11, 0x11, 0x44, 0x11, 0x88, 0x55, 0x22, 0x99), | 
|  | LL(0x8f, 0x8f, 0x06, 0x8f, 0x0c, 0x89, 0x03, 0x83), | 
|  | LL(0x4e, 0x4e, 0x25, 0x4e, 0x4a, 0x6b, 0x9c, 0x04), | 
|  | LL(0xb7, 0xb7, 0xe6, 0xb7, 0xd1, 0x51, 0x73, 0x66), | 
|  | LL(0xeb, 0xeb, 0x8b, 0xeb, 0x0b, 0x60, 0xcb, 0xe0), | 
|  | LL(0x3c, 0x3c, 0xf0, 0x3c, 0xfd, 0xcc, 0x78, 0xc1), | 
|  | LL(0x81, 0x81, 0x3e, 0x81, 0x7c, 0xbf, 0x1f, 0xfd), | 
|  | LL(0x94, 0x94, 0x6a, 0x94, 0xd4, 0xfe, 0x35, 0x40), | 
|  | LL(0xf7, 0xf7, 0xfb, 0xf7, 0xeb, 0x0c, 0xf3, 0x1c), | 
|  | LL(0xb9, 0xb9, 0xde, 0xb9, 0xa1, 0x67, 0x6f, 0x18), | 
|  | LL(0x13, 0x13, 0x4c, 0x13, 0x98, 0x5f, 0x26, 0x8b), | 
|  | LL(0x2c, 0x2c, 0xb0, 0x2c, 0x7d, 0x9c, 0x58, 0x51), | 
|  | LL(0xd3, 0xd3, 0x6b, 0xd3, 0xd6, 0xb8, 0xbb, 0x05), | 
|  | LL(0xe7, 0xe7, 0xbb, 0xe7, 0x6b, 0x5c, 0xd3, 0x8c), | 
|  | LL(0x6e, 0x6e, 0xa5, 0x6e, 0x57, 0xcb, 0xdc, 0x39), | 
|  | LL(0xc4, 0xc4, 0x37, 0xc4, 0x6e, 0xf3, 0x95, 0xaa), | 
|  | LL(0x03, 0x03, 0x0c, 0x03, 0x18, 0x0f, 0x06, 0x1b), | 
|  | LL(0x56, 0x56, 0x45, 0x56, 0x8a, 0x13, 0xac, 0xdc), | 
|  | LL(0x44, 0x44, 0x0d, 0x44, 0x1a, 0x49, 0x88, 0x5e), | 
|  | LL(0x7f, 0x7f, 0xe1, 0x7f, 0xdf, 0x9e, 0xfe, 0xa0), | 
|  | LL(0xa9, 0xa9, 0x9e, 0xa9, 0x21, 0x37, 0x4f, 0x88), | 
|  | LL(0x2a, 0x2a, 0xa8, 0x2a, 0x4d, 0x82, 0x54, 0x67), | 
|  | LL(0xbb, 0xbb, 0xd6, 0xbb, 0xb1, 0x6d, 0x6b, 0x0a), | 
|  | LL(0xc1, 0xc1, 0x23, 0xc1, 0x46, 0xe2, 0x9f, 0x87), | 
|  | LL(0x53, 0x53, 0x51, 0x53, 0xa2, 0x02, 0xa6, 0xf1), | 
|  | LL(0xdc, 0xdc, 0x57, 0xdc, 0xae, 0x8b, 0xa5, 0x72), | 
|  | LL(0x0b, 0x0b, 0x2c, 0x0b, 0x58, 0x27, 0x16, 0x53), | 
|  | LL(0x9d, 0x9d, 0x4e, 0x9d, 0x9c, 0xd3, 0x27, 0x01), | 
|  | LL(0x6c, 0x6c, 0xad, 0x6c, 0x47, 0xc1, 0xd8, 0x2b), | 
|  | LL(0x31, 0x31, 0xc4, 0x31, 0x95, 0xf5, 0x62, 0xa4), | 
|  | LL(0x74, 0x74, 0xcd, 0x74, 0x87, 0xb9, 0xe8, 0xf3), | 
|  | LL(0xf6, 0xf6, 0xff, 0xf6, 0xe3, 0x09, 0xf1, 0x15), | 
|  | LL(0x46, 0x46, 0x05, 0x46, 0x0a, 0x43, 0x8c, 0x4c), | 
|  | LL(0xac, 0xac, 0x8a, 0xac, 0x09, 0x26, 0x45, 0xa5), | 
|  | LL(0x89, 0x89, 0x1e, 0x89, 0x3c, 0x97, 0x0f, 0xb5), | 
|  | LL(0x14, 0x14, 0x50, 0x14, 0xa0, 0x44, 0x28, 0xb4), | 
|  | LL(0xe1, 0xe1, 0xa3, 0xe1, 0x5b, 0x42, 0xdf, 0xba), | 
|  | LL(0x16, 0x16, 0x58, 0x16, 0xb0, 0x4e, 0x2c, 0xa6), | 
|  | LL(0x3a, 0x3a, 0xe8, 0x3a, 0xcd, 0xd2, 0x74, 0xf7), | 
|  | LL(0x69, 0x69, 0xb9, 0x69, 0x6f, 0xd0, 0xd2, 0x06), | 
|  | LL(0x09, 0x09, 0x24, 0x09, 0x48, 0x2d, 0x12, 0x41), | 
|  | LL(0x70, 0x70, 0xdd, 0x70, 0xa7, 0xad, 0xe0, 0xd7), | 
|  | LL(0xb6, 0xb6, 0xe2, 0xb6, 0xd9, 0x54, 0x71, 0x6f), | 
|  | LL(0xd0, 0xd0, 0x67, 0xd0, 0xce, 0xb7, 0xbd, 0x1e), | 
|  | LL(0xed, 0xed, 0x93, 0xed, 0x3b, 0x7e, 0xc7, 0xd6), | 
|  | LL(0xcc, 0xcc, 0x17, 0xcc, 0x2e, 0xdb, 0x85, 0xe2), | 
|  | LL(0x42, 0x42, 0x15, 0x42, 0x2a, 0x57, 0x84, 0x68), | 
|  | LL(0x98, 0x98, 0x5a, 0x98, 0xb4, 0xc2, 0x2d, 0x2c), | 
|  | LL(0xa4, 0xa4, 0xaa, 0xa4, 0x49, 0x0e, 0x55, 0xed), | 
|  | LL(0x28, 0x28, 0xa0, 0x28, 0x5d, 0x88, 0x50, 0x75), | 
|  | LL(0x5c, 0x5c, 0x6d, 0x5c, 0xda, 0x31, 0xb8, 0x86), | 
|  | LL(0xf8, 0xf8, 0xc7, 0xf8, 0x93, 0x3f, 0xed, 0x6b), | 
|  | LL(0x86, 0x86, 0x22, 0x86, 0x44, 0xa4, 0x11, 0xc2), | 
|  | #define RC      (&(Cx.q[256*N])) | 
|  | 0x18, 0x23, 0xc6, 0xe8, 0x87, 0xb8, 0x01, 0x4f, | 
|  | /* rc[ROUNDS] */ | 
|  | 0x36, 0xa6, 0xd2, 0xf5, 0x79, 0x6f, 0x91, 0x52, 0x60, 0xbc, 0x9b, | 
|  | 0x8e, 0xa3, 0x0c, 0x7b, 0x35, 0x1d, 0xe0, 0xd7, 0xc2, 0x2e, 0x4b, | 
|  | 0xfe, 0x57, 0x15, 0x77, 0x37, 0xe5, 0x9f, 0xf0, 0x4a, 0xda, 0x58, | 
|  | 0xc9, 0x29, 0x0a, 0xb1, 0xa0, 0x6b, 0x85, 0xbd, 0x5d, 0x10, 0xf4, | 
|  | 0xcb, 0x3e, 0x05, 0x67, 0xe4, 0x27, 0x41, 0x8b, 0xa7, 0x7d, 0x95, | 
|  | 0xd8, 0xfb, 0xee, 0x7c, 0x66, 0xdd, 0x17, 0x47, 0x9e, 0xca, 0x2d, | 
|  | 0xbf, 0x07, 0xad, 0x5a, 0x83, 0x33 | 
|  | } | 
|  | }; | 
|  |  | 
|  | void whirlpool_block(WHIRLPOOL_CTX *ctx, const void *inp, size_t n) | 
|  | { | 
|  | int r; | 
|  | const u8 *p = inp; | 
|  | union { | 
|  | u64 q[8]; | 
|  | u8 c[64]; | 
|  | } S, K, *H = (void *)ctx->H.q; | 
|  |  | 
|  | #ifdef GO_FOR_MMX | 
|  | GO_FOR_MMX(ctx, inp, n); | 
|  | #endif | 
|  | do { | 
|  | #ifdef OPENSSL_SMALL_FOOTPRINT | 
|  | u64 L[8]; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 64; i++) | 
|  | S.c[i] = (K.c[i] = H->c[i]) ^ p[i]; | 
|  | for (r = 0; r < ROUNDS; r++) { | 
|  | for (i = 0; i < 8; i++) { | 
|  | L[i] = i ? 0 : RC[r]; | 
|  | L[i] ^= C0(K, i) ^ C1(K, (i - 1) & 7) ^ | 
|  | C2(K, (i - 2) & 7) ^ C3(K, (i - 3) & 7) ^ | 
|  | C4(K, (i - 4) & 7) ^ C5(K, (i - 5) & 7) ^ | 
|  | C6(K, (i - 6) & 7) ^ C7(K, (i - 7) & 7); | 
|  | } | 
|  | memcpy(K.q, L, 64); | 
|  | for (i = 0; i < 8; i++) { | 
|  | L[i] ^= C0(S, i) ^ C1(S, (i - 1) & 7) ^ | 
|  | C2(S, (i - 2) & 7) ^ C3(S, (i - 3) & 7) ^ | 
|  | C4(S, (i - 4) & 7) ^ C5(S, (i - 5) & 7) ^ | 
|  | C6(S, (i - 6) & 7) ^ C7(S, (i - 7) & 7); | 
|  | } | 
|  | memcpy(S.q, L, 64); | 
|  | } | 
|  | for (i = 0; i < 64; i++) | 
|  | H->c[i] ^= S.c[i] ^ p[i]; | 
|  | #else | 
|  | u64 L0, L1, L2, L3, L4, L5, L6, L7; | 
|  |  | 
|  | # ifdef STRICT_ALIGNMENT | 
|  | if ((size_t)p & 7) { | 
|  | memcpy(S.c, p, 64); | 
|  | S.q[0] ^= (K.q[0] = H->q[0]); | 
|  | S.q[1] ^= (K.q[1] = H->q[1]); | 
|  | S.q[2] ^= (K.q[2] = H->q[2]); | 
|  | S.q[3] ^= (K.q[3] = H->q[3]); | 
|  | S.q[4] ^= (K.q[4] = H->q[4]); | 
|  | S.q[5] ^= (K.q[5] = H->q[5]); | 
|  | S.q[6] ^= (K.q[6] = H->q[6]); | 
|  | S.q[7] ^= (K.q[7] = H->q[7]); | 
|  | } else | 
|  | # endif | 
|  | { | 
|  | const u64 *pa = (const u64 *)p; | 
|  | S.q[0] = (K.q[0] = H->q[0]) ^ pa[0]; | 
|  | S.q[1] = (K.q[1] = H->q[1]) ^ pa[1]; | 
|  | S.q[2] = (K.q[2] = H->q[2]) ^ pa[2]; | 
|  | S.q[3] = (K.q[3] = H->q[3]) ^ pa[3]; | 
|  | S.q[4] = (K.q[4] = H->q[4]) ^ pa[4]; | 
|  | S.q[5] = (K.q[5] = H->q[5]) ^ pa[5]; | 
|  | S.q[6] = (K.q[6] = H->q[6]) ^ pa[6]; | 
|  | S.q[7] = (K.q[7] = H->q[7]) ^ pa[7]; | 
|  | } | 
|  |  | 
|  | for (r = 0; r < ROUNDS; r++) { | 
|  | # ifdef SMALL_REGISTER_BANK | 
|  | L0 = C0(K, 0) ^ C1(K, 7) ^ C2(K, 6) ^ C3(K, 5) ^ | 
|  | C4(K, 4) ^ C5(K, 3) ^ C6(K, 2) ^ C7(K, 1) ^ RC[r]; | 
|  | L1 = C0(K, 1) ^ C1(K, 0) ^ C2(K, 7) ^ C3(K, 6) ^ | 
|  | C4(K, 5) ^ C5(K, 4) ^ C6(K, 3) ^ C7(K, 2); | 
|  | L2 = C0(K, 2) ^ C1(K, 1) ^ C2(K, 0) ^ C3(K, 7) ^ | 
|  | C4(K, 6) ^ C5(K, 5) ^ C6(K, 4) ^ C7(K, 3); | 
|  | L3 = C0(K, 3) ^ C1(K, 2) ^ C2(K, 1) ^ C3(K, 0) ^ | 
|  | C4(K, 7) ^ C5(K, 6) ^ C6(K, 5) ^ C7(K, 4); | 
|  | L4 = C0(K, 4) ^ C1(K, 3) ^ C2(K, 2) ^ C3(K, 1) ^ | 
|  | C4(K, 0) ^ C5(K, 7) ^ C6(K, 6) ^ C7(K, 5); | 
|  | L5 = C0(K, 5) ^ C1(K, 4) ^ C2(K, 3) ^ C3(K, 2) ^ | 
|  | C4(K, 1) ^ C5(K, 0) ^ C6(K, 7) ^ C7(K, 6); | 
|  | L6 = C0(K, 6) ^ C1(K, 5) ^ C2(K, 4) ^ C3(K, 3) ^ | 
|  | C4(K, 2) ^ C5(K, 1) ^ C6(K, 0) ^ C7(K, 7); | 
|  | L7 = C0(K, 7) ^ C1(K, 6) ^ C2(K, 5) ^ C3(K, 4) ^ | 
|  | C4(K, 3) ^ C5(K, 2) ^ C6(K, 1) ^ C7(K, 0); | 
|  |  | 
|  | K.q[0] = L0; | 
|  | K.q[1] = L1; | 
|  | K.q[2] = L2; | 
|  | K.q[3] = L3; | 
|  | K.q[4] = L4; | 
|  | K.q[5] = L5; | 
|  | K.q[6] = L6; | 
|  | K.q[7] = L7; | 
|  |  | 
|  | L0 ^= C0(S, 0) ^ C1(S, 7) ^ C2(S, 6) ^ C3(S, 5) ^ | 
|  | C4(S, 4) ^ C5(S, 3) ^ C6(S, 2) ^ C7(S, 1); | 
|  | L1 ^= C0(S, 1) ^ C1(S, 0) ^ C2(S, 7) ^ C3(S, 6) ^ | 
|  | C4(S, 5) ^ C5(S, 4) ^ C6(S, 3) ^ C7(S, 2); | 
|  | L2 ^= C0(S, 2) ^ C1(S, 1) ^ C2(S, 0) ^ C3(S, 7) ^ | 
|  | C4(S, 6) ^ C5(S, 5) ^ C6(S, 4) ^ C7(S, 3); | 
|  | L3 ^= C0(S, 3) ^ C1(S, 2) ^ C2(S, 1) ^ C3(S, 0) ^ | 
|  | C4(S, 7) ^ C5(S, 6) ^ C6(S, 5) ^ C7(S, 4); | 
|  | L4 ^= C0(S, 4) ^ C1(S, 3) ^ C2(S, 2) ^ C3(S, 1) ^ | 
|  | C4(S, 0) ^ C5(S, 7) ^ C6(S, 6) ^ C7(S, 5); | 
|  | L5 ^= C0(S, 5) ^ C1(S, 4) ^ C2(S, 3) ^ C3(S, 2) ^ | 
|  | C4(S, 1) ^ C5(S, 0) ^ C6(S, 7) ^ C7(S, 6); | 
|  | L6 ^= C0(S, 6) ^ C1(S, 5) ^ C2(S, 4) ^ C3(S, 3) ^ | 
|  | C4(S, 2) ^ C5(S, 1) ^ C6(S, 0) ^ C7(S, 7); | 
|  | L7 ^= C0(S, 7) ^ C1(S, 6) ^ C2(S, 5) ^ C3(S, 4) ^ | 
|  | C4(S, 3) ^ C5(S, 2) ^ C6(S, 1) ^ C7(S, 0); | 
|  |  | 
|  | S.q[0] = L0; | 
|  | S.q[1] = L1; | 
|  | S.q[2] = L2; | 
|  | S.q[3] = L3; | 
|  | S.q[4] = L4; | 
|  | S.q[5] = L5; | 
|  | S.q[6] = L6; | 
|  | S.q[7] = L7; | 
|  | # else | 
|  | L0 = C0(K, 0); | 
|  | L1 = C1(K, 0); | 
|  | L2 = C2(K, 0); | 
|  | L3 = C3(K, 0); | 
|  | L4 = C4(K, 0); | 
|  | L5 = C5(K, 0); | 
|  | L6 = C6(K, 0); | 
|  | L7 = C7(K, 0); | 
|  | L0 ^= RC[r]; | 
|  |  | 
|  | L1 ^= C0(K, 1); | 
|  | L2 ^= C1(K, 1); | 
|  | L3 ^= C2(K, 1); | 
|  | L4 ^= C3(K, 1); | 
|  | L5 ^= C4(K, 1); | 
|  | L6 ^= C5(K, 1); | 
|  | L7 ^= C6(K, 1); | 
|  | L0 ^= C7(K, 1); | 
|  |  | 
|  | L2 ^= C0(K, 2); | 
|  | L3 ^= C1(K, 2); | 
|  | L4 ^= C2(K, 2); | 
|  | L5 ^= C3(K, 2); | 
|  | L6 ^= C4(K, 2); | 
|  | L7 ^= C5(K, 2); | 
|  | L0 ^= C6(K, 2); | 
|  | L1 ^= C7(K, 2); | 
|  |  | 
|  | L3 ^= C0(K, 3); | 
|  | L4 ^= C1(K, 3); | 
|  | L5 ^= C2(K, 3); | 
|  | L6 ^= C3(K, 3); | 
|  | L7 ^= C4(K, 3); | 
|  | L0 ^= C5(K, 3); | 
|  | L1 ^= C6(K, 3); | 
|  | L2 ^= C7(K, 3); | 
|  |  | 
|  | L4 ^= C0(K, 4); | 
|  | L5 ^= C1(K, 4); | 
|  | L6 ^= C2(K, 4); | 
|  | L7 ^= C3(K, 4); | 
|  | L0 ^= C4(K, 4); | 
|  | L1 ^= C5(K, 4); | 
|  | L2 ^= C6(K, 4); | 
|  | L3 ^= C7(K, 4); | 
|  |  | 
|  | L5 ^= C0(K, 5); | 
|  | L6 ^= C1(K, 5); | 
|  | L7 ^= C2(K, 5); | 
|  | L0 ^= C3(K, 5); | 
|  | L1 ^= C4(K, 5); | 
|  | L2 ^= C5(K, 5); | 
|  | L3 ^= C6(K, 5); | 
|  | L4 ^= C7(K, 5); | 
|  |  | 
|  | L6 ^= C0(K, 6); | 
|  | L7 ^= C1(K, 6); | 
|  | L0 ^= C2(K, 6); | 
|  | L1 ^= C3(K, 6); | 
|  | L2 ^= C4(K, 6); | 
|  | L3 ^= C5(K, 6); | 
|  | L4 ^= C6(K, 6); | 
|  | L5 ^= C7(K, 6); | 
|  |  | 
|  | L7 ^= C0(K, 7); | 
|  | L0 ^= C1(K, 7); | 
|  | L1 ^= C2(K, 7); | 
|  | L2 ^= C3(K, 7); | 
|  | L3 ^= C4(K, 7); | 
|  | L4 ^= C5(K, 7); | 
|  | L5 ^= C6(K, 7); | 
|  | L6 ^= C7(K, 7); | 
|  |  | 
|  | K.q[0] = L0; | 
|  | K.q[1] = L1; | 
|  | K.q[2] = L2; | 
|  | K.q[3] = L3; | 
|  | K.q[4] = L4; | 
|  | K.q[5] = L5; | 
|  | K.q[6] = L6; | 
|  | K.q[7] = L7; | 
|  |  | 
|  | L0 ^= C0(S, 0); | 
|  | L1 ^= C1(S, 0); | 
|  | L2 ^= C2(S, 0); | 
|  | L3 ^= C3(S, 0); | 
|  | L4 ^= C4(S, 0); | 
|  | L5 ^= C5(S, 0); | 
|  | L6 ^= C6(S, 0); | 
|  | L7 ^= C7(S, 0); | 
|  |  | 
|  | L1 ^= C0(S, 1); | 
|  | L2 ^= C1(S, 1); | 
|  | L3 ^= C2(S, 1); | 
|  | L4 ^= C3(S, 1); | 
|  | L5 ^= C4(S, 1); | 
|  | L6 ^= C5(S, 1); | 
|  | L7 ^= C6(S, 1); | 
|  | L0 ^= C7(S, 1); | 
|  |  | 
|  | L2 ^= C0(S, 2); | 
|  | L3 ^= C1(S, 2); | 
|  | L4 ^= C2(S, 2); | 
|  | L5 ^= C3(S, 2); | 
|  | L6 ^= C4(S, 2); | 
|  | L7 ^= C5(S, 2); | 
|  | L0 ^= C6(S, 2); | 
|  | L1 ^= C7(S, 2); | 
|  |  | 
|  | L3 ^= C0(S, 3); | 
|  | L4 ^= C1(S, 3); | 
|  | L5 ^= C2(S, 3); | 
|  | L6 ^= C3(S, 3); | 
|  | L7 ^= C4(S, 3); | 
|  | L0 ^= C5(S, 3); | 
|  | L1 ^= C6(S, 3); | 
|  | L2 ^= C7(S, 3); | 
|  |  | 
|  | L4 ^= C0(S, 4); | 
|  | L5 ^= C1(S, 4); | 
|  | L6 ^= C2(S, 4); | 
|  | L7 ^= C3(S, 4); | 
|  | L0 ^= C4(S, 4); | 
|  | L1 ^= C5(S, 4); | 
|  | L2 ^= C6(S, 4); | 
|  | L3 ^= C7(S, 4); | 
|  |  | 
|  | L5 ^= C0(S, 5); | 
|  | L6 ^= C1(S, 5); | 
|  | L7 ^= C2(S, 5); | 
|  | L0 ^= C3(S, 5); | 
|  | L1 ^= C4(S, 5); | 
|  | L2 ^= C5(S, 5); | 
|  | L3 ^= C6(S, 5); | 
|  | L4 ^= C7(S, 5); | 
|  |  | 
|  | L6 ^= C0(S, 6); | 
|  | L7 ^= C1(S, 6); | 
|  | L0 ^= C2(S, 6); | 
|  | L1 ^= C3(S, 6); | 
|  | L2 ^= C4(S, 6); | 
|  | L3 ^= C5(S, 6); | 
|  | L4 ^= C6(S, 6); | 
|  | L5 ^= C7(S, 6); | 
|  |  | 
|  | L7 ^= C0(S, 7); | 
|  | L0 ^= C1(S, 7); | 
|  | L1 ^= C2(S, 7); | 
|  | L2 ^= C3(S, 7); | 
|  | L3 ^= C4(S, 7); | 
|  | L4 ^= C5(S, 7); | 
|  | L5 ^= C6(S, 7); | 
|  | L6 ^= C7(S, 7); | 
|  |  | 
|  | S.q[0] = L0; | 
|  | S.q[1] = L1; | 
|  | S.q[2] = L2; | 
|  | S.q[3] = L3; | 
|  | S.q[4] = L4; | 
|  | S.q[5] = L5; | 
|  | S.q[6] = L6; | 
|  | S.q[7] = L7; | 
|  | # endif | 
|  | } | 
|  |  | 
|  | # ifdef STRICT_ALIGNMENT | 
|  | if ((size_t)p & 7) { | 
|  | int i; | 
|  | for (i = 0; i < 64; i++) | 
|  | H->c[i] ^= S.c[i] ^ p[i]; | 
|  | } else | 
|  | # endif | 
|  | { | 
|  | const u64 *pa = (const u64 *)p; | 
|  | H->q[0] ^= S.q[0] ^ pa[0]; | 
|  | H->q[1] ^= S.q[1] ^ pa[1]; | 
|  | H->q[2] ^= S.q[2] ^ pa[2]; | 
|  | H->q[3] ^= S.q[3] ^ pa[3]; | 
|  | H->q[4] ^= S.q[4] ^ pa[4]; | 
|  | H->q[5] ^= S.q[5] ^ pa[5]; | 
|  | H->q[6] ^= S.q[6] ^ pa[6]; | 
|  | H->q[7] ^= S.q[7] ^ pa[7]; | 
|  | } | 
|  | #endif | 
|  | p += 64; | 
|  | } while (--n); | 
|  | } |