|  | /* | 
|  | * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved | 
|  | * | 
|  | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | #undef SECONDS | 
|  | #define SECONDS                 3 | 
|  | #define PRIME_SECONDS   10 | 
|  | #define RSA_SECONDS             10 | 
|  | #define DSA_SECONDS             10 | 
|  | #define ECDSA_SECONDS   10 | 
|  | #define ECDH_SECONDS    10 | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <math.h> | 
|  | #include "apps.h" | 
|  | #include <openssl/crypto.h> | 
|  | #include <openssl/rand.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/objects.h> | 
|  | #include <openssl/async.h> | 
|  | #if !defined(OPENSSL_SYS_MSDOS) | 
|  | # include OPENSSL_UNISTD | 
|  | #endif | 
|  |  | 
|  | #if defined(_WIN32) | 
|  | # include <windows.h> | 
|  | #endif | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #ifndef OPENSSL_NO_DES | 
|  | # include <openssl/des.h> | 
|  | #endif | 
|  | #include <openssl/aes.h> | 
|  | #ifndef OPENSSL_NO_CAMELLIA | 
|  | # include <openssl/camellia.h> | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_MD2 | 
|  | # include <openssl/md2.h> | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_MDC2 | 
|  | # include <openssl/mdc2.h> | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_MD4 | 
|  | # include <openssl/md4.h> | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_MD5 | 
|  | # include <openssl/md5.h> | 
|  | #endif | 
|  | #include <openssl/hmac.h> | 
|  | #include <openssl/sha.h> | 
|  | #ifndef OPENSSL_NO_RMD160 | 
|  | # include <openssl/ripemd.h> | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_WHIRLPOOL | 
|  | # include <openssl/whrlpool.h> | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RC4 | 
|  | # include <openssl/rc4.h> | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RC5 | 
|  | # include <openssl/rc5.h> | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RC2 | 
|  | # include <openssl/rc2.h> | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_IDEA | 
|  | # include <openssl/idea.h> | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_SEED | 
|  | # include <openssl/seed.h> | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_BF | 
|  | # include <openssl/blowfish.h> | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_CAST | 
|  | # include <openssl/cast.h> | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RSA | 
|  | # include <openssl/rsa.h> | 
|  | # include "./testrsa.h" | 
|  | #endif | 
|  | #include <openssl/x509.h> | 
|  | #ifndef OPENSSL_NO_DSA | 
|  | # include <openssl/dsa.h> | 
|  | # include "./testdsa.h" | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_EC | 
|  | # include <openssl/ec.h> | 
|  | #endif | 
|  | #include <openssl/modes.h> | 
|  |  | 
|  | #ifndef HAVE_FORK | 
|  | # if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) | 
|  | #  define HAVE_FORK 0 | 
|  | # else | 
|  | #  define HAVE_FORK 1 | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | #if HAVE_FORK | 
|  | # undef NO_FORK | 
|  | #else | 
|  | # define NO_FORK | 
|  | #endif | 
|  |  | 
|  | #undef BUFSIZE | 
|  | #define BUFSIZE (1024*16+1) | 
|  | #define MAX_MISALIGNMENT 63 | 
|  |  | 
|  | #define ALGOR_NUM       30 | 
|  | #define SIZE_NUM        6 | 
|  | #define PRIME_NUM       3 | 
|  | #define RSA_NUM         7 | 
|  | #define DSA_NUM         3 | 
|  |  | 
|  | #define EC_NUM          17 | 
|  | #define MAX_ECDH_SIZE   256 | 
|  | #define MISALIGN        64 | 
|  |  | 
|  | static volatile int run = 0; | 
|  |  | 
|  | static int mr = 0; | 
|  | static int usertime = 1; | 
|  |  | 
|  | typedef struct loopargs_st { | 
|  | ASYNC_JOB *inprogress_job; | 
|  | ASYNC_WAIT_CTX *wait_ctx; | 
|  | unsigned char *buf; | 
|  | unsigned char *buf2; | 
|  | unsigned char *buf_malloc; | 
|  | unsigned char *buf2_malloc; | 
|  | unsigned int siglen; | 
|  | #ifndef OPENSSL_NO_RSA | 
|  | RSA *rsa_key[RSA_NUM]; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DSA | 
|  | DSA *dsa_key[DSA_NUM]; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_EC | 
|  | EC_KEY *ecdsa[EC_NUM]; | 
|  | EVP_PKEY_CTX *ecdh_ctx[EC_NUM]; | 
|  | unsigned char *secret_a; | 
|  | unsigned char *secret_b; | 
|  | size_t outlen[EC_NUM]; | 
|  | #endif | 
|  | EVP_CIPHER_CTX *ctx; | 
|  | HMAC_CTX *hctx; | 
|  | GCM128_CONTEXT *gcm_ctx; | 
|  | } loopargs_t; | 
|  |  | 
|  | #ifndef OPENSSL_NO_MD2 | 
|  | static int EVP_Digest_MD2_loop(void *args); | 
|  | #endif | 
|  |  | 
|  | #ifndef OPENSSL_NO_MDC2 | 
|  | static int EVP_Digest_MDC2_loop(void *args); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_MD4 | 
|  | static int EVP_Digest_MD4_loop(void *args); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_MD5 | 
|  | static int MD5_loop(void *args); | 
|  | static int HMAC_loop(void *args); | 
|  | #endif | 
|  | static int SHA1_loop(void *args); | 
|  | static int SHA256_loop(void *args); | 
|  | static int SHA512_loop(void *args); | 
|  | #ifndef OPENSSL_NO_WHIRLPOOL | 
|  | static int WHIRLPOOL_loop(void *args); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RMD160 | 
|  | static int EVP_Digest_RMD160_loop(void *args); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RC4 | 
|  | static int RC4_loop(void *args); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DES | 
|  | static int DES_ncbc_encrypt_loop(void *args); | 
|  | static int DES_ede3_cbc_encrypt_loop(void *args); | 
|  | #endif | 
|  | static int AES_cbc_128_encrypt_loop(void *args); | 
|  | static int AES_cbc_192_encrypt_loop(void *args); | 
|  | static int AES_ige_128_encrypt_loop(void *args); | 
|  | static int AES_cbc_256_encrypt_loop(void *args); | 
|  | static int AES_ige_192_encrypt_loop(void *args); | 
|  | static int AES_ige_256_encrypt_loop(void *args); | 
|  | static int CRYPTO_gcm128_aad_loop(void *args); | 
|  | static int EVP_Update_loop(void *args); | 
|  | static int EVP_Digest_loop(void *args); | 
|  | #ifndef OPENSSL_NO_RSA | 
|  | static int RSA_sign_loop(void *args); | 
|  | static int RSA_verify_loop(void *args); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DSA | 
|  | static int DSA_sign_loop(void *args); | 
|  | static int DSA_verify_loop(void *args); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_EC | 
|  | static int ECDSA_sign_loop(void *args); | 
|  | static int ECDSA_verify_loop(void *args); | 
|  | #endif | 
|  | static int run_benchmark(int async_jobs, int (*loop_function) (void *), | 
|  | loopargs_t * loopargs); | 
|  |  | 
|  | static double Time_F(int s); | 
|  | static void print_message(const char *s, long num, int length); | 
|  | static void pkey_print_message(const char *str, const char *str2, | 
|  | long num, int bits, int sec); | 
|  | static void print_result(int alg, int run_no, int count, double time_used); | 
|  | #ifndef NO_FORK | 
|  | static int do_multi(int multi); | 
|  | #endif | 
|  |  | 
|  | static const char *names[ALGOR_NUM] = { | 
|  | "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4", | 
|  | "des cbc", "des ede3", "idea cbc", "seed cbc", | 
|  | "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc", | 
|  | "aes-128 cbc", "aes-192 cbc", "aes-256 cbc", | 
|  | "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc", | 
|  | "evp", "sha256", "sha512", "whirlpool", | 
|  | "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash" | 
|  | }; | 
|  |  | 
|  | static double results[ALGOR_NUM][SIZE_NUM]; | 
|  |  | 
|  | static const int lengths[SIZE_NUM] = { | 
|  | 16, 64, 256, 1024, 8 * 1024, 16 * 1024 | 
|  | }; | 
|  |  | 
|  | #ifndef OPENSSL_NO_RSA | 
|  | static double rsa_results[RSA_NUM][2]; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DSA | 
|  | static double dsa_results[DSA_NUM][2]; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_EC | 
|  | static double ecdsa_results[EC_NUM][2]; | 
|  | static double ecdh_results[EC_NUM][1]; | 
|  | #endif | 
|  |  | 
|  | #if !defined(OPENSSL_NO_DSA) || !defined(OPENSSL_NO_EC) | 
|  | static const char rnd_seed[] = | 
|  | "string to make the random number generator think it has randomness"; | 
|  | #endif | 
|  |  | 
|  | #ifdef SIGALRM | 
|  | # if defined(__STDC__) || defined(sgi) || defined(_AIX) | 
|  | #  define SIGRETTYPE void | 
|  | # else | 
|  | #  define SIGRETTYPE int | 
|  | # endif | 
|  |  | 
|  | static SIGRETTYPE sig_done(int sig); | 
|  | static SIGRETTYPE sig_done(int sig) | 
|  | { | 
|  | signal(SIGALRM, sig_done); | 
|  | run = 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define START   0 | 
|  | #define STOP    1 | 
|  |  | 
|  | #if defined(_WIN32) | 
|  |  | 
|  | # if !defined(SIGALRM) | 
|  | #  define SIGALRM | 
|  | # endif | 
|  | static unsigned int lapse, schlock; | 
|  | static void alarm_win32(unsigned int secs) | 
|  | { | 
|  | lapse = secs * 1000; | 
|  | } | 
|  |  | 
|  | # define alarm alarm_win32 | 
|  |  | 
|  | static DWORD WINAPI sleepy(VOID * arg) | 
|  | { | 
|  | schlock = 1; | 
|  | Sleep(lapse); | 
|  | run = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static double Time_F(int s) | 
|  | { | 
|  | double ret; | 
|  | static HANDLE thr; | 
|  |  | 
|  | if (s == START) { | 
|  | schlock = 0; | 
|  | thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL); | 
|  | if (thr == NULL) { | 
|  | DWORD err = GetLastError(); | 
|  | BIO_printf(bio_err, "unable to CreateThread (%lu)", err); | 
|  | ExitProcess(err); | 
|  | } | 
|  | while (!schlock) | 
|  | Sleep(0);           /* scheduler spinlock */ | 
|  | ret = app_tminterval(s, usertime); | 
|  | } else { | 
|  | ret = app_tminterval(s, usertime); | 
|  | if (run) | 
|  | TerminateThread(thr, 0); | 
|  | CloseHandle(thr); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  |  | 
|  | static double Time_F(int s) | 
|  | { | 
|  | double ret = app_tminterval(s, usertime); | 
|  | if (s == STOP) | 
|  | alarm(0); | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void multiblock_speed(const EVP_CIPHER *evp_cipher); | 
|  |  | 
|  | static int found(const char *name, const OPT_PAIR *pairs, int *result) | 
|  | { | 
|  | for (; pairs->name; pairs++) | 
|  | if (strcmp(name, pairs->name) == 0) { | 
|  | *result = pairs->retval; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | typedef enum OPTION_choice { | 
|  | OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, | 
|  | OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI, | 
|  | OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS | 
|  | } OPTION_CHOICE; | 
|  |  | 
|  | const OPTIONS speed_options[] = { | 
|  | {OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"}, | 
|  | {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, | 
|  | {"help", OPT_HELP, '-', "Display this summary"}, | 
|  | {"evp", OPT_EVP, 's', "Use specified EVP cipher"}, | 
|  | {"decrypt", OPT_DECRYPT, '-', | 
|  | "Time decryption instead of encryption (only EVP)"}, | 
|  | {"mr", OPT_MR, '-', "Produce machine readable output"}, | 
|  | {"mb", OPT_MB, '-', | 
|  | "Enable (tls1.1) multi-block mode on evp_cipher requested with -evp"}, | 
|  | {"misalign", OPT_MISALIGN, 'n', "Amount to mis-align buffers"}, | 
|  | {"elapsed", OPT_ELAPSED, '-', | 
|  | "Measure time in real time instead of CPU user time"}, | 
|  | #ifndef NO_FORK | 
|  | {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"}, | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_ASYNC | 
|  | {"async_jobs", OPT_ASYNCJOBS, 'p', | 
|  | "Enable async mode and start pnum jobs"}, | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_ENGINE | 
|  | {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, | 
|  | #endif | 
|  | {NULL}, | 
|  | }; | 
|  |  | 
|  | #define D_MD2           0 | 
|  | #define D_MDC2          1 | 
|  | #define D_MD4           2 | 
|  | #define D_MD5           3 | 
|  | #define D_HMAC          4 | 
|  | #define D_SHA1          5 | 
|  | #define D_RMD160        6 | 
|  | #define D_RC4           7 | 
|  | #define D_CBC_DES       8 | 
|  | #define D_EDE3_DES      9 | 
|  | #define D_CBC_IDEA      10 | 
|  | #define D_CBC_SEED      11 | 
|  | #define D_CBC_RC2       12 | 
|  | #define D_CBC_RC5       13 | 
|  | #define D_CBC_BF        14 | 
|  | #define D_CBC_CAST      15 | 
|  | #define D_CBC_128_AES   16 | 
|  | #define D_CBC_192_AES   17 | 
|  | #define D_CBC_256_AES   18 | 
|  | #define D_CBC_128_CML   19 | 
|  | #define D_CBC_192_CML   20 | 
|  | #define D_CBC_256_CML   21 | 
|  | #define D_EVP           22 | 
|  | #define D_SHA256        23 | 
|  | #define D_SHA512        24 | 
|  | #define D_WHIRLPOOL     25 | 
|  | #define D_IGE_128_AES   26 | 
|  | #define D_IGE_192_AES   27 | 
|  | #define D_IGE_256_AES   28 | 
|  | #define D_GHASH         29 | 
|  | static OPT_PAIR doit_choices[] = { | 
|  | #ifndef OPENSSL_NO_MD2 | 
|  | {"md2", D_MD2}, | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_MDC2 | 
|  | {"mdc2", D_MDC2}, | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_MD4 | 
|  | {"md4", D_MD4}, | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_MD5 | 
|  | {"md5", D_MD5}, | 
|  | {"hmac", D_HMAC}, | 
|  | #endif | 
|  | {"sha1", D_SHA1}, | 
|  | {"sha256", D_SHA256}, | 
|  | {"sha512", D_SHA512}, | 
|  | #ifndef OPENSSL_NO_WHIRLPOOL | 
|  | {"whirlpool", D_WHIRLPOOL}, | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RMD160 | 
|  | {"ripemd", D_RMD160}, | 
|  | {"rmd160", D_RMD160}, | 
|  | {"ripemd160", D_RMD160}, | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RC4 | 
|  | {"rc4", D_RC4}, | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DES | 
|  | {"des-cbc", D_CBC_DES}, | 
|  | {"des-ede3", D_EDE3_DES}, | 
|  | #endif | 
|  | {"aes-128-cbc", D_CBC_128_AES}, | 
|  | {"aes-192-cbc", D_CBC_192_AES}, | 
|  | {"aes-256-cbc", D_CBC_256_AES}, | 
|  | {"aes-128-ige", D_IGE_128_AES}, | 
|  | {"aes-192-ige", D_IGE_192_AES}, | 
|  | {"aes-256-ige", D_IGE_256_AES}, | 
|  | #ifndef OPENSSL_NO_RC2 | 
|  | {"rc2-cbc", D_CBC_RC2}, | 
|  | {"rc2", D_CBC_RC2}, | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RC5 | 
|  | {"rc5-cbc", D_CBC_RC5}, | 
|  | {"rc5", D_CBC_RC5}, | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_IDEA | 
|  | {"idea-cbc", D_CBC_IDEA}, | 
|  | {"idea", D_CBC_IDEA}, | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_SEED | 
|  | {"seed-cbc", D_CBC_SEED}, | 
|  | {"seed", D_CBC_SEED}, | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_BF | 
|  | {"bf-cbc", D_CBC_BF}, | 
|  | {"blowfish", D_CBC_BF}, | 
|  | {"bf", D_CBC_BF}, | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_CAST | 
|  | {"cast-cbc", D_CBC_CAST}, | 
|  | {"cast", D_CBC_CAST}, | 
|  | {"cast5", D_CBC_CAST}, | 
|  | #endif | 
|  | {"ghash", D_GHASH}, | 
|  | {NULL} | 
|  | }; | 
|  |  | 
|  | #ifndef OPENSSL_NO_DSA | 
|  | # define R_DSA_512       0 | 
|  | # define R_DSA_1024      1 | 
|  | # define R_DSA_2048      2 | 
|  | static OPT_PAIR dsa_choices[] = { | 
|  | {"dsa512", R_DSA_512}, | 
|  | {"dsa1024", R_DSA_1024}, | 
|  | {"dsa2048", R_DSA_2048}, | 
|  | {NULL}, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | #define R_RSA_512       0 | 
|  | #define R_RSA_1024      1 | 
|  | #define R_RSA_2048      2 | 
|  | #define R_RSA_3072      3 | 
|  | #define R_RSA_4096      4 | 
|  | #define R_RSA_7680      5 | 
|  | #define R_RSA_15360     6 | 
|  | static OPT_PAIR rsa_choices[] = { | 
|  | {"rsa512", R_RSA_512}, | 
|  | {"rsa1024", R_RSA_1024}, | 
|  | {"rsa2048", R_RSA_2048}, | 
|  | {"rsa3072", R_RSA_3072}, | 
|  | {"rsa4096", R_RSA_4096}, | 
|  | {"rsa7680", R_RSA_7680}, | 
|  | {"rsa15360", R_RSA_15360}, | 
|  | {NULL} | 
|  | }; | 
|  |  | 
|  | #define R_EC_P160    0 | 
|  | #define R_EC_P192    1 | 
|  | #define R_EC_P224    2 | 
|  | #define R_EC_P256    3 | 
|  | #define R_EC_P384    4 | 
|  | #define R_EC_P521    5 | 
|  | #define R_EC_K163    6 | 
|  | #define R_EC_K233    7 | 
|  | #define R_EC_K283    8 | 
|  | #define R_EC_K409    9 | 
|  | #define R_EC_K571    10 | 
|  | #define R_EC_B163    11 | 
|  | #define R_EC_B233    12 | 
|  | #define R_EC_B283    13 | 
|  | #define R_EC_B409    14 | 
|  | #define R_EC_B571    15 | 
|  | #define R_EC_X25519  16 | 
|  | #ifndef OPENSSL_NO_EC | 
|  | static OPT_PAIR ecdsa_choices[] = { | 
|  | {"ecdsap160", R_EC_P160}, | 
|  | {"ecdsap192", R_EC_P192}, | 
|  | {"ecdsap224", R_EC_P224}, | 
|  | {"ecdsap256", R_EC_P256}, | 
|  | {"ecdsap384", R_EC_P384}, | 
|  | {"ecdsap521", R_EC_P521}, | 
|  | {"ecdsak163", R_EC_K163}, | 
|  | {"ecdsak233", R_EC_K233}, | 
|  | {"ecdsak283", R_EC_K283}, | 
|  | {"ecdsak409", R_EC_K409}, | 
|  | {"ecdsak571", R_EC_K571}, | 
|  | {"ecdsab163", R_EC_B163}, | 
|  | {"ecdsab233", R_EC_B233}, | 
|  | {"ecdsab283", R_EC_B283}, | 
|  | {"ecdsab409", R_EC_B409}, | 
|  | {"ecdsab571", R_EC_B571}, | 
|  | {NULL} | 
|  | }; | 
|  |  | 
|  | static OPT_PAIR ecdh_choices[] = { | 
|  | {"ecdhp160", R_EC_P160}, | 
|  | {"ecdhp192", R_EC_P192}, | 
|  | {"ecdhp224", R_EC_P224}, | 
|  | {"ecdhp256", R_EC_P256}, | 
|  | {"ecdhp384", R_EC_P384}, | 
|  | {"ecdhp521", R_EC_P521}, | 
|  | {"ecdhk163", R_EC_K163}, | 
|  | {"ecdhk233", R_EC_K233}, | 
|  | {"ecdhk283", R_EC_K283}, | 
|  | {"ecdhk409", R_EC_K409}, | 
|  | {"ecdhk571", R_EC_K571}, | 
|  | {"ecdhb163", R_EC_B163}, | 
|  | {"ecdhb233", R_EC_B233}, | 
|  | {"ecdhb283", R_EC_B283}, | 
|  | {"ecdhb409", R_EC_B409}, | 
|  | {"ecdhb571", R_EC_B571}, | 
|  | {"ecdhx25519", R_EC_X25519}, | 
|  | {NULL} | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | #ifndef SIGALRM | 
|  | # define COND(d) (count < (d)) | 
|  | # define COUNT(d) (d) | 
|  | #else | 
|  | # define COND(unused_cond) (run && count<0x7fffffff) | 
|  | # define COUNT(d) (count) | 
|  | #endif                          /* SIGALRM */ | 
|  |  | 
|  | static int testnum; | 
|  |  | 
|  | /* Nb of iterations to do per algorithm and key-size */ | 
|  | static long c[ALGOR_NUM][SIZE_NUM]; | 
|  |  | 
|  | #ifndef OPENSSL_NO_MD2 | 
|  | static int EVP_Digest_MD2_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char md2[MD2_DIGEST_LENGTH]; | 
|  | int count; | 
|  |  | 
|  | for (count = 0; COND(c[D_MD2][testnum]); count++) { | 
|  | if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(), | 
|  | NULL)) | 
|  | return -1; | 
|  | } | 
|  | return count; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef OPENSSL_NO_MDC2 | 
|  | static int EVP_Digest_MDC2_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char mdc2[MDC2_DIGEST_LENGTH]; | 
|  | int count; | 
|  |  | 
|  | for (count = 0; COND(c[D_MDC2][testnum]); count++) { | 
|  | if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(), | 
|  | NULL)) | 
|  | return -1; | 
|  | } | 
|  | return count; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef OPENSSL_NO_MD4 | 
|  | static int EVP_Digest_MD4_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char md4[MD4_DIGEST_LENGTH]; | 
|  | int count; | 
|  |  | 
|  | for (count = 0; COND(c[D_MD4][testnum]); count++) { | 
|  | if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(), | 
|  | NULL)) | 
|  | return -1; | 
|  | } | 
|  | return count; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef OPENSSL_NO_MD5 | 
|  | static int MD5_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char md5[MD5_DIGEST_LENGTH]; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_MD5][testnum]); count++) | 
|  | MD5(buf, lengths[testnum], md5); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int HMAC_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | HMAC_CTX *hctx = tempargs->hctx; | 
|  | unsigned char hmac[MD5_DIGEST_LENGTH]; | 
|  | int count; | 
|  |  | 
|  | for (count = 0; COND(c[D_HMAC][testnum]); count++) { | 
|  | HMAC_Init_ex(hctx, NULL, 0, NULL, NULL); | 
|  | HMAC_Update(hctx, buf, lengths[testnum]); | 
|  | HMAC_Final(hctx, hmac, NULL); | 
|  | } | 
|  | return count; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int SHA1_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char sha[SHA_DIGEST_LENGTH]; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_SHA1][testnum]); count++) | 
|  | SHA1(buf, lengths[testnum], sha); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int SHA256_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char sha256[SHA256_DIGEST_LENGTH]; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_SHA256][testnum]); count++) | 
|  | SHA256(buf, lengths[testnum], sha256); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int SHA512_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char sha512[SHA512_DIGEST_LENGTH]; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_SHA512][testnum]); count++) | 
|  | SHA512(buf, lengths[testnum], sha512); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | #ifndef OPENSSL_NO_WHIRLPOOL | 
|  | static int WHIRLPOOL_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH]; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++) | 
|  | WHIRLPOOL(buf, lengths[testnum], whirlpool); | 
|  | return count; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef OPENSSL_NO_RMD160 | 
|  | static int EVP_Digest_RMD160_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char rmd160[RIPEMD160_DIGEST_LENGTH]; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_RMD160][testnum]); count++) { | 
|  | if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]), | 
|  | NULL, EVP_ripemd160(), NULL)) | 
|  | return -1; | 
|  | } | 
|  | return count; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef OPENSSL_NO_RC4 | 
|  | static RC4_KEY rc4_ks; | 
|  | static int RC4_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_RC4][testnum]); count++) | 
|  | RC4(&rc4_ks, (size_t)lengths[testnum], buf, buf); | 
|  | return count; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef OPENSSL_NO_DES | 
|  | static unsigned char DES_iv[8]; | 
|  | static DES_key_schedule sch; | 
|  | static DES_key_schedule sch2; | 
|  | static DES_key_schedule sch3; | 
|  | static int DES_ncbc_encrypt_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_CBC_DES][testnum]); count++) | 
|  | DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch, | 
|  | &DES_iv, DES_ENCRYPT); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int DES_ede3_cbc_encrypt_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_EDE3_DES][testnum]); count++) | 
|  | DES_ede3_cbc_encrypt(buf, buf, lengths[testnum], | 
|  | &sch, &sch2, &sch3, &DES_iv, DES_ENCRYPT); | 
|  | return count; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define MAX_BLOCK_SIZE 128 | 
|  |  | 
|  | static unsigned char iv[2 * MAX_BLOCK_SIZE / 8]; | 
|  | static AES_KEY aes_ks1, aes_ks2, aes_ks3; | 
|  | static int AES_cbc_128_encrypt_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++) | 
|  | AES_cbc_encrypt(buf, buf, | 
|  | (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int AES_cbc_192_encrypt_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++) | 
|  | AES_cbc_encrypt(buf, buf, | 
|  | (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int AES_cbc_256_encrypt_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++) | 
|  | AES_cbc_encrypt(buf, buf, | 
|  | (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int AES_ige_128_encrypt_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char *buf2 = tempargs->buf2; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++) | 
|  | AES_ige_encrypt(buf, buf2, | 
|  | (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int AES_ige_192_encrypt_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char *buf2 = tempargs->buf2; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++) | 
|  | AES_ige_encrypt(buf, buf2, | 
|  | (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int AES_ige_256_encrypt_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char *buf2 = tempargs->buf2; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++) | 
|  | AES_ige_encrypt(buf, buf2, | 
|  | (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int CRYPTO_gcm128_aad_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx; | 
|  | int count; | 
|  | for (count = 0; COND(c[D_GHASH][testnum]); count++) | 
|  | CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static long save_count = 0; | 
|  | static int decrypt = 0; | 
|  | static int EVP_Update_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | EVP_CIPHER_CTX *ctx = tempargs->ctx; | 
|  | int outl, count; | 
|  | #ifndef SIGALRM | 
|  | int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; | 
|  | #endif | 
|  | if (decrypt) | 
|  | for (count = 0; COND(nb_iter); count++) | 
|  | EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); | 
|  | else | 
|  | for (count = 0; COND(nb_iter); count++) | 
|  | EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); | 
|  | if (decrypt) | 
|  | EVP_DecryptFinal_ex(ctx, buf, &outl); | 
|  | else | 
|  | EVP_EncryptFinal_ex(ctx, buf, &outl); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static const EVP_MD *evp_md = NULL; | 
|  | static int EVP_Digest_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char md[EVP_MAX_MD_SIZE]; | 
|  | int count; | 
|  | #ifndef SIGALRM | 
|  | int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; | 
|  | #endif | 
|  |  | 
|  | for (count = 0; COND(nb_iter); count++) { | 
|  | if (!EVP_Digest(buf, lengths[testnum], md, NULL, evp_md, NULL)) | 
|  | return -1; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | #ifndef OPENSSL_NO_RSA | 
|  | static long rsa_c[RSA_NUM][2];  /* # RSA iteration test */ | 
|  |  | 
|  | static int RSA_sign_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char *buf2 = tempargs->buf2; | 
|  | unsigned int *rsa_num = &tempargs->siglen; | 
|  | RSA **rsa_key = tempargs->rsa_key; | 
|  | int ret, count; | 
|  | for (count = 0; COND(rsa_c[testnum][0]); count++) { | 
|  | ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); | 
|  | if (ret == 0) { | 
|  | BIO_printf(bio_err, "RSA sign failure\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | count = -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int RSA_verify_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char *buf2 = tempargs->buf2; | 
|  | unsigned int rsa_num = tempargs->siglen; | 
|  | RSA **rsa_key = tempargs->rsa_key; | 
|  | int ret, count; | 
|  | for (count = 0; COND(rsa_c[testnum][1]); count++) { | 
|  | ret = | 
|  | RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); | 
|  | if (ret <= 0) { | 
|  | BIO_printf(bio_err, "RSA verify failure\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | count = -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return count; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef OPENSSL_NO_DSA | 
|  | static long dsa_c[DSA_NUM][2]; | 
|  | static int DSA_sign_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char *buf2 = tempargs->buf2; | 
|  | DSA **dsa_key = tempargs->dsa_key; | 
|  | unsigned int *siglen = &tempargs->siglen; | 
|  | int ret, count; | 
|  | for (count = 0; COND(dsa_c[testnum][0]); count++) { | 
|  | ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]); | 
|  | if (ret == 0) { | 
|  | BIO_printf(bio_err, "DSA sign failure\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | count = -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int DSA_verify_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | unsigned char *buf2 = tempargs->buf2; | 
|  | DSA **dsa_key = tempargs->dsa_key; | 
|  | unsigned int siglen = tempargs->siglen; | 
|  | int ret, count; | 
|  | for (count = 0; COND(dsa_c[testnum][1]); count++) { | 
|  | ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]); | 
|  | if (ret <= 0) { | 
|  | BIO_printf(bio_err, "DSA verify failure\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | count = -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return count; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef OPENSSL_NO_EC | 
|  | static long ecdsa_c[EC_NUM][2]; | 
|  | static int ECDSA_sign_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | EC_KEY **ecdsa = tempargs->ecdsa; | 
|  | unsigned char *ecdsasig = tempargs->buf2; | 
|  | unsigned int *ecdsasiglen = &tempargs->siglen; | 
|  | int ret, count; | 
|  | for (count = 0; COND(ecdsa_c[testnum][0]); count++) { | 
|  | ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]); | 
|  | if (ret == 0) { | 
|  | BIO_printf(bio_err, "ECDSA sign failure\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | count = -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int ECDSA_verify_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | unsigned char *buf = tempargs->buf; | 
|  | EC_KEY **ecdsa = tempargs->ecdsa; | 
|  | unsigned char *ecdsasig = tempargs->buf2; | 
|  | unsigned int ecdsasiglen = tempargs->siglen; | 
|  | int ret, count; | 
|  | for (count = 0; COND(ecdsa_c[testnum][1]); count++) { | 
|  | ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]); | 
|  | if (ret != 1) { | 
|  | BIO_printf(bio_err, "ECDSA verify failure\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | count = -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* ******************************************************************** */ | 
|  | static long ecdh_c[EC_NUM][1]; | 
|  |  | 
|  | static int ECDH_EVP_derive_key_loop(void *args) | 
|  | { | 
|  | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum]; | 
|  | unsigned char *derived_secret = tempargs->secret_a; | 
|  | int count; | 
|  | size_t *outlen = &(tempargs->outlen[testnum]); | 
|  |  | 
|  | for (count = 0; COND(ecdh_c[testnum][0]); count++) | 
|  | EVP_PKEY_derive(ctx, derived_secret, outlen); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | #endif                          /* OPENSSL_NO_EC */ | 
|  |  | 
|  | static int run_benchmark(int async_jobs, | 
|  | int (*loop_function) (void *), loopargs_t * loopargs) | 
|  | { | 
|  | int job_op_count = 0; | 
|  | int total_op_count = 0; | 
|  | int num_inprogress = 0; | 
|  | int error = 0, i = 0, ret = 0; | 
|  | OSSL_ASYNC_FD job_fd = 0; | 
|  | size_t num_job_fds = 0; | 
|  |  | 
|  | run = 1; | 
|  |  | 
|  | if (async_jobs == 0) { | 
|  | return loop_function((void *)&loopargs); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < async_jobs && !error; i++) { | 
|  | loopargs_t *looparg_item = loopargs + i; | 
|  |  | 
|  | /* Copy pointer content (looparg_t item address) into async context */ | 
|  | ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx, | 
|  | &job_op_count, loop_function, | 
|  | (void *)&looparg_item, sizeof(looparg_item)); | 
|  | switch (ret) { | 
|  | case ASYNC_PAUSE: | 
|  | ++num_inprogress; | 
|  | break; | 
|  | case ASYNC_FINISH: | 
|  | if (job_op_count == -1) { | 
|  | error = 1; | 
|  | } else { | 
|  | total_op_count += job_op_count; | 
|  | } | 
|  | break; | 
|  | case ASYNC_NO_JOBS: | 
|  | case ASYNC_ERR: | 
|  | BIO_printf(bio_err, "Failure in the job\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | error = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (num_inprogress > 0) { | 
|  | #if defined(OPENSSL_SYS_WINDOWS) | 
|  | DWORD avail = 0; | 
|  | #elif defined(OPENSSL_SYS_UNIX) | 
|  | int select_result = 0; | 
|  | OSSL_ASYNC_FD max_fd = 0; | 
|  | fd_set waitfdset; | 
|  |  | 
|  | FD_ZERO(&waitfdset); | 
|  |  | 
|  | for (i = 0; i < async_jobs && num_inprogress > 0; i++) { | 
|  | if (loopargs[i].inprogress_job == NULL) | 
|  | continue; | 
|  |  | 
|  | if (!ASYNC_WAIT_CTX_get_all_fds | 
|  | (loopargs[i].wait_ctx, NULL, &num_job_fds) | 
|  | || num_job_fds > 1) { | 
|  | BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | error = 1; | 
|  | break; | 
|  | } | 
|  | ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, | 
|  | &num_job_fds); | 
|  | FD_SET(job_fd, &waitfdset); | 
|  | if (job_fd > max_fd) | 
|  | max_fd = job_fd; | 
|  | } | 
|  |  | 
|  | if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) { | 
|  | BIO_printf(bio_err, | 
|  | "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). " | 
|  | "Decrease the value of async_jobs\n", | 
|  | max_fd, FD_SETSIZE); | 
|  | ERR_print_errors(bio_err); | 
|  | error = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL); | 
|  | if (select_result == -1 && errno == EINTR) | 
|  | continue; | 
|  |  | 
|  | if (select_result == -1) { | 
|  | BIO_printf(bio_err, "Failure in the select\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | error = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (select_result == 0) | 
|  | continue; | 
|  | #endif | 
|  |  | 
|  | for (i = 0; i < async_jobs; i++) { | 
|  | if (loopargs[i].inprogress_job == NULL) | 
|  | continue; | 
|  |  | 
|  | if (!ASYNC_WAIT_CTX_get_all_fds | 
|  | (loopargs[i].wait_ctx, NULL, &num_job_fds) | 
|  | || num_job_fds > 1) { | 
|  | BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | error = 1; | 
|  | break; | 
|  | } | 
|  | ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, | 
|  | &num_job_fds); | 
|  |  | 
|  | #if defined(OPENSSL_SYS_UNIX) | 
|  | if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset)) | 
|  | continue; | 
|  | #elif defined(OPENSSL_SYS_WINDOWS) | 
|  | if (num_job_fds == 1 | 
|  | && !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) | 
|  | && avail > 0) | 
|  | continue; | 
|  | #endif | 
|  |  | 
|  | ret = ASYNC_start_job(&loopargs[i].inprogress_job, | 
|  | loopargs[i].wait_ctx, &job_op_count, | 
|  | loop_function, (void *)(loopargs + i), | 
|  | sizeof(loopargs_t)); | 
|  | switch (ret) { | 
|  | case ASYNC_PAUSE: | 
|  | break; | 
|  | case ASYNC_FINISH: | 
|  | if (job_op_count == -1) { | 
|  | error = 1; | 
|  | } else { | 
|  | total_op_count += job_op_count; | 
|  | } | 
|  | --num_inprogress; | 
|  | loopargs[i].inprogress_job = NULL; | 
|  | break; | 
|  | case ASYNC_NO_JOBS: | 
|  | case ASYNC_ERR: | 
|  | --num_inprogress; | 
|  | loopargs[i].inprogress_job = NULL; | 
|  | BIO_printf(bio_err, "Failure in the job\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | error = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return error ? -1 : total_op_count; | 
|  | } | 
|  |  | 
|  | int speed_main(int argc, char **argv) | 
|  | { | 
|  | ENGINE *e = NULL; | 
|  | loopargs_t *loopargs = NULL; | 
|  | int async_init = 0; | 
|  | int loopargs_len = 0; | 
|  | char *prog; | 
|  | const char *engine_id = NULL; | 
|  | const EVP_CIPHER *evp_cipher = NULL; | 
|  | double d = 0.0; | 
|  | OPTION_CHOICE o; | 
|  | int multiblock = 0, pr_header = 0; | 
|  | int doit[ALGOR_NUM] = { 0 }; | 
|  | int ret = 1, i, k, misalign = 0; | 
|  | long count = 0; | 
|  | #ifndef NO_FORK | 
|  | int multi = 0; | 
|  | #endif | 
|  | unsigned int async_jobs = 0; | 
|  | #if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \ | 
|  | || !defined(OPENSSL_NO_EC) | 
|  | long rsa_count = 1; | 
|  | #endif | 
|  |  | 
|  | /* What follows are the buffers and key material. */ | 
|  | #ifndef OPENSSL_NO_RC5 | 
|  | RC5_32_KEY rc5_ks; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RC2 | 
|  | RC2_KEY rc2_ks; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_IDEA | 
|  | IDEA_KEY_SCHEDULE idea_ks; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_SEED | 
|  | SEED_KEY_SCHEDULE seed_ks; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_BF | 
|  | BF_KEY bf_ks; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_CAST | 
|  | CAST_KEY cast_ks; | 
|  | #endif | 
|  | static const unsigned char key16[16] = { | 
|  | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, | 
|  | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 | 
|  | }; | 
|  | static const unsigned char key24[24] = { | 
|  | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, | 
|  | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, | 
|  | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 | 
|  | }; | 
|  | static const unsigned char key32[32] = { | 
|  | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, | 
|  | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, | 
|  | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, | 
|  | 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 | 
|  | }; | 
|  | #ifndef OPENSSL_NO_CAMELLIA | 
|  | static const unsigned char ckey24[24] = { | 
|  | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, | 
|  | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, | 
|  | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 | 
|  | }; | 
|  | static const unsigned char ckey32[32] = { | 
|  | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, | 
|  | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, | 
|  | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, | 
|  | 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 | 
|  | }; | 
|  | CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DES | 
|  | static DES_cblock key = { | 
|  | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0 | 
|  | }; | 
|  | static DES_cblock key2 = { | 
|  | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 | 
|  | }; | 
|  | static DES_cblock key3 = { | 
|  | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 | 
|  | }; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RSA | 
|  | static const unsigned int rsa_bits[RSA_NUM] = { | 
|  | 512, 1024, 2048, 3072, 4096, 7680, 15360 | 
|  | }; | 
|  | static const unsigned char *rsa_data[RSA_NUM] = { | 
|  | test512, test1024, test2048, test3072, test4096, test7680, test15360 | 
|  | }; | 
|  | static const int rsa_data_length[RSA_NUM] = { | 
|  | sizeof(test512), sizeof(test1024), | 
|  | sizeof(test2048), sizeof(test3072), | 
|  | sizeof(test4096), sizeof(test7680), | 
|  | sizeof(test15360) | 
|  | }; | 
|  | int rsa_doit[RSA_NUM] = { 0 }; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DSA | 
|  | static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 }; | 
|  | int dsa_doit[DSA_NUM] = { 0 }; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_EC | 
|  | /* | 
|  | * We only test over the following curves as they are representative, To | 
|  | * add tests over more curves, simply add the curve NID and curve name to | 
|  | * the following arrays and increase the EC_NUM value accordingly. | 
|  | */ | 
|  | static const unsigned int test_curves[EC_NUM] = { | 
|  | /* Prime Curves */ | 
|  | NID_secp160r1, NID_X9_62_prime192v1, NID_secp224r1, | 
|  | NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, | 
|  | /* Binary Curves */ | 
|  | NID_sect163k1, NID_sect233k1, NID_sect283k1, | 
|  | NID_sect409k1, NID_sect571k1, NID_sect163r2, | 
|  | NID_sect233r1, NID_sect283r1, NID_sect409r1, | 
|  | NID_sect571r1, | 
|  | /* Other */ | 
|  | NID_X25519 | 
|  | }; | 
|  | static const char *test_curves_names[EC_NUM] = { | 
|  | /* Prime Curves */ | 
|  | "secp160r1", "nistp192", "nistp224", | 
|  | "nistp256", "nistp384", "nistp521", | 
|  | /* Binary Curves */ | 
|  | "nistk163", "nistk233", "nistk283", | 
|  | "nistk409", "nistk571", "nistb163", | 
|  | "nistb233", "nistb283", "nistb409", | 
|  | "nistb571", | 
|  | /* Other */ | 
|  | "X25519" | 
|  | }; | 
|  | static const int test_curves_bits[EC_NUM] = { | 
|  | 160, 192, 224, | 
|  | 256, 384, 521, | 
|  | 163, 233, 283, | 
|  | 409, 571, 163, | 
|  | 233, 283, 409, | 
|  | 571, 253                /* X25519 */ | 
|  | }; | 
|  |  | 
|  | int ecdsa_doit[EC_NUM] = { 0 }; | 
|  | int ecdh_doit[EC_NUM] = { 0 }; | 
|  | #endif                          /* ndef OPENSSL_NO_EC */ | 
|  |  | 
|  | prog = opt_init(argc, argv, speed_options); | 
|  | while ((o = opt_next()) != OPT_EOF) { | 
|  | switch (o) { | 
|  | case OPT_EOF: | 
|  | case OPT_ERR: | 
|  | opterr: | 
|  | BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); | 
|  | goto end; | 
|  | case OPT_HELP: | 
|  | opt_help(speed_options); | 
|  | ret = 0; | 
|  | goto end; | 
|  | case OPT_ELAPSED: | 
|  | usertime = 0; | 
|  | break; | 
|  | case OPT_EVP: | 
|  | evp_md = NULL; | 
|  | evp_cipher = EVP_get_cipherbyname(opt_arg()); | 
|  | if (evp_cipher == NULL) | 
|  | evp_md = EVP_get_digestbyname(opt_arg()); | 
|  | if (evp_cipher == NULL && evp_md == NULL) { | 
|  | BIO_printf(bio_err, | 
|  | "%s: %s is an unknown cipher or digest\n", | 
|  | prog, opt_arg()); | 
|  | goto end; | 
|  | } | 
|  | doit[D_EVP] = 1; | 
|  | break; | 
|  | case OPT_DECRYPT: | 
|  | decrypt = 1; | 
|  | break; | 
|  | case OPT_ENGINE: | 
|  | /* | 
|  | * In a forked execution, an engine might need to be | 
|  | * initialised by each child process, not by the parent. | 
|  | * So store the name here and run setup_engine() later on. | 
|  | */ | 
|  | engine_id = opt_arg(); | 
|  | break; | 
|  | case OPT_MULTI: | 
|  | #ifndef NO_FORK | 
|  | multi = atoi(opt_arg()); | 
|  | #endif | 
|  | break; | 
|  | case OPT_ASYNCJOBS: | 
|  | #ifndef OPENSSL_NO_ASYNC | 
|  | async_jobs = atoi(opt_arg()); | 
|  | if (!ASYNC_is_capable()) { | 
|  | BIO_printf(bio_err, | 
|  | "%s: async_jobs specified but async not supported\n", | 
|  | prog); | 
|  | goto opterr; | 
|  | } | 
|  | if (async_jobs > 99999) { | 
|  | BIO_printf(bio_err, | 
|  | "%s: too many async_jobs\n", | 
|  | prog); | 
|  | goto opterr; | 
|  | } | 
|  | #endif | 
|  | break; | 
|  | case OPT_MISALIGN: | 
|  | if (!opt_int(opt_arg(), &misalign)) | 
|  | goto end; | 
|  | if (misalign > MISALIGN) { | 
|  | BIO_printf(bio_err, | 
|  | "%s: Maximum offset is %d\n", prog, MISALIGN); | 
|  | goto opterr; | 
|  | } | 
|  | break; | 
|  | case OPT_MR: | 
|  | mr = 1; | 
|  | break; | 
|  | case OPT_MB: | 
|  | multiblock = 1; | 
|  | #ifdef OPENSSL_NO_MULTIBLOCK | 
|  | BIO_printf(bio_err, | 
|  | "%s: -mb specified but multi-block support is disabled\n", | 
|  | prog); | 
|  | goto end; | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | } | 
|  | argc = opt_num_rest(); | 
|  | argv = opt_rest(); | 
|  |  | 
|  | /* Remaining arguments are algorithms. */ | 
|  | for (; *argv; argv++) { | 
|  | if (found(*argv, doit_choices, &i)) { | 
|  | doit[i] = 1; | 
|  | continue; | 
|  | } | 
|  | #ifndef OPENSSL_NO_DES | 
|  | if (strcmp(*argv, "des") == 0) { | 
|  | doit[D_CBC_DES] = doit[D_EDE3_DES] = 1; | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  | if (strcmp(*argv, "sha") == 0) { | 
|  | doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1; | 
|  | continue; | 
|  | } | 
|  | #ifndef OPENSSL_NO_RSA | 
|  | if (strcmp(*argv, "openssl") == 0) | 
|  | continue; | 
|  | if (strcmp(*argv, "rsa") == 0) { | 
|  | rsa_doit[R_RSA_512] = rsa_doit[R_RSA_1024] = | 
|  | rsa_doit[R_RSA_2048] = rsa_doit[R_RSA_3072] = | 
|  | rsa_doit[R_RSA_4096] = rsa_doit[R_RSA_7680] = | 
|  | rsa_doit[R_RSA_15360] = 1; | 
|  | continue; | 
|  | } | 
|  | if (found(*argv, rsa_choices, &i)) { | 
|  | rsa_doit[i] = 1; | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DSA | 
|  | if (strcmp(*argv, "dsa") == 0) { | 
|  | dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] = | 
|  | dsa_doit[R_DSA_2048] = 1; | 
|  | continue; | 
|  | } | 
|  | if (found(*argv, dsa_choices, &i)) { | 
|  | dsa_doit[i] = 2; | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  | if (strcmp(*argv, "aes") == 0) { | 
|  | doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1; | 
|  | continue; | 
|  | } | 
|  | #ifndef OPENSSL_NO_CAMELLIA | 
|  | if (strcmp(*argv, "camellia") == 0) { | 
|  | doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1; | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_EC | 
|  | if (strcmp(*argv, "ecdsa") == 0) { | 
|  | for (i = 0; i < EC_NUM; i++) | 
|  | ecdsa_doit[i] = 1; | 
|  | continue; | 
|  | } | 
|  | if (found(*argv, ecdsa_choices, &i)) { | 
|  | ecdsa_doit[i] = 2; | 
|  | continue; | 
|  | } | 
|  | if (strcmp(*argv, "ecdh") == 0) { | 
|  | for (i = 0; i < EC_NUM; i++) | 
|  | ecdh_doit[i] = 1; | 
|  | continue; | 
|  | } | 
|  | if (found(*argv, ecdh_choices, &i)) { | 
|  | ecdh_doit[i] = 2; | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  | BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* Initialize the job pool if async mode is enabled */ | 
|  | if (async_jobs > 0) { | 
|  | async_init = ASYNC_init_thread(async_jobs, async_jobs); | 
|  | if (!async_init) { | 
|  | BIO_printf(bio_err, "Error creating the ASYNC job pool\n"); | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | loopargs_len = (async_jobs == 0 ? 1 : async_jobs); | 
|  | loopargs = | 
|  | app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs"); | 
|  | memset(loopargs, 0, loopargs_len * sizeof(loopargs_t)); | 
|  |  | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | if (async_jobs > 0) { | 
|  | loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new(); | 
|  | if (loopargs[i].wait_ctx == NULL) { | 
|  | BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n"); | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | loopargs[i].buf_malloc = | 
|  | app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer"); | 
|  | loopargs[i].buf2_malloc = | 
|  | app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer"); | 
|  | /* Align the start of buffers on a 64 byte boundary */ | 
|  | loopargs[i].buf = loopargs[i].buf_malloc + misalign; | 
|  | loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign; | 
|  | #ifndef OPENSSL_NO_EC | 
|  | loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a"); | 
|  | loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifndef NO_FORK | 
|  | if (multi && do_multi(multi)) | 
|  | goto show_res; | 
|  | #endif | 
|  |  | 
|  | /* Initialize the engine after the fork */ | 
|  | e = setup_engine(engine_id, 0); | 
|  |  | 
|  | /* No parameters; turn on everything. */ | 
|  | if ((argc == 0) && !doit[D_EVP]) { | 
|  | for (i = 0; i < ALGOR_NUM; i++) | 
|  | if (i != D_EVP) | 
|  | doit[i] = 1; | 
|  | #ifndef OPENSSL_NO_RSA | 
|  | for (i = 0; i < RSA_NUM; i++) | 
|  | rsa_doit[i] = 1; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DSA | 
|  | for (i = 0; i < DSA_NUM; i++) | 
|  | dsa_doit[i] = 1; | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_EC | 
|  | for (i = 0; i < EC_NUM; i++) | 
|  | ecdsa_doit[i] = 1; | 
|  | for (i = 0; i < EC_NUM; i++) | 
|  | ecdh_doit[i] = 1; | 
|  | #endif | 
|  | } | 
|  | for (i = 0; i < ALGOR_NUM; i++) | 
|  | if (doit[i]) | 
|  | pr_header++; | 
|  |  | 
|  | if (usertime == 0 && !mr) | 
|  | BIO_printf(bio_err, | 
|  | "You have chosen to measure elapsed time " | 
|  | "instead of user CPU time.\n"); | 
|  |  | 
|  | #ifndef OPENSSL_NO_RSA | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | for (k = 0; k < RSA_NUM; k++) { | 
|  | const unsigned char *p; | 
|  |  | 
|  | p = rsa_data[k]; | 
|  | loopargs[i].rsa_key[k] = | 
|  | d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]); | 
|  | if (loopargs[i].rsa_key[k] == NULL) { | 
|  | BIO_printf(bio_err, | 
|  | "internal error loading RSA key number %d\n", k); | 
|  | goto end; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DSA | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | loopargs[i].dsa_key[0] = get_dsa(512); | 
|  | loopargs[i].dsa_key[1] = get_dsa(1024); | 
|  | loopargs[i].dsa_key[2] = get_dsa(2048); | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DES | 
|  | DES_set_key_unchecked(&key, &sch); | 
|  | DES_set_key_unchecked(&key2, &sch2); | 
|  | DES_set_key_unchecked(&key3, &sch3); | 
|  | #endif | 
|  | AES_set_encrypt_key(key16, 128, &aes_ks1); | 
|  | AES_set_encrypt_key(key24, 192, &aes_ks2); | 
|  | AES_set_encrypt_key(key32, 256, &aes_ks3); | 
|  | #ifndef OPENSSL_NO_CAMELLIA | 
|  | Camellia_set_key(key16, 128, &camellia_ks1); | 
|  | Camellia_set_key(ckey24, 192, &camellia_ks2); | 
|  | Camellia_set_key(ckey32, 256, &camellia_ks3); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_IDEA | 
|  | IDEA_set_encrypt_key(key16, &idea_ks); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_SEED | 
|  | SEED_set_key(key16, &seed_ks); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RC4 | 
|  | RC4_set_key(&rc4_ks, 16, key16); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RC2 | 
|  | RC2_set_key(&rc2_ks, 16, key16, 128); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RC5 | 
|  | RC5_32_set_key(&rc5_ks, 16, key16, 12); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_BF | 
|  | BF_set_key(&bf_ks, 16, key16); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_CAST | 
|  | CAST_set_key(&cast_ks, 16, key16); | 
|  | #endif | 
|  | #ifndef SIGALRM | 
|  | # ifndef OPENSSL_NO_DES | 
|  | BIO_printf(bio_err, "First we calculate the approximate speed ...\n"); | 
|  | count = 10; | 
|  | do { | 
|  | long it; | 
|  | count *= 2; | 
|  | Time_F(START); | 
|  | for (it = count; it; it--) | 
|  | DES_ecb_encrypt((DES_cblock *)loopargs[0].buf, | 
|  | (DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT); | 
|  | d = Time_F(STOP); | 
|  | } while (d < 3); | 
|  | save_count = count; | 
|  | c[D_MD2][0] = count / 10; | 
|  | c[D_MDC2][0] = count / 10; | 
|  | c[D_MD4][0] = count; | 
|  | c[D_MD5][0] = count; | 
|  | c[D_HMAC][0] = count; | 
|  | c[D_SHA1][0] = count; | 
|  | c[D_RMD160][0] = count; | 
|  | c[D_RC4][0] = count * 5; | 
|  | c[D_CBC_DES][0] = count; | 
|  | c[D_EDE3_DES][0] = count / 3; | 
|  | c[D_CBC_IDEA][0] = count; | 
|  | c[D_CBC_SEED][0] = count; | 
|  | c[D_CBC_RC2][0] = count; | 
|  | c[D_CBC_RC5][0] = count; | 
|  | c[D_CBC_BF][0] = count; | 
|  | c[D_CBC_CAST][0] = count; | 
|  | c[D_CBC_128_AES][0] = count; | 
|  | c[D_CBC_192_AES][0] = count; | 
|  | c[D_CBC_256_AES][0] = count; | 
|  | c[D_CBC_128_CML][0] = count; | 
|  | c[D_CBC_192_CML][0] = count; | 
|  | c[D_CBC_256_CML][0] = count; | 
|  | c[D_SHA256][0] = count; | 
|  | c[D_SHA512][0] = count; | 
|  | c[D_WHIRLPOOL][0] = count; | 
|  | c[D_IGE_128_AES][0] = count; | 
|  | c[D_IGE_192_AES][0] = count; | 
|  | c[D_IGE_256_AES][0] = count; | 
|  | c[D_GHASH][0] = count; | 
|  |  | 
|  | for (i = 1; i < SIZE_NUM; i++) { | 
|  | long l0, l1; | 
|  |  | 
|  | l0 = (long)lengths[0]; | 
|  | l1 = (long)lengths[i]; | 
|  |  | 
|  | c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1; | 
|  | c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1; | 
|  | c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1; | 
|  | c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1; | 
|  | c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1; | 
|  | c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1; | 
|  | c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1; | 
|  | c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1; | 
|  | c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1; | 
|  | c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1; | 
|  | c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1; | 
|  |  | 
|  | l0 = (long)lengths[i - 1]; | 
|  |  | 
|  | c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1; | 
|  | c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1; | 
|  | c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1; | 
|  | c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1; | 
|  | c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1; | 
|  | c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1; | 
|  | c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1; | 
|  | c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1; | 
|  | c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1; | 
|  | c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1; | 
|  | c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1; | 
|  | c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1; | 
|  | c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1; | 
|  | c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1; | 
|  | c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1; | 
|  | c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1; | 
|  | c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1; | 
|  | c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1; | 
|  | } | 
|  |  | 
|  | #  ifndef OPENSSL_NO_RSA | 
|  | rsa_c[R_RSA_512][0] = count / 2000; | 
|  | rsa_c[R_RSA_512][1] = count / 400; | 
|  | for (i = 1; i < RSA_NUM; i++) { | 
|  | rsa_c[i][0] = rsa_c[i - 1][0] / 8; | 
|  | rsa_c[i][1] = rsa_c[i - 1][1] / 4; | 
|  | if (rsa_doit[i] <= 1 && rsa_c[i][0] == 0) | 
|  | rsa_doit[i] = 0; | 
|  | else { | 
|  | if (rsa_c[i][0] == 0) { | 
|  | rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ | 
|  | rsa_c[i][1] = 20; | 
|  | } | 
|  | } | 
|  | } | 
|  | #  endif | 
|  |  | 
|  | #  ifndef OPENSSL_NO_DSA | 
|  | dsa_c[R_DSA_512][0] = count / 1000; | 
|  | dsa_c[R_DSA_512][1] = count / 1000 / 2; | 
|  | for (i = 1; i < DSA_NUM; i++) { | 
|  | dsa_c[i][0] = dsa_c[i - 1][0] / 4; | 
|  | dsa_c[i][1] = dsa_c[i - 1][1] / 4; | 
|  | if (dsa_doit[i] <= 1 && dsa_c[i][0] == 0) | 
|  | dsa_doit[i] = 0; | 
|  | else { | 
|  | if (dsa_c[i][0] == 0) { | 
|  | dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ | 
|  | dsa_c[i][1] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | #  endif | 
|  |  | 
|  | #  ifndef OPENSSL_NO_EC | 
|  | ecdsa_c[R_EC_P160][0] = count / 1000; | 
|  | ecdsa_c[R_EC_P160][1] = count / 1000 / 2; | 
|  | for (i = R_EC_P192; i <= R_EC_P521; i++) { | 
|  | ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; | 
|  | ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; | 
|  | if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) | 
|  | ecdsa_doit[i] = 0; | 
|  | else { | 
|  | if (ecdsa_c[i][0] == 0) { | 
|  | ecdsa_c[i][0] = 1; | 
|  | ecdsa_c[i][1] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | ecdsa_c[R_EC_K163][0] = count / 1000; | 
|  | ecdsa_c[R_EC_K163][1] = count / 1000 / 2; | 
|  | for (i = R_EC_K233; i <= R_EC_K571; i++) { | 
|  | ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; | 
|  | ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; | 
|  | if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) | 
|  | ecdsa_doit[i] = 0; | 
|  | else { | 
|  | if (ecdsa_c[i][0] == 0) { | 
|  | ecdsa_c[i][0] = 1; | 
|  | ecdsa_c[i][1] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | ecdsa_c[R_EC_B163][0] = count / 1000; | 
|  | ecdsa_c[R_EC_B163][1] = count / 1000 / 2; | 
|  | for (i = R_EC_B233; i <= R_EC_B571; i++) { | 
|  | ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; | 
|  | ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; | 
|  | if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) | 
|  | ecdsa_doit[i] = 0; | 
|  | else { | 
|  | if (ecdsa_c[i][0] == 0) { | 
|  | ecdsa_c[i][0] = 1; | 
|  | ecdsa_c[i][1] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ecdh_c[R_EC_P160][0] = count / 1000; | 
|  | for (i = R_EC_P192; i <= R_EC_P521; i++) { | 
|  | ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; | 
|  | if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) | 
|  | ecdh_doit[i] = 0; | 
|  | else { | 
|  | if (ecdh_c[i][0] == 0) { | 
|  | ecdh_c[i][0] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | ecdh_c[R_EC_K163][0] = count / 1000; | 
|  | for (i = R_EC_K233; i <= R_EC_K571; i++) { | 
|  | ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; | 
|  | if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) | 
|  | ecdh_doit[i] = 0; | 
|  | else { | 
|  | if (ecdh_c[i][0] == 0) { | 
|  | ecdh_c[i][0] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | ecdh_c[R_EC_B163][0] = count / 1000; | 
|  | for (i = R_EC_B233; i <= R_EC_B571; i++) { | 
|  | ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; | 
|  | if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) | 
|  | ecdh_doit[i] = 0; | 
|  | else { | 
|  | if (ecdh_c[i][0] == 0) { | 
|  | ecdh_c[i][0] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | #  endif | 
|  |  | 
|  | # else | 
|  | /* not worth fixing */ | 
|  | #  error "You cannot disable DES on systems without SIGALRM." | 
|  | # endif                         /* OPENSSL_NO_DES */ | 
|  | #else | 
|  | # ifndef _WIN32 | 
|  | signal(SIGALRM, sig_done); | 
|  | # endif | 
|  | #endif                          /* SIGALRM */ | 
|  |  | 
|  | #ifndef OPENSSL_NO_MD2 | 
|  | if (doit[D_MD2]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_MD2, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_MDC2 | 
|  | if (doit[D_MDC2]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_MDC2, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef OPENSSL_NO_MD4 | 
|  | if (doit[D_MD4]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_MD4, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef OPENSSL_NO_MD5 | 
|  | if (doit[D_MD5]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, MD5_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_MD5, testnum, count, d); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (doit[D_HMAC]) { | 
|  | static const char hmac_key[] = "This is a key..."; | 
|  | int len = strlen(hmac_key); | 
|  |  | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | loopargs[i].hctx = HMAC_CTX_new(); | 
|  | if (loopargs[i].hctx == NULL) { | 
|  | BIO_printf(bio_err, "HMAC malloc failure, exiting..."); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL); | 
|  | } | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, HMAC_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_HMAC, testnum, count, d); | 
|  | } | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | HMAC_CTX_free(loopargs[i].hctx); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | if (doit[D_SHA1]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, SHA1_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_SHA1, testnum, count, d); | 
|  | } | 
|  | } | 
|  | if (doit[D_SHA256]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_SHA256], c[D_SHA256][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, SHA256_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_SHA256, testnum, count, d); | 
|  | } | 
|  | } | 
|  | if (doit[D_SHA512]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_SHA512], c[D_SHA512][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, SHA512_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_SHA512, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #ifndef OPENSSL_NO_WHIRLPOOL | 
|  | if (doit[D_WHIRLPOOL]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_WHIRLPOOL, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef OPENSSL_NO_RMD160 | 
|  | if (doit[D_RMD160]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_RMD160], c[D_RMD160][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_RMD160, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RC4 | 
|  | if (doit[D_RC4]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, RC4_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_RC4, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DES | 
|  | if (doit[D_CBC_DES]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_CBC_DES, testnum, count, d); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (doit[D_EDE3_DES]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = | 
|  | run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_EDE3_DES, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (doit[D_CBC_128_AES]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = | 
|  | run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_CBC_128_AES, testnum, count, d); | 
|  | } | 
|  | } | 
|  | if (doit[D_CBC_192_AES]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = | 
|  | run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_CBC_192_AES, testnum, count, d); | 
|  | } | 
|  | } | 
|  | if (doit[D_CBC_256_AES]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = | 
|  | run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_CBC_256_AES, testnum, count, d); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (doit[D_IGE_128_AES]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = | 
|  | run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_IGE_128_AES, testnum, count, d); | 
|  | } | 
|  | } | 
|  | if (doit[D_IGE_192_AES]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = | 
|  | run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_IGE_192_AES, testnum, count, d); | 
|  | } | 
|  | } | 
|  | if (doit[D_IGE_256_AES]) { | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = | 
|  | run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_IGE_256_AES, testnum, count, d); | 
|  | } | 
|  | } | 
|  | if (doit[D_GHASH]) { | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | loopargs[i].gcm_ctx = | 
|  | CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt); | 
|  | CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, | 
|  | (unsigned char *)"0123456789ab", 12); | 
|  | } | 
|  |  | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | print_message(names[D_GHASH], c[D_GHASH][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_GHASH, testnum, count, d); | 
|  | } | 
|  | for (i = 0; i < loopargs_len; i++) | 
|  | CRYPTO_gcm128_release(loopargs[i].gcm_ctx); | 
|  | } | 
|  | #ifndef OPENSSL_NO_CAMELLIA | 
|  | if (doit[D_CBC_128_CML]) { | 
|  | if (async_jobs > 0) { | 
|  | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | names[D_CBC_128_CML]); | 
|  | doit[D_CBC_128_CML] = 0; | 
|  | } | 
|  | for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { | 
|  | print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++) | 
|  | Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | (size_t)lengths[testnum], &camellia_ks1, | 
|  | iv, CAMELLIA_ENCRYPT); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_CBC_128_CML, testnum, count, d); | 
|  | } | 
|  | } | 
|  | if (doit[D_CBC_192_CML]) { | 
|  | if (async_jobs > 0) { | 
|  | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | names[D_CBC_192_CML]); | 
|  | doit[D_CBC_192_CML] = 0; | 
|  | } | 
|  | for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { | 
|  | print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum], | 
|  | lengths[testnum]); | 
|  | if (async_jobs > 0) { | 
|  | BIO_printf(bio_err, "Async mode is not supported, exiting..."); | 
|  | exit(1); | 
|  | } | 
|  | Time_F(START); | 
|  | for (count = 0, run = 1; COND(c[D_CBC_192_CML][testnum]); count++) | 
|  | Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | (size_t)lengths[testnum], &camellia_ks2, | 
|  | iv, CAMELLIA_ENCRYPT); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_CBC_192_CML, testnum, count, d); | 
|  | } | 
|  | } | 
|  | if (doit[D_CBC_256_CML]) { | 
|  | if (async_jobs > 0) { | 
|  | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | names[D_CBC_256_CML]); | 
|  | doit[D_CBC_256_CML] = 0; | 
|  | } | 
|  | for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { | 
|  | print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++) | 
|  | Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | (size_t)lengths[testnum], &camellia_ks3, | 
|  | iv, CAMELLIA_ENCRYPT); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_CBC_256_CML, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_IDEA | 
|  | if (doit[D_CBC_IDEA]) { | 
|  | if (async_jobs > 0) { | 
|  | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | names[D_CBC_IDEA]); | 
|  | doit[D_CBC_IDEA] = 0; | 
|  | } | 
|  | for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { | 
|  | print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++) | 
|  | IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | (size_t)lengths[testnum], &idea_ks, | 
|  | iv, IDEA_ENCRYPT); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_CBC_IDEA, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_SEED | 
|  | if (doit[D_CBC_SEED]) { | 
|  | if (async_jobs > 0) { | 
|  | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | names[D_CBC_SEED]); | 
|  | doit[D_CBC_SEED] = 0; | 
|  | } | 
|  | for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { | 
|  | print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++) | 
|  | SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | (size_t)lengths[testnum], &seed_ks, iv, 1); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_CBC_SEED, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RC2 | 
|  | if (doit[D_CBC_RC2]) { | 
|  | if (async_jobs > 0) { | 
|  | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | names[D_CBC_RC2]); | 
|  | doit[D_CBC_RC2] = 0; | 
|  | } | 
|  | for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { | 
|  | print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], | 
|  | lengths[testnum]); | 
|  | if (async_jobs > 0) { | 
|  | BIO_printf(bio_err, "Async mode is not supported, exiting..."); | 
|  | exit(1); | 
|  | } | 
|  | Time_F(START); | 
|  | for (count = 0, run = 1; COND(c[D_CBC_RC2][testnum]); count++) | 
|  | RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | (size_t)lengths[testnum], &rc2_ks, | 
|  | iv, RC2_ENCRYPT); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_CBC_RC2, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RC5 | 
|  | if (doit[D_CBC_RC5]) { | 
|  | if (async_jobs > 0) { | 
|  | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | names[D_CBC_RC5]); | 
|  | doit[D_CBC_RC5] = 0; | 
|  | } | 
|  | for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { | 
|  | print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], | 
|  | lengths[testnum]); | 
|  | if (async_jobs > 0) { | 
|  | BIO_printf(bio_err, "Async mode is not supported, exiting..."); | 
|  | exit(1); | 
|  | } | 
|  | Time_F(START); | 
|  | for (count = 0, run = 1; COND(c[D_CBC_RC5][testnum]); count++) | 
|  | RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | (size_t)lengths[testnum], &rc5_ks, | 
|  | iv, RC5_ENCRYPT); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_CBC_RC5, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_BF | 
|  | if (doit[D_CBC_BF]) { | 
|  | if (async_jobs > 0) { | 
|  | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | names[D_CBC_BF]); | 
|  | doit[D_CBC_BF] = 0; | 
|  | } | 
|  | for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { | 
|  | print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++) | 
|  | BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | (size_t)lengths[testnum], &bf_ks, | 
|  | iv, BF_ENCRYPT); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_CBC_BF, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_CAST | 
|  | if (doit[D_CBC_CAST]) { | 
|  | if (async_jobs > 0) { | 
|  | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | names[D_CBC_CAST]); | 
|  | doit[D_CBC_CAST] = 0; | 
|  | } | 
|  | for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { | 
|  | print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], | 
|  | lengths[testnum]); | 
|  | Time_F(START); | 
|  | for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++) | 
|  | CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | (size_t)lengths[testnum], &cast_ks, | 
|  | iv, CAST_ENCRYPT); | 
|  | d = Time_F(STOP); | 
|  | print_result(D_CBC_CAST, testnum, count, d); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (doit[D_EVP]) { | 
|  | if (multiblock && evp_cipher) { | 
|  | if (! | 
|  | (EVP_CIPHER_flags(evp_cipher) & | 
|  | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { | 
|  | BIO_printf(bio_err, "%s is not multi-block capable\n", | 
|  | OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher))); | 
|  | goto end; | 
|  | } | 
|  | if (async_jobs > 0) { | 
|  | BIO_printf(bio_err, "Async mode is not supported, exiting..."); | 
|  | exit(1); | 
|  | } | 
|  | multiblock_speed(evp_cipher); | 
|  | ret = 0; | 
|  | goto end; | 
|  | } | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | if (evp_cipher) { | 
|  |  | 
|  | names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); | 
|  | /* | 
|  | * -O3 -fschedule-insns messes up an optimization here! | 
|  | * names[D_EVP] somehow becomes NULL | 
|  | */ | 
|  | print_message(names[D_EVP], save_count, lengths[testnum]); | 
|  |  | 
|  | for (k = 0; k < loopargs_len; k++) { | 
|  | loopargs[k].ctx = EVP_CIPHER_CTX_new(); | 
|  | if (decrypt) | 
|  | EVP_DecryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, | 
|  | key16, iv); | 
|  | else | 
|  | EVP_EncryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, | 
|  | key16, iv); | 
|  | EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0); | 
|  | } | 
|  |  | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, EVP_Update_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | for (k = 0; k < loopargs_len; k++) { | 
|  | EVP_CIPHER_CTX_free(loopargs[k].ctx); | 
|  | } | 
|  | } | 
|  | if (evp_md) { | 
|  | names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md)); | 
|  | print_message(names[D_EVP], save_count, lengths[testnum]); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | } | 
|  | print_result(D_EVP, testnum, count, d); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < loopargs_len; i++) | 
|  | RAND_bytes(loopargs[i].buf, 36); | 
|  |  | 
|  | #ifndef OPENSSL_NO_RSA | 
|  | for (testnum = 0; testnum < RSA_NUM; testnum++) { | 
|  | int st = 0; | 
|  | if (!rsa_doit[testnum]) | 
|  | continue; | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, | 
|  | &loopargs[i].siglen, loopargs[i].rsa_key[testnum]); | 
|  | if (st == 0) | 
|  | break; | 
|  | } | 
|  | if (st == 0) { | 
|  | BIO_printf(bio_err, | 
|  | "RSA sign failure.  No RSA sign will be done.\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | rsa_count = 1; | 
|  | } else { | 
|  | pkey_print_message("private", "rsa", | 
|  | rsa_c[testnum][0], rsa_bits[testnum], | 
|  | RSA_SECONDS); | 
|  | /* RSA_blinding_on(rsa_key[testnum],NULL); */ | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, RSA_sign_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | BIO_printf(bio_err, | 
|  | mr ? "+R1:%ld:%d:%.2f\n" | 
|  | : "%ld %d bit private RSA's in %.2fs\n", | 
|  | count, rsa_bits[testnum], d); | 
|  | rsa_results[testnum][0] = (double)count / d; | 
|  | rsa_count = count; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, | 
|  | loopargs[i].siglen, loopargs[i].rsa_key[testnum]); | 
|  | if (st <= 0) | 
|  | break; | 
|  | } | 
|  | if (st <= 0) { | 
|  | BIO_printf(bio_err, | 
|  | "RSA verify failure.  No RSA verify will be done.\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | rsa_doit[testnum] = 0; | 
|  | } else { | 
|  | pkey_print_message("public", "rsa", | 
|  | rsa_c[testnum][1], rsa_bits[testnum], | 
|  | RSA_SECONDS); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, RSA_verify_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | BIO_printf(bio_err, | 
|  | mr ? "+R2:%ld:%d:%.2f\n" | 
|  | : "%ld %d bit public RSA's in %.2fs\n", | 
|  | count, rsa_bits[testnum], d); | 
|  | rsa_results[testnum][1] = (double)count / d; | 
|  | } | 
|  |  | 
|  | if (rsa_count <= 1) { | 
|  | /* if longer than 10s, don't do any more */ | 
|  | for (testnum++; testnum < RSA_NUM; testnum++) | 
|  | rsa_doit[testnum] = 0; | 
|  | } | 
|  | } | 
|  | #endif                          /* OPENSSL_NO_RSA */ | 
|  |  | 
|  | for (i = 0; i < loopargs_len; i++) | 
|  | RAND_bytes(loopargs[i].buf, 36); | 
|  |  | 
|  | #ifndef OPENSSL_NO_DSA | 
|  | if (RAND_status() != 1) { | 
|  | RAND_seed(rnd_seed, sizeof rnd_seed); | 
|  | } | 
|  | for (testnum = 0; testnum < DSA_NUM; testnum++) { | 
|  | int st = 0; | 
|  | if (!dsa_doit[testnum]) | 
|  | continue; | 
|  |  | 
|  | /* DSA_generate_key(dsa_key[testnum]); */ | 
|  | /* DSA_sign_setup(dsa_key[testnum],NULL); */ | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, | 
|  | &loopargs[i].siglen, loopargs[i].dsa_key[testnum]); | 
|  | if (st == 0) | 
|  | break; | 
|  | } | 
|  | if (st == 0) { | 
|  | BIO_printf(bio_err, | 
|  | "DSA sign failure.  No DSA sign will be done.\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | rsa_count = 1; | 
|  | } else { | 
|  | pkey_print_message("sign", "dsa", | 
|  | dsa_c[testnum][0], dsa_bits[testnum], | 
|  | DSA_SECONDS); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, DSA_sign_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | BIO_printf(bio_err, | 
|  | mr ? "+R3:%ld:%d:%.2f\n" | 
|  | : "%ld %d bit DSA signs in %.2fs\n", | 
|  | count, dsa_bits[testnum], d); | 
|  | dsa_results[testnum][0] = (double)count / d; | 
|  | rsa_count = count; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, | 
|  | loopargs[i].siglen, loopargs[i].dsa_key[testnum]); | 
|  | if (st <= 0) | 
|  | break; | 
|  | } | 
|  | if (st <= 0) { | 
|  | BIO_printf(bio_err, | 
|  | "DSA verify failure.  No DSA verify will be done.\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | dsa_doit[testnum] = 0; | 
|  | } else { | 
|  | pkey_print_message("verify", "dsa", | 
|  | dsa_c[testnum][1], dsa_bits[testnum], | 
|  | DSA_SECONDS); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, DSA_verify_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | BIO_printf(bio_err, | 
|  | mr ? "+R4:%ld:%d:%.2f\n" | 
|  | : "%ld %d bit DSA verify in %.2fs\n", | 
|  | count, dsa_bits[testnum], d); | 
|  | dsa_results[testnum][1] = (double)count / d; | 
|  | } | 
|  |  | 
|  | if (rsa_count <= 1) { | 
|  | /* if longer than 10s, don't do any more */ | 
|  | for (testnum++; testnum < DSA_NUM; testnum++) | 
|  | dsa_doit[testnum] = 0; | 
|  | } | 
|  | } | 
|  | #endif                          /* OPENSSL_NO_DSA */ | 
|  |  | 
|  | #ifndef OPENSSL_NO_EC | 
|  | if (RAND_status() != 1) { | 
|  | RAND_seed(rnd_seed, sizeof rnd_seed); | 
|  | } | 
|  | for (testnum = 0; testnum < EC_NUM; testnum++) { | 
|  | int st = 1; | 
|  |  | 
|  | if (!ecdsa_doit[testnum]) | 
|  | continue;           /* Ignore Curve */ | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | loopargs[i].ecdsa[testnum] = | 
|  | EC_KEY_new_by_curve_name(test_curves[testnum]); | 
|  | if (loopargs[i].ecdsa[testnum] == NULL) { | 
|  | st = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (st == 0) { | 
|  | BIO_printf(bio_err, "ECDSA failure.\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | rsa_count = 1; | 
|  | } else { | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL); | 
|  | /* Perform ECDSA signature test */ | 
|  | EC_KEY_generate_key(loopargs[i].ecdsa[testnum]); | 
|  | st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, | 
|  | &loopargs[i].siglen, | 
|  | loopargs[i].ecdsa[testnum]); | 
|  | if (st == 0) | 
|  | break; | 
|  | } | 
|  | if (st == 0) { | 
|  | BIO_printf(bio_err, | 
|  | "ECDSA sign failure.  No ECDSA sign will be done.\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | rsa_count = 1; | 
|  | } else { | 
|  | pkey_print_message("sign", "ecdsa", | 
|  | ecdsa_c[testnum][0], | 
|  | test_curves_bits[testnum], ECDSA_SECONDS); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  |  | 
|  | BIO_printf(bio_err, | 
|  | mr ? "+R5:%ld:%d:%.2f\n" : | 
|  | "%ld %d bit ECDSA signs in %.2fs \n", | 
|  | count, test_curves_bits[testnum], d); | 
|  | ecdsa_results[testnum][0] = (double)count / d; | 
|  | rsa_count = count; | 
|  | } | 
|  |  | 
|  | /* Perform ECDSA verification test */ | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, | 
|  | loopargs[i].siglen, | 
|  | loopargs[i].ecdsa[testnum]); | 
|  | if (st != 1) | 
|  | break; | 
|  | } | 
|  | if (st != 1) { | 
|  | BIO_printf(bio_err, | 
|  | "ECDSA verify failure.  No ECDSA verify will be done.\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | ecdsa_doit[testnum] = 0; | 
|  | } else { | 
|  | pkey_print_message("verify", "ecdsa", | 
|  | ecdsa_c[testnum][1], | 
|  | test_curves_bits[testnum], ECDSA_SECONDS); | 
|  | Time_F(START); | 
|  | count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | BIO_printf(bio_err, | 
|  | mr ? "+R6:%ld:%d:%.2f\n" | 
|  | : "%ld %d bit ECDSA verify in %.2fs\n", | 
|  | count, test_curves_bits[testnum], d); | 
|  | ecdsa_results[testnum][1] = (double)count / d; | 
|  | } | 
|  |  | 
|  | if (rsa_count <= 1) { | 
|  | /* if longer than 10s, don't do any more */ | 
|  | for (testnum++; testnum < EC_NUM; testnum++) | 
|  | ecdsa_doit[testnum] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RAND_status() != 1) { | 
|  | RAND_seed(rnd_seed, sizeof rnd_seed); | 
|  | } | 
|  | for (testnum = 0; testnum < EC_NUM; testnum++) { | 
|  | int ecdh_checks = 1; | 
|  |  | 
|  | if (!ecdh_doit[testnum]) | 
|  | continue; | 
|  |  | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | EVP_PKEY_CTX *kctx = NULL; | 
|  | EVP_PKEY_CTX *test_ctx = NULL; | 
|  | EVP_PKEY_CTX *ctx = NULL; | 
|  | EVP_PKEY *key_A = NULL; | 
|  | EVP_PKEY *key_B = NULL; | 
|  | size_t outlen; | 
|  | size_t test_outlen; | 
|  |  | 
|  | /* Ensure that the error queue is empty */ | 
|  | if (ERR_peek_error()) { | 
|  | BIO_printf(bio_err, | 
|  | "WARNING: the error queue contains previous unhandled errors.\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | } | 
|  |  | 
|  | /* Let's try to create a ctx directly from the NID: this works for | 
|  | * curves like Curve25519 that are not implemented through the low | 
|  | * level EC interface. | 
|  | * If this fails we try creating a EVP_PKEY_EC generic param ctx, | 
|  | * then we set the curve by NID before deriving the actual keygen | 
|  | * ctx for that specific curve. */ | 
|  | kctx = EVP_PKEY_CTX_new_id(test_curves[testnum], NULL); /* keygen ctx from NID */ | 
|  | if (!kctx) { | 
|  | EVP_PKEY_CTX *pctx = NULL; | 
|  | EVP_PKEY *params = NULL; | 
|  |  | 
|  | /* If we reach this code EVP_PKEY_CTX_new_id() failed and a | 
|  | * "int_ctx_new:unsupported algorithm" error was added to the | 
|  | * error queue. | 
|  | * We remove it from the error queue as we are handling it. */ | 
|  | unsigned long error = ERR_peek_error(); /* peek the latest error in the queue */ | 
|  | if (error == ERR_peek_last_error() && /* oldest and latest errors match */ | 
|  | /* check that the error origin matches */ | 
|  | ERR_GET_LIB(error) == ERR_LIB_EVP && | 
|  | ERR_GET_FUNC(error) == EVP_F_INT_CTX_NEW && | 
|  | ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM) | 
|  | ERR_get_error(); /* pop error from queue */ | 
|  | if (ERR_peek_error()) { | 
|  | BIO_printf(bio_err, | 
|  | "Unhandled error in the error queue during ECDH init.\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | rsa_count = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (            /* Create the context for parameter generation */ | 
|  | !(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) || | 
|  | /* Initialise the parameter generation */ | 
|  | !EVP_PKEY_paramgen_init(pctx) || | 
|  | /* Set the curve by NID */ | 
|  | !EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, | 
|  | test_curves | 
|  | [testnum]) || | 
|  | /* Create the parameter object params */ | 
|  | !EVP_PKEY_paramgen(pctx, ¶ms)) { | 
|  | ecdh_checks = 0; | 
|  | BIO_printf(bio_err, "ECDH EC params init failure.\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | rsa_count = 1; | 
|  | break; | 
|  | } | 
|  | /* Create the context for the key generation */ | 
|  | kctx = EVP_PKEY_CTX_new(params, NULL); | 
|  |  | 
|  | EVP_PKEY_free(params); | 
|  | params = NULL; | 
|  | EVP_PKEY_CTX_free(pctx); | 
|  | pctx = NULL; | 
|  | } | 
|  | if (kctx == NULL ||      /* keygen ctx is not null */ | 
|  | !EVP_PKEY_keygen_init(kctx) /* init keygen ctx */ ) { | 
|  | ecdh_checks = 0; | 
|  | BIO_printf(bio_err, "ECDH keygen failure.\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | rsa_count = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!EVP_PKEY_keygen(kctx, &key_A) || /* generate secret key A */ | 
|  | !EVP_PKEY_keygen(kctx, &key_B) || /* generate secret key B */ | 
|  | !(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */ | 
|  | !EVP_PKEY_derive_init(ctx) || /* init derivation ctx */ | 
|  | !EVP_PKEY_derive_set_peer(ctx, key_B) || /* set peer pubkey in ctx */ | 
|  | !EVP_PKEY_derive(ctx, NULL, &outlen) || /* determine max length */ | 
|  | outlen == 0 ||  /* ensure outlen is a valid size */ | 
|  | outlen > MAX_ECDH_SIZE /* avoid buffer overflow */ ) { | 
|  | ecdh_checks = 0; | 
|  | BIO_printf(bio_err, "ECDH key generation failure.\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | rsa_count = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Here we perform a test run, comparing the output of a*B and b*A; | 
|  | * we try this here and assume that further EVP_PKEY_derive calls | 
|  | * never fail, so we can skip checks in the actually benchmarked | 
|  | * code, for maximum performance. */ | 
|  | if (!(test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) || /* test ctx from skeyB */ | 
|  | !EVP_PKEY_derive_init(test_ctx) || /* init derivation test_ctx */ | 
|  | !EVP_PKEY_derive_set_peer(test_ctx, key_A) || /* set peer pubkey in test_ctx */ | 
|  | !EVP_PKEY_derive(test_ctx, NULL, &test_outlen) || /* determine max length */ | 
|  | !EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) || /* compute a*B */ | 
|  | !EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) || /* compute b*A */ | 
|  | test_outlen != outlen /* compare output length */ ) { | 
|  | ecdh_checks = 0; | 
|  | BIO_printf(bio_err, "ECDH computation failure.\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | rsa_count = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */ | 
|  | if (CRYPTO_memcmp(loopargs[i].secret_a, | 
|  | loopargs[i].secret_b, outlen)) { | 
|  | ecdh_checks = 0; | 
|  | BIO_printf(bio_err, "ECDH computations don't match.\n"); | 
|  | ERR_print_errors(bio_err); | 
|  | rsa_count = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | loopargs[i].ecdh_ctx[testnum] = ctx; | 
|  | loopargs[i].outlen[testnum] = outlen; | 
|  |  | 
|  | EVP_PKEY_CTX_free(kctx); | 
|  | kctx = NULL; | 
|  | EVP_PKEY_CTX_free(test_ctx); | 
|  | test_ctx = NULL; | 
|  | } | 
|  | if (ecdh_checks != 0) { | 
|  | pkey_print_message("", "ecdh", | 
|  | ecdh_c[testnum][0], | 
|  | test_curves_bits[testnum], ECDH_SECONDS); | 
|  | Time_F(START); | 
|  | count = | 
|  | run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs); | 
|  | d = Time_F(STOP); | 
|  | BIO_printf(bio_err, | 
|  | mr ? "+R7:%ld:%d:%.2f\n" : | 
|  | "%ld %d-bit ECDH ops in %.2fs\n", count, | 
|  | test_curves_bits[testnum], d); | 
|  | ecdh_results[testnum][0] = (double)count / d; | 
|  | rsa_count = count; | 
|  | } | 
|  |  | 
|  | if (rsa_count <= 1) { | 
|  | /* if longer than 10s, don't do any more */ | 
|  | for (testnum++; testnum < EC_NUM; testnum++) | 
|  | ecdh_doit[testnum] = 0; | 
|  | } | 
|  | } | 
|  | #endif                          /* OPENSSL_NO_EC */ | 
|  | #ifndef NO_FORK | 
|  | show_res: | 
|  | #endif | 
|  | if (!mr) { | 
|  | printf("%s\n", OpenSSL_version(OPENSSL_VERSION)); | 
|  | printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON)); | 
|  | printf("options:"); | 
|  | printf("%s ", BN_options()); | 
|  | #ifndef OPENSSL_NO_MD2 | 
|  | printf("%s ", MD2_options()); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_RC4 | 
|  | printf("%s ", RC4_options()); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DES | 
|  | printf("%s ", DES_options()); | 
|  | #endif | 
|  | printf("%s ", AES_options()); | 
|  | #ifndef OPENSSL_NO_IDEA | 
|  | printf("%s ", IDEA_options()); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_BF | 
|  | printf("%s ", BF_options()); | 
|  | #endif | 
|  | printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS)); | 
|  | } | 
|  |  | 
|  | if (pr_header) { | 
|  | if (mr) | 
|  | printf("+H"); | 
|  | else { | 
|  | printf | 
|  | ("The 'numbers' are in 1000s of bytes per second processed.\n"); | 
|  | printf("type        "); | 
|  | } | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) | 
|  | printf(mr ? ":%d" : "%7d bytes", lengths[testnum]); | 
|  | printf("\n"); | 
|  | } | 
|  |  | 
|  | for (k = 0; k < ALGOR_NUM; k++) { | 
|  | if (!doit[k]) | 
|  | continue; | 
|  | if (mr) | 
|  | printf("+F:%d:%s", k, names[k]); | 
|  | else | 
|  | printf("%-13s", names[k]); | 
|  | for (testnum = 0; testnum < SIZE_NUM; testnum++) { | 
|  | if (results[k][testnum] > 10000 && !mr) | 
|  | printf(" %11.2fk", results[k][testnum] / 1e3); | 
|  | else | 
|  | printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]); | 
|  | } | 
|  | printf("\n"); | 
|  | } | 
|  | #ifndef OPENSSL_NO_RSA | 
|  | testnum = 1; | 
|  | for (k = 0; k < RSA_NUM; k++) { | 
|  | if (!rsa_doit[k]) | 
|  | continue; | 
|  | if (testnum && !mr) { | 
|  | printf("%18ssign    verify    sign/s verify/s\n", " "); | 
|  | testnum = 0; | 
|  | } | 
|  | if (mr) | 
|  | printf("+F2:%u:%u:%f:%f\n", | 
|  | k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]); | 
|  | else | 
|  | printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", | 
|  | rsa_bits[k], 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1], | 
|  | rsa_results[k][0], rsa_results[k][1]); | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DSA | 
|  | testnum = 1; | 
|  | for (k = 0; k < DSA_NUM; k++) { | 
|  | if (!dsa_doit[k]) | 
|  | continue; | 
|  | if (testnum && !mr) { | 
|  | printf("%18ssign    verify    sign/s verify/s\n", " "); | 
|  | testnum = 0; | 
|  | } | 
|  | if (mr) | 
|  | printf("+F3:%u:%u:%f:%f\n", | 
|  | k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]); | 
|  | else | 
|  | printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", | 
|  | dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1], | 
|  | dsa_results[k][0], dsa_results[k][1]); | 
|  | } | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_EC | 
|  | testnum = 1; | 
|  | for (k = 0; k < EC_NUM; k++) { | 
|  | if (!ecdsa_doit[k]) | 
|  | continue; | 
|  | if (testnum && !mr) { | 
|  | printf("%30ssign    verify    sign/s verify/s\n", " "); | 
|  | testnum = 0; | 
|  | } | 
|  |  | 
|  | if (mr) | 
|  | printf("+F4:%u:%u:%f:%f\n", | 
|  | k, test_curves_bits[k], | 
|  | ecdsa_results[k][0], ecdsa_results[k][1]); | 
|  | else | 
|  | printf("%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n", | 
|  | test_curves_bits[k], | 
|  | test_curves_names[k], | 
|  | 1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1], | 
|  | ecdsa_results[k][0], ecdsa_results[k][1]); | 
|  | } | 
|  |  | 
|  | testnum = 1; | 
|  | for (k = 0; k < EC_NUM; k++) { | 
|  | if (!ecdh_doit[k]) | 
|  | continue; | 
|  | if (testnum && !mr) { | 
|  | printf("%30sop      op/s\n", " "); | 
|  | testnum = 0; | 
|  | } | 
|  | if (mr) | 
|  | printf("+F5:%u:%u:%f:%f\n", | 
|  | k, test_curves_bits[k], | 
|  | ecdh_results[k][0], 1.0 / ecdh_results[k][0]); | 
|  |  | 
|  | else | 
|  | printf("%4u bit ecdh (%s) %8.4fs %8.1f\n", | 
|  | test_curves_bits[k], | 
|  | test_curves_names[k], | 
|  | 1.0 / ecdh_results[k][0], ecdh_results[k][0]); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | end: | 
|  | ERR_print_errors(bio_err); | 
|  | for (i = 0; i < loopargs_len; i++) { | 
|  | OPENSSL_free(loopargs[i].buf_malloc); | 
|  | OPENSSL_free(loopargs[i].buf2_malloc); | 
|  |  | 
|  | #ifndef OPENSSL_NO_RSA | 
|  | for (k = 0; k < RSA_NUM; k++) | 
|  | RSA_free(loopargs[i].rsa_key[k]); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_DSA | 
|  | for (k = 0; k < DSA_NUM; k++) | 
|  | DSA_free(loopargs[i].dsa_key[k]); | 
|  | #endif | 
|  | #ifndef OPENSSL_NO_EC | 
|  | for (k = 0; k < EC_NUM; k++) { | 
|  | EC_KEY_free(loopargs[i].ecdsa[k]); | 
|  | EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]); | 
|  | } | 
|  | OPENSSL_free(loopargs[i].secret_a); | 
|  | OPENSSL_free(loopargs[i].secret_b); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (async_jobs > 0) { | 
|  | for (i = 0; i < loopargs_len; i++) | 
|  | ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx); | 
|  | } | 
|  |  | 
|  | if (async_init) { | 
|  | ASYNC_cleanup_thread(); | 
|  | } | 
|  | OPENSSL_free(loopargs); | 
|  | release_engine(e); | 
|  | return (ret); | 
|  | } | 
|  |  | 
|  | static void print_message(const char *s, long num, int length) | 
|  | { | 
|  | #ifdef SIGALRM | 
|  | BIO_printf(bio_err, | 
|  | mr ? "+DT:%s:%d:%d\n" | 
|  | : "Doing %s for %ds on %d size blocks: ", s, SECONDS, length); | 
|  | (void)BIO_flush(bio_err); | 
|  | alarm(SECONDS); | 
|  | #else | 
|  | BIO_printf(bio_err, | 
|  | mr ? "+DN:%s:%ld:%d\n" | 
|  | : "Doing %s %ld times on %d size blocks: ", s, num, length); | 
|  | (void)BIO_flush(bio_err); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void pkey_print_message(const char *str, const char *str2, long num, | 
|  | int bits, int tm) | 
|  | { | 
|  | #ifdef SIGALRM | 
|  | BIO_printf(bio_err, | 
|  | mr ? "+DTP:%d:%s:%s:%d\n" | 
|  | : "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm); | 
|  | (void)BIO_flush(bio_err); | 
|  | alarm(tm); | 
|  | #else | 
|  | BIO_printf(bio_err, | 
|  | mr ? "+DNP:%ld:%d:%s:%s\n" | 
|  | : "Doing %ld %d bit %s %s's: ", num, bits, str, str2); | 
|  | (void)BIO_flush(bio_err); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void print_result(int alg, int run_no, int count, double time_used) | 
|  | { | 
|  | if (count == -1) { | 
|  | BIO_puts(bio_err, "EVP error!\n"); | 
|  | exit(1); | 
|  | } | 
|  | BIO_printf(bio_err, | 
|  | mr ? "+R:%d:%s:%f\n" | 
|  | : "%d %s's in %.2fs\n", count, names[alg], time_used); | 
|  | results[alg][run_no] = ((double)count) / time_used * lengths[run_no]; | 
|  | } | 
|  |  | 
|  | #ifndef NO_FORK | 
|  | static char *sstrsep(char **string, const char *delim) | 
|  | { | 
|  | char isdelim[256]; | 
|  | char *token = *string; | 
|  |  | 
|  | if (**string == 0) | 
|  | return NULL; | 
|  |  | 
|  | memset(isdelim, 0, sizeof isdelim); | 
|  | isdelim[0] = 1; | 
|  |  | 
|  | while (*delim) { | 
|  | isdelim[(unsigned char)(*delim)] = 1; | 
|  | delim++; | 
|  | } | 
|  |  | 
|  | while (!isdelim[(unsigned char)(**string)]) { | 
|  | (*string)++; | 
|  | } | 
|  |  | 
|  | if (**string) { | 
|  | **string = 0; | 
|  | (*string)++; | 
|  | } | 
|  |  | 
|  | return token; | 
|  | } | 
|  |  | 
|  | static int do_multi(int multi) | 
|  | { | 
|  | int n; | 
|  | int fd[2]; | 
|  | int *fds; | 
|  | static char sep[] = ":"; | 
|  |  | 
|  | fds = malloc(sizeof(*fds) * multi); | 
|  | for (n = 0; n < multi; ++n) { | 
|  | if (pipe(fd) == -1) { | 
|  | BIO_printf(bio_err, "pipe failure\n"); | 
|  | exit(1); | 
|  | } | 
|  | fflush(stdout); | 
|  | (void)BIO_flush(bio_err); | 
|  | if (fork()) { | 
|  | close(fd[1]); | 
|  | fds[n] = fd[0]; | 
|  | } else { | 
|  | close(fd[0]); | 
|  | close(1); | 
|  | if (dup(fd[1]) == -1) { | 
|  | BIO_printf(bio_err, "dup failed\n"); | 
|  | exit(1); | 
|  | } | 
|  | close(fd[1]); | 
|  | mr = 1; | 
|  | usertime = 0; | 
|  | free(fds); | 
|  | return 0; | 
|  | } | 
|  | printf("Forked child %d\n", n); | 
|  | } | 
|  |  | 
|  | /* for now, assume the pipe is long enough to take all the output */ | 
|  | for (n = 0; n < multi; ++n) { | 
|  | FILE *f; | 
|  | char buf[1024]; | 
|  | char *p; | 
|  |  | 
|  | f = fdopen(fds[n], "r"); | 
|  | while (fgets(buf, sizeof buf, f)) { | 
|  | p = strchr(buf, '\n'); | 
|  | if (p) | 
|  | *p = '\0'; | 
|  | if (buf[0] != '+') { | 
|  | BIO_printf(bio_err, | 
|  | "Don't understand line '%s' from child %d\n", buf, | 
|  | n); | 
|  | continue; | 
|  | } | 
|  | printf("Got: %s from %d\n", buf, n); | 
|  | if (strncmp(buf, "+F:", 3) == 0) { | 
|  | int alg; | 
|  | int j; | 
|  |  | 
|  | p = buf + 3; | 
|  | alg = atoi(sstrsep(&p, sep)); | 
|  | sstrsep(&p, sep); | 
|  | for (j = 0; j < SIZE_NUM; ++j) | 
|  | results[alg][j] += atof(sstrsep(&p, sep)); | 
|  | } else if (strncmp(buf, "+F2:", 4) == 0) { | 
|  | int k; | 
|  | double d; | 
|  |  | 
|  | p = buf + 4; | 
|  | k = atoi(sstrsep(&p, sep)); | 
|  | sstrsep(&p, sep); | 
|  |  | 
|  | d = atof(sstrsep(&p, sep)); | 
|  | rsa_results[k][0] += d; | 
|  |  | 
|  | d = atof(sstrsep(&p, sep)); | 
|  | rsa_results[k][1] += d; | 
|  | } | 
|  | # ifndef OPENSSL_NO_DSA | 
|  | else if (strncmp(buf, "+F3:", 4) == 0) { | 
|  | int k; | 
|  | double d; | 
|  |  | 
|  | p = buf + 4; | 
|  | k = atoi(sstrsep(&p, sep)); | 
|  | sstrsep(&p, sep); | 
|  |  | 
|  | d = atof(sstrsep(&p, sep)); | 
|  | dsa_results[k][0] += d; | 
|  |  | 
|  | d = atof(sstrsep(&p, sep)); | 
|  | dsa_results[k][1] += d; | 
|  | } | 
|  | # endif | 
|  | # ifndef OPENSSL_NO_EC | 
|  | else if (strncmp(buf, "+F4:", 4) == 0) { | 
|  | int k; | 
|  | double d; | 
|  |  | 
|  | p = buf + 4; | 
|  | k = atoi(sstrsep(&p, sep)); | 
|  | sstrsep(&p, sep); | 
|  |  | 
|  | d = atof(sstrsep(&p, sep)); | 
|  | ecdsa_results[k][0] += d; | 
|  |  | 
|  | d = atof(sstrsep(&p, sep)); | 
|  | ecdsa_results[k][1] += d; | 
|  | } else if (strncmp(buf, "+F5:", 4) == 0) { | 
|  | int k; | 
|  | double d; | 
|  |  | 
|  | p = buf + 4; | 
|  | k = atoi(sstrsep(&p, sep)); | 
|  | sstrsep(&p, sep); | 
|  |  | 
|  | d = atof(sstrsep(&p, sep)); | 
|  | ecdh_results[k][0] += d; | 
|  | } | 
|  | # endif | 
|  |  | 
|  | else if (strncmp(buf, "+H:", 3) == 0) { | 
|  | ; | 
|  | } else | 
|  | BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, | 
|  | n); | 
|  | } | 
|  |  | 
|  | fclose(f); | 
|  | } | 
|  | free(fds); | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void multiblock_speed(const EVP_CIPHER *evp_cipher) | 
|  | { | 
|  | static int mblengths[] = | 
|  | { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 }; | 
|  | int j, count, num = OSSL_NELEM(mblengths); | 
|  | const char *alg_name; | 
|  | unsigned char *inp, *out, no_key[32], no_iv[16]; | 
|  | EVP_CIPHER_CTX *ctx; | 
|  | double d = 0.0; | 
|  |  | 
|  | inp = app_malloc(mblengths[num - 1], "multiblock input buffer"); | 
|  | out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer"); | 
|  | ctx = EVP_CIPHER_CTX_new(); | 
|  | EVP_EncryptInit_ex(ctx, evp_cipher, NULL, no_key, no_iv); | 
|  | EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key); | 
|  | alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); | 
|  |  | 
|  | for (j = 0; j < num; j++) { | 
|  | print_message(alg_name, 0, mblengths[j]); | 
|  | Time_F(START); | 
|  | for (count = 0, run = 1; run && count < 0x7fffffff; count++) { | 
|  | unsigned char aad[EVP_AEAD_TLS1_AAD_LEN]; | 
|  | EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param; | 
|  | size_t len = mblengths[j]; | 
|  | int packlen; | 
|  |  | 
|  | memset(aad, 0, 8);  /* avoid uninitialized values */ | 
|  | aad[8] = 23;        /* SSL3_RT_APPLICATION_DATA */ | 
|  | aad[9] = 3;         /* version */ | 
|  | aad[10] = 2; | 
|  | aad[11] = 0;        /* length */ | 
|  | aad[12] = 0; | 
|  | mb_param.out = NULL; | 
|  | mb_param.inp = aad; | 
|  | mb_param.len = len; | 
|  | mb_param.interleave = 8; | 
|  |  | 
|  | packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD, | 
|  | sizeof(mb_param), &mb_param); | 
|  |  | 
|  | if (packlen > 0) { | 
|  | mb_param.out = out; | 
|  | mb_param.inp = inp; | 
|  | mb_param.len = len; | 
|  | EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT, | 
|  | sizeof(mb_param), &mb_param); | 
|  | } else { | 
|  | int pad; | 
|  |  | 
|  | RAND_bytes(out, 16); | 
|  | len += 16; | 
|  | aad[11] = len >> 8; | 
|  | aad[12] = len; | 
|  | pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD, | 
|  | EVP_AEAD_TLS1_AAD_LEN, aad); | 
|  | EVP_Cipher(ctx, out, inp, len + pad); | 
|  | } | 
|  | } | 
|  | d = Time_F(STOP); | 
|  | BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" | 
|  | : "%d %s's in %.2fs\n", count, "evp", d); | 
|  | results[D_EVP][j] = ((double)count) / d * mblengths[j]; | 
|  | } | 
|  |  | 
|  | if (mr) { | 
|  | fprintf(stdout, "+H"); | 
|  | for (j = 0; j < num; j++) | 
|  | fprintf(stdout, ":%d", mblengths[j]); | 
|  | fprintf(stdout, "\n"); | 
|  | fprintf(stdout, "+F:%d:%s", D_EVP, alg_name); | 
|  | for (j = 0; j < num; j++) | 
|  | fprintf(stdout, ":%.2f", results[D_EVP][j]); | 
|  | fprintf(stdout, "\n"); | 
|  | } else { | 
|  | fprintf(stdout, | 
|  | "The 'numbers' are in 1000s of bytes per second processed.\n"); | 
|  | fprintf(stdout, "type                    "); | 
|  | for (j = 0; j < num; j++) | 
|  | fprintf(stdout, "%7d bytes", mblengths[j]); | 
|  | fprintf(stdout, "\n"); | 
|  | fprintf(stdout, "%-24s", alg_name); | 
|  |  | 
|  | for (j = 0; j < num; j++) { | 
|  | if (results[D_EVP][j] > 10000) | 
|  | fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3); | 
|  | else | 
|  | fprintf(stdout, " %11.2f ", results[D_EVP][j]); | 
|  | } | 
|  | fprintf(stdout, "\n"); | 
|  | } | 
|  |  | 
|  | OPENSSL_free(inp); | 
|  | OPENSSL_free(out); | 
|  | EVP_CIPHER_CTX_free(ctx); | 
|  | } |