| /* |
| * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| #include <assert.h> |
| #include <errno.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <ctype.h> |
| |
| #include "e_os.h" |
| #include <internal/numbers.h> |
| #include <openssl/bn.h> |
| #include <openssl/crypto.h> |
| #include <openssl/err.h> |
| #include <openssl/rand.h> |
| #include "testutil.h" |
| #include "test_main_custom.h" |
| |
| /* |
| * In bn_lcl.h, bn_expand() is defined as a static ossl_inline function. |
| * This is fine in itself, it will end up as an unused static function in |
| * the worst case. However, it references bn_expand2(), which is a private |
| * function in libcrypto and therefore unavailable on some systems. This |
| * may result in a linker error because of unresolved symbols. |
| * |
| * To avoid this, we define a dummy variant of bn_expand2() here, and to |
| * avoid possible clashes with libcrypto, we rename it first, using a macro. |
| */ |
| #define bn_expand2 dummy_bn_expand2 |
| BIGNUM *bn_expand2(BIGNUM *b, int words); |
| BIGNUM *bn_expand2(BIGNUM *b, int words) { return NULL; } |
| #include "../crypto/bn/bn_lcl.h" |
| |
| #define MAXPAIRS 20 |
| |
| /* |
| * Things in boring, not in openssl. TODO we should add them. |
| */ |
| #define HAVE_BN_PADDED 0 |
| #define HAVE_BN_SQRT 0 |
| |
| typedef struct pair_st { |
| char *key; |
| char *value; |
| } PAIR; |
| |
| typedef struct stanza_st { |
| int start; |
| int numpairs; |
| PAIR pairs[MAXPAIRS]; |
| } STANZA; |
| |
| typedef struct filetest_st { |
| const char *name; |
| int (*func)(STANZA *s); |
| } FILETEST; |
| |
| typedef struct mpitest_st { |
| const char *base10; |
| const char *mpi; |
| size_t mpi_len; |
| } MPITEST; |
| |
| static const int NUM0 = 100; /* number of tests */ |
| static const int NUM1 = 50; /* additional tests for some functions */ |
| static FILE *fp; |
| static BN_CTX *ctx; |
| |
| |
| /* |
| * Look for |key| in the stanza and return it or NULL if not found. |
| */ |
| static const char *findattr(STANZA *s, const char *key) |
| { |
| int i = s->numpairs; |
| PAIR *pp = s->pairs; |
| |
| for ( ; --i >= 0; pp++) |
| if (strcasecmp(pp->key, key) == 0) |
| return pp->value; |
| return NULL; |
| } |
| |
| /* |
| * Parse BIGNUM, return number of bytes parsed. |
| */ |
| static int parseBN(BIGNUM **out, const char *in) |
| { |
| *out = NULL; |
| return BN_hex2bn(out, in); |
| } |
| |
| static int parsedecBN(BIGNUM **out, const char *in) |
| { |
| *out = NULL; |
| return BN_dec2bn(out, in); |
| } |
| |
| static BIGNUM *getBN(STANZA *s, const char *attribute) |
| { |
| const char *hex; |
| BIGNUM *ret = NULL; |
| |
| if ((hex = findattr(s, attribute)) == NULL) { |
| fprintf(stderr, "Can't find %s in test at line %d\n", |
| attribute, s->start); |
| return NULL; |
| } |
| |
| if (parseBN(&ret, hex) != (int)strlen(hex)) { |
| fprintf(stderr, "Could not decode '%s'.\n", hex); |
| return NULL; |
| } |
| return ret; |
| } |
| |
| static int getint(STANZA *s, int *out, const char *attribute) |
| { |
| BIGNUM *ret = getBN(s, attribute); |
| BN_ULONG word; |
| int st = 0; |
| |
| if (ret == NULL) |
| goto err; |
| |
| if ((word = BN_get_word(ret)) > INT_MAX) |
| goto err; |
| |
| *out = (int)word; |
| st = 1; |
| err: |
| BN_free(ret); |
| return st; |
| } |
| |
| static int equalBN(const char *op, const BIGNUM *expected, const BIGNUM *actual) |
| { |
| char *exstr = NULL; |
| char *actstr = NULL; |
| |
| if (BN_cmp(expected, actual) == 0) |
| return 1; |
| |
| if (BN_is_zero(expected) && BN_is_negative(expected)) |
| exstr = OPENSSL_strdup("-0"); |
| else |
| exstr = BN_bn2hex(expected); |
| if (BN_is_zero(actual) && BN_is_negative(actual)) |
| actstr = OPENSSL_strdup("-0"); |
| else |
| actstr = BN_bn2hex(actual); |
| if (exstr == NULL || actstr == NULL) |
| goto err; |
| |
| fprintf(stderr, "Got %s =\n", op); |
| fprintf(stderr, "\t%s\n", actstr); |
| fprintf(stderr, "wanted:\n"); |
| fprintf(stderr, "\t%s\n", exstr); |
| |
| err: |
| OPENSSL_free(exstr); |
| OPENSSL_free(actstr); |
| return 0; |
| } |
| |
| |
| /* |
| * Return a "random" flag for if a BN should be negated. |
| */ |
| static int rand_neg(void) |
| { |
| static unsigned int neg = 0; |
| static int sign[8] = { 0, 0, 0, 1, 1, 0, 1, 1 }; |
| |
| return sign[(neg++) % 8]; |
| } |
| |
| |
| static int test_sub() |
| { |
| BIGNUM *a, *b, *c; |
| int i; |
| |
| a = BN_new(); |
| b = BN_new(); |
| c = BN_new(); |
| |
| for (i = 0; i < NUM0 + NUM1; i++) { |
| if (i < NUM1) { |
| BN_bntest_rand(a, 512, 0, 0); |
| BN_copy(b, a); |
| if (BN_set_bit(a, i) == 0) |
| return 0; |
| BN_add_word(b, i); |
| } else { |
| BN_bntest_rand(b, 400 + i - NUM1, 0, 0); |
| a->neg = rand_neg(); |
| b->neg = rand_neg(); |
| } |
| BN_sub(c, a, b); |
| BN_add(c, c, b); |
| BN_sub(c, c, a); |
| if (!BN_is_zero(c)) { |
| printf("Subtract test failed!\n"); |
| return 0; |
| } |
| } |
| BN_free(a); |
| BN_free(b); |
| BN_free(c); |
| return 1; |
| } |
| |
| |
| static int test_div_recip() |
| { |
| BIGNUM *a, *b, *c, *d, *e; |
| BN_RECP_CTX *recp; |
| int i; |
| |
| recp = BN_RECP_CTX_new(); |
| a = BN_new(); |
| b = BN_new(); |
| c = BN_new(); |
| d = BN_new(); |
| e = BN_new(); |
| |
| for (i = 0; i < NUM0 + NUM1; i++) { |
| if (i < NUM1) { |
| BN_bntest_rand(a, 400, 0, 0); |
| BN_copy(b, a); |
| BN_lshift(a, a, i); |
| BN_add_word(a, i); |
| } else |
| BN_bntest_rand(b, 50 + 3 * (i - NUM1), 0, 0); |
| a->neg = rand_neg(); |
| b->neg = rand_neg(); |
| BN_RECP_CTX_set(recp, b, ctx); |
| BN_div_recp(d, c, a, recp, ctx); |
| BN_mul(e, d, b, ctx); |
| BN_add(d, e, c); |
| BN_sub(d, d, a); |
| if (!BN_is_zero(d)) { |
| printf("Reciprocal division test failed!\n"); |
| printf("a="); |
| BN_print_fp(stdout, a); |
| printf("\nb="); |
| BN_print_fp(stdout, b); |
| printf("\n"); |
| return 0; |
| } |
| } |
| BN_free(a); |
| BN_free(b); |
| BN_free(c); |
| BN_free(d); |
| BN_free(e); |
| BN_RECP_CTX_free(recp); |
| return 1; |
| } |
| |
| |
| static int test_mod() |
| { |
| BIGNUM *a, *b, *c, *d, *e; |
| int i; |
| |
| a = BN_new(); |
| b = BN_new(); |
| c = BN_new(); |
| d = BN_new(); |
| e = BN_new(); |
| |
| BN_bntest_rand(a, 1024, 0, 0); |
| for (i = 0; i < NUM0; i++) { |
| BN_bntest_rand(b, 450 + i * 10, 0, 0); |
| a->neg = rand_neg(); |
| b->neg = rand_neg(); |
| BN_mod(c, a, b, ctx); |
| BN_div(d, e, a, b, ctx); |
| BN_sub(e, e, c); |
| if (!BN_is_zero(e)) { |
| printf("Modulo test failed!\n"); |
| return 0; |
| } |
| } |
| BN_free(a); |
| BN_free(b); |
| BN_free(c); |
| BN_free(d); |
| BN_free(e); |
| return 1; |
| } |
| |
| static const char *bn1strings[] = { |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000000000FFFFFFFF00", |
| "0000000000000000000000000000000000000000000000000000000000000000", |
| "0000000000000000000000000000000000000000000000000000000000000000", |
| "0000000000000000000000000000000000000000000000000000000000000000", |
| "0000000000000000000000000000000000000000000000000000000000000000", |
| "0000000000000000000000000000000000000000000000000000000000000000", |
| "0000000000000000000000000000000000000000000000000000000000000000", |
| "0000000000000000000000000000000000000000000000000000000000000000", |
| "00000000000000000000000000000000000000000000000000FFFFFFFFFFFFFF", |
| NULL |
| }; |
| |
| static const char *bn2strings[] = { |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", |
| "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000000000FFFFFFFF0000000000", |
| "0000000000000000000000000000000000000000000000000000000000000000", |
| "0000000000000000000000000000000000000000000000000000000000000000", |
| "0000000000000000000000000000000000000000000000000000000000000000", |
| "0000000000000000000000000000000000000000000000000000000000000000", |
| "0000000000000000000000000000000000000000000000000000000000000000", |
| "0000000000000000000000000000000000000000000000000000000000000000", |
| "0000000000000000000000000000000000000000000000000000000000000000", |
| "000000000000000000000000000000000000000000FFFFFFFFFFFFFF00000000", |
| NULL |
| }; |
| |
| static char *glue(const char *list[]) |
| { |
| size_t len = 0; |
| char *p, *save; |
| int i; |
| |
| for (i = 0; list[i] != NULL; i++) |
| len += strlen(list[i]); |
| p = save = OPENSSL_malloc(len + 1); |
| if (p != NULL) { |
| for (i = 0; list[i] != NULL; i++) |
| p += strlen(strcpy(p, list[i])); |
| } |
| return save; |
| } |
| |
| /* |
| * Test constant-time modular exponentiation with 1024-bit inputs, which on |
| * x86_64 cause a different code branch to be taken. |
| */ |
| static int test_modexp_mont5() |
| { |
| BIGNUM *a, *p, *m, *d, *e, *b, *n, *c; |
| BN_MONT_CTX *mont; |
| char *bigstring; |
| |
| a = BN_new(); |
| p = BN_new(); |
| m = BN_new(); |
| d = BN_new(); |
| e = BN_new(); |
| b = BN_new(); |
| n = BN_new(); |
| c = BN_new(); |
| mont = BN_MONT_CTX_new(); |
| |
| BN_bntest_rand(m, 1024, 0, 1); /* must be odd for montgomery */ |
| /* Zero exponent */ |
| BN_bntest_rand(a, 1024, 0, 0); |
| BN_zero(p); |
| if (!BN_mod_exp_mont_consttime(d, a, p, m, ctx, NULL)) |
| return 0; |
| if (!BN_is_one(d)) { |
| printf("Modular exponentiation test failed!\n"); |
| return 0; |
| } |
| |
| /* Regression test for carry bug in mulx4x_mont */ |
| BN_hex2bn(&a, |
| "7878787878787878787878787878787878787878787878787878787878787878" |
| "7878787878787878787878787878787878787878787878787878787878787878" |
| "7878787878787878787878787878787878787878787878787878787878787878" |
| "7878787878787878787878787878787878787878787878787878787878787878"); |
| BN_hex2bn(&b, |
| "095D72C08C097BA488C5E439C655A192EAFB6380073D8C2664668EDDB4060744" |
| "E16E57FB4EDB9AE10A0CEFCDC28A894F689A128379DB279D48A2E20849D68593" |
| "9B7803BCF46CEBF5C533FB0DD35B080593DE5472E3FE5DB951B8BFF9B4CB8F03" |
| "9CC638A5EE8CDD703719F8000E6A9F63BEED5F2FCD52FF293EA05A251BB4AB81"); |
| BN_hex2bn(&n, |
| "D78AF684E71DB0C39CFF4E64FB9DB567132CB9C50CC98009FEB820B26F2DED9B" |
| "91B9B5E2B83AE0AE4EB4E0523CA726BFBE969B89FD754F674CE99118C3F2D1C5" |
| "D81FDC7C54E02B60262B241D53C040E99E45826ECA37A804668E690E1AFC1CA4" |
| "2C9A15D84D4954425F0B7642FC0BD9D7B24E2618D2DCC9B729D944BADACFDDAF"); |
| BN_MONT_CTX_set(mont, n, ctx); |
| BN_mod_mul_montgomery(c, a, b, mont, ctx); |
| BN_mod_mul_montgomery(d, b, a, mont, ctx); |
| if (BN_cmp(c, d)) { |
| fprintf(stderr, "Montgomery multiplication test failed:" |
| " a*b != b*a.\n"); |
| return 0; |
| } |
| |
| /* Regression test for carry bug in sqr[x]8x_mont */ |
| bigstring = glue(bn1strings); |
| BN_hex2bn(&n, bigstring); |
| OPENSSL_free(bigstring); |
| bigstring = glue(bn2strings); |
| BN_hex2bn(&a, bigstring); |
| OPENSSL_free(bigstring); |
| BN_free(b); |
| b = BN_dup(a); |
| BN_MONT_CTX_set(mont, n, ctx); |
| BN_mod_mul_montgomery(c, a, a, mont, ctx); |
| BN_mod_mul_montgomery(d, a, b, mont, ctx); |
| if (BN_cmp(c, d)) { |
| fprintf(stderr, "Montgomery multiplication test failed:" |
| " a**2 != a*a.\n"); |
| return 0; |
| } |
| |
| /* Zero input */ |
| BN_bntest_rand(p, 1024, 0, 0); |
| BN_zero(a); |
| if (!BN_mod_exp_mont_consttime(d, a, p, m, ctx, NULL)) |
| return 0; |
| if (!BN_is_zero(d)) { |
| fprintf(stderr, "Modular exponentiation test failed!\n"); |
| return 0; |
| } |
| /* |
| * Craft an input whose Montgomery representation is 1, i.e., shorter |
| * than the modulus m, in order to test the const time precomputation |
| * scattering/gathering. |
| */ |
| BN_one(a); |
| BN_MONT_CTX_set(mont, m, ctx); |
| if (!BN_from_montgomery(e, a, mont, ctx)) |
| return 0; |
| if (!BN_mod_exp_mont_consttime(d, e, p, m, ctx, NULL)) |
| return 0; |
| if (!BN_mod_exp_simple(a, e, p, m, ctx)) |
| return 0; |
| if (BN_cmp(a, d) != 0) { |
| printf("Modular exponentiation test failed!\n"); |
| return 0; |
| } |
| /* Finally, some regular test vectors. */ |
| BN_bntest_rand(e, 1024, 0, 0); |
| if (!BN_mod_exp_mont_consttime(d, e, p, m, ctx, NULL)) |
| return 0; |
| if (!BN_mod_exp_simple(a, e, p, m, ctx)) |
| return 0; |
| if (BN_cmp(a, d) != 0) { |
| printf("Modular exponentiation test failed!\n"); |
| return 0; |
| } |
| BN_MONT_CTX_free(mont); |
| BN_free(a); |
| BN_free(p); |
| BN_free(m); |
| BN_free(d); |
| BN_free(e); |
| BN_free(b); |
| BN_free(n); |
| BN_free(c); |
| return 1; |
| } |
| |
| #ifndef OPENSSL_NO_EC2M |
| static int test_gf2m_add() |
| { |
| BIGNUM *a, *b, *c; |
| int i, st = 0; |
| |
| a = BN_new(); |
| b = BN_new(); |
| c = BN_new(); |
| |
| for (i = 0; i < NUM0; i++) { |
| BN_rand(a, 512, 0, 0); |
| BN_copy(b, BN_value_one()); |
| a->neg = rand_neg(); |
| b->neg = rand_neg(); |
| BN_GF2m_add(c, a, b); |
| /* Test that two added values have the correct parity. */ |
| if ((BN_is_odd(a) && BN_is_odd(c)) |
| || (!BN_is_odd(a) && !BN_is_odd(c))) { |
| printf("GF(2^m) addition test (a) failed!\n"); |
| goto err; |
| } |
| BN_GF2m_add(c, c, c); |
| /* Test that c + c = 0. */ |
| if (!BN_is_zero(c)) { |
| printf("GF(2^m) addition test (b) failed!\n"); |
| goto err; |
| } |
| } |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b); |
| BN_free(c); |
| return st; |
| } |
| |
| static int test_gf2m_mod() |
| { |
| static int p0[] = { 163, 7, 6, 3, 0, -1 }; |
| static int p1[] = { 193, 15, 0, -1 }; |
| BIGNUM *a, *b[2], *c, *d, *e; |
| int i, j, st = 0; |
| |
| a = BN_new(); |
| b[0] = BN_new(); |
| b[1] = BN_new(); |
| c = BN_new(); |
| d = BN_new(); |
| e = BN_new(); |
| |
| BN_GF2m_arr2poly(p0, b[0]); |
| BN_GF2m_arr2poly(p1, b[1]); |
| |
| for (i = 0; i < NUM0; i++) { |
| BN_bntest_rand(a, 1024, 0, 0); |
| for (j = 0; j < 2; j++) { |
| BN_GF2m_mod(c, a, b[j]); |
| BN_GF2m_add(d, a, c); |
| BN_GF2m_mod(e, d, b[j]); |
| /* Test that a + (a mod p) mod p == 0. */ |
| if (!BN_is_zero(e)) { |
| printf("GF(2^m) modulo test failed!\n"); |
| goto err; |
| } |
| } |
| } |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b[0]); |
| BN_free(b[1]); |
| BN_free(c); |
| BN_free(d); |
| BN_free(e); |
| return st; |
| } |
| |
| static int test_gf2m_mul() |
| { |
| BIGNUM *a, *b[2], *c, *d, *e, *f, *g, *h; |
| int i, j, st = 0; |
| int p0[] = { 163, 7, 6, 3, 0, -1 }; |
| int p1[] = { 193, 15, 0, -1 }; |
| |
| a = BN_new(); |
| b[0] = BN_new(); |
| b[1] = BN_new(); |
| c = BN_new(); |
| d = BN_new(); |
| e = BN_new(); |
| f = BN_new(); |
| g = BN_new(); |
| h = BN_new(); |
| |
| BN_GF2m_arr2poly(p0, b[0]); |
| BN_GF2m_arr2poly(p1, b[1]); |
| |
| for (i = 0; i < NUM0; i++) { |
| BN_bntest_rand(a, 1024, 0, 0); |
| BN_bntest_rand(c, 1024, 0, 0); |
| BN_bntest_rand(d, 1024, 0, 0); |
| for (j = 0; j < 2; j++) { |
| BN_GF2m_mod_mul(e, a, c, b[j], ctx); |
| BN_GF2m_add(f, a, d); |
| BN_GF2m_mod_mul(g, f, c, b[j], ctx); |
| BN_GF2m_mod_mul(h, d, c, b[j], ctx); |
| BN_GF2m_add(f, e, g); |
| BN_GF2m_add(f, f, h); |
| /* Test that (a+d)*c = a*c + d*c. */ |
| if (!BN_is_zero(f)) { |
| printf("GF(2^m) modular multiplication test failed!\n"); |
| goto err; |
| } |
| } |
| } |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b[0]); |
| BN_free(b[1]); |
| BN_free(c); |
| BN_free(d); |
| BN_free(e); |
| BN_free(f); |
| BN_free(g); |
| BN_free(h); |
| return st; |
| } |
| |
| static int test_gf2m_sqr() |
| { |
| BIGNUM *a, *b[2], *c, *d; |
| int i, j, st = 0; |
| int p0[] = { 163, 7, 6, 3, 0, -1 }; |
| int p1[] = { 193, 15, 0, -1 }; |
| |
| a = BN_new(); |
| b[0] = BN_new(); |
| b[1] = BN_new(); |
| c = BN_new(); |
| d = BN_new(); |
| |
| BN_GF2m_arr2poly(p0, b[0]); |
| BN_GF2m_arr2poly(p1, b[1]); |
| |
| for (i = 0; i < NUM0; i++) { |
| BN_bntest_rand(a, 1024, 0, 0); |
| for (j = 0; j < 2; j++) { |
| BN_GF2m_mod_sqr(c, a, b[j], ctx); |
| BN_copy(d, a); |
| BN_GF2m_mod_mul(d, a, d, b[j], ctx); |
| BN_GF2m_add(d, c, d); |
| /* Test that a*a = a^2. */ |
| if (!BN_is_zero(d)) { |
| printf("GF(2^m) modular squaring test failed!\n"); |
| goto err; |
| } |
| } |
| } |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b[0]); |
| BN_free(b[1]); |
| BN_free(c); |
| BN_free(d); |
| return st; |
| } |
| |
| static int test_gf2m_modinv() |
| { |
| BIGNUM *a, *b[2], *c, *d; |
| int i, j, st = 0; |
| int p0[] = { 163, 7, 6, 3, 0, -1 }; |
| int p1[] = { 193, 15, 0, -1 }; |
| |
| a = BN_new(); |
| b[0] = BN_new(); |
| b[1] = BN_new(); |
| c = BN_new(); |
| d = BN_new(); |
| |
| BN_GF2m_arr2poly(p0, b[0]); |
| BN_GF2m_arr2poly(p1, b[1]); |
| |
| for (i = 0; i < NUM0; i++) { |
| BN_bntest_rand(a, 512, 0, 0); |
| for (j = 0; j < 2; j++) { |
| BN_GF2m_mod_inv(c, a, b[j], ctx); |
| BN_GF2m_mod_mul(d, a, c, b[j], ctx); |
| /* Test that ((1/a)*a) = 1. */ |
| if (!BN_is_one(d)) { |
| printf("GF(2^m) modular inversion test failed!\n"); |
| goto err; |
| } |
| } |
| } |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b[0]); |
| BN_free(b[1]); |
| BN_free(c); |
| BN_free(d); |
| return st; |
| } |
| |
| static int test_gf2m_moddiv() |
| { |
| BIGNUM *a, *b[2], *c, *d, *e, *f; |
| int i, j, st = 0; |
| int p0[] = { 163, 7, 6, 3, 0, -1 }; |
| int p1[] = { 193, 15, 0, -1 }; |
| |
| a = BN_new(); |
| b[0] = BN_new(); |
| b[1] = BN_new(); |
| c = BN_new(); |
| d = BN_new(); |
| e = BN_new(); |
| f = BN_new(); |
| |
| BN_GF2m_arr2poly(p0, b[0]); |
| BN_GF2m_arr2poly(p1, b[1]); |
| |
| for (i = 0; i < NUM0; i++) { |
| BN_bntest_rand(a, 512, 0, 0); |
| BN_bntest_rand(c, 512, 0, 0); |
| for (j = 0; j < 2; j++) { |
| BN_GF2m_mod_div(d, a, c, b[j], ctx); |
| BN_GF2m_mod_mul(e, d, c, b[j], ctx); |
| BN_GF2m_mod_div(f, a, e, b[j], ctx); |
| /* Test that ((a/c)*c)/a = 1. */ |
| if (!BN_is_one(f)) { |
| printf("GF(2^m) modular division test failed!\n"); |
| goto err; |
| } |
| } |
| } |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b[0]); |
| BN_free(b[1]); |
| BN_free(c); |
| BN_free(d); |
| BN_free(e); |
| BN_free(f); |
| return st; |
| } |
| |
| static int test_gf2m_modexp() |
| { |
| BIGNUM *a, *b[2], *c, *d, *e, *f; |
| int i, j, st = 0; |
| int p0[] = { 163, 7, 6, 3, 0, -1 }; |
| int p1[] = { 193, 15, 0, -1 }; |
| |
| a = BN_new(); |
| b[0] = BN_new(); |
| b[1] = BN_new(); |
| c = BN_new(); |
| d = BN_new(); |
| e = BN_new(); |
| f = BN_new(); |
| |
| BN_GF2m_arr2poly(p0, b[0]); |
| BN_GF2m_arr2poly(p1, b[1]); |
| |
| for (i = 0; i < NUM0; i++) { |
| BN_bntest_rand(a, 512, 0, 0); |
| BN_bntest_rand(c, 512, 0, 0); |
| BN_bntest_rand(d, 512, 0, 0); |
| for (j = 0; j < 2; j++) { |
| BN_GF2m_mod_exp(e, a, c, b[j], ctx); |
| BN_GF2m_mod_exp(f, a, d, b[j], ctx); |
| BN_GF2m_mod_mul(e, e, f, b[j], ctx); |
| BN_add(f, c, d); |
| BN_GF2m_mod_exp(f, a, f, b[j], ctx); |
| BN_GF2m_add(f, e, f); |
| /* Test that a^(c+d)=a^c*a^d. */ |
| if (!BN_is_zero(f)) { |
| printf("GF(2^m) modular exponentiation test failed!\n"); |
| goto err; |
| } |
| } |
| } |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b[0]); |
| BN_free(b[1]); |
| BN_free(c); |
| BN_free(d); |
| BN_free(e); |
| BN_free(f); |
| return st; |
| } |
| |
| static int test_gf2m_modsqrt() |
| { |
| BIGNUM *a, *b[2], *c, *d, *e, *f; |
| int i, j, st = 0; |
| int p0[] = { 163, 7, 6, 3, 0, -1 }; |
| int p1[] = { 193, 15, 0, -1 }; |
| |
| a = BN_new(); |
| b[0] = BN_new(); |
| b[1] = BN_new(); |
| c = BN_new(); |
| d = BN_new(); |
| e = BN_new(); |
| f = BN_new(); |
| |
| BN_GF2m_arr2poly(p0, b[0]); |
| BN_GF2m_arr2poly(p1, b[1]); |
| |
| for (i = 0; i < NUM0; i++) { |
| BN_bntest_rand(a, 512, 0, 0); |
| for (j = 0; j < 2; j++) { |
| BN_GF2m_mod(c, a, b[j]); |
| BN_GF2m_mod_sqrt(d, a, b[j], ctx); |
| BN_GF2m_mod_sqr(e, d, b[j], ctx); |
| BN_GF2m_add(f, c, e); |
| /* Test that d^2 = a, where d = sqrt(a). */ |
| if (!BN_is_zero(f)) { |
| printf("GF(2^m) modular square root test failed!\n"); |
| goto err; |
| } |
| } |
| } |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b[0]); |
| BN_free(b[1]); |
| BN_free(c); |
| BN_free(d); |
| BN_free(e); |
| BN_free(f); |
| return st; |
| } |
| |
| static int test_gf2m_modsolvequad() |
| { |
| BIGNUM *a, *b[2], *c, *d, *e; |
| int i, j, s = 0, t, st = 0; |
| int p0[] = { 163, 7, 6, 3, 0, -1 }; |
| int p1[] = { 193, 15, 0, -1 }; |
| |
| a = BN_new(); |
| b[0] = BN_new(); |
| b[1] = BN_new(); |
| c = BN_new(); |
| d = BN_new(); |
| e = BN_new(); |
| |
| BN_GF2m_arr2poly(p0, b[0]); |
| BN_GF2m_arr2poly(p1, b[1]); |
| |
| for (i = 0; i < NUM0; i++) { |
| BN_bntest_rand(a, 512, 0, 0); |
| for (j = 0; j < 2; j++) { |
| t = BN_GF2m_mod_solve_quad(c, a, b[j], ctx); |
| if (t) { |
| s++; |
| BN_GF2m_mod_sqr(d, c, b[j], ctx); |
| BN_GF2m_add(d, c, d); |
| BN_GF2m_mod(e, a, b[j]); |
| BN_GF2m_add(e, e, d); |
| /* |
| * Test that solution of quadratic c satisfies c^2 + c = a. |
| */ |
| if (!BN_is_zero(e)) { |
| printf("GF(2^m) modular solve quadratic test failed!\n"); |
| goto err; |
| } |
| |
| } |
| } |
| } |
| if (s == 0) { |
| printf("All %i tests of GF(2^m) modular solve quadratic resulted in no roots;\n", |
| NUM0); |
| printf("this is very unlikely and probably indicates an error.\n"); |
| goto err; |
| } |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b[0]); |
| BN_free(b[1]); |
| BN_free(c); |
| BN_free(d); |
| BN_free(e); |
| return st; |
| } |
| #endif |
| |
| static int test_kronecker() |
| { |
| BIGNUM *a, *b, *r, *t; |
| int i; |
| int legendre, kronecker; |
| int st = 0; |
| |
| a = BN_new(); |
| b = BN_new(); |
| r = BN_new(); |
| t = BN_new(); |
| if (a == NULL || b == NULL || r == NULL || t == NULL) |
| goto err; |
| |
| /* |
| * We test BN_kronecker(a, b, ctx) just for b odd (Jacobi symbol). In |
| * this case we know that if b is prime, then BN_kronecker(a, b, ctx) is |
| * congruent to $a^{(b-1)/2}$, modulo $b$ (Legendre symbol). So we |
| * generate a random prime b and compare these values for a number of |
| * random a's. (That is, we run the Solovay-Strassen primality test to |
| * confirm that b is prime, except that we don't want to test whether b |
| * is prime but whether BN_kronecker works.) |
| */ |
| |
| if (!BN_generate_prime_ex(b, 512, 0, NULL, NULL, NULL)) |
| goto err; |
| b->neg = rand_neg(); |
| |
| for (i = 0; i < NUM0; i++) { |
| if (!BN_bntest_rand(a, 512, 0, 0)) |
| goto err; |
| a->neg = rand_neg(); |
| |
| /* t := (|b|-1)/2 (note that b is odd) */ |
| if (!BN_copy(t, b)) |
| goto err; |
| t->neg = 0; |
| if (!BN_sub_word(t, 1)) |
| goto err; |
| if (!BN_rshift1(t, t)) |
| goto err; |
| /* r := a^t mod b */ |
| b->neg = 0; |
| |
| if (!BN_mod_exp_recp(r, a, t, b, ctx)) |
| goto err; |
| b->neg = 1; |
| |
| if (BN_is_word(r, 1)) |
| legendre = 1; |
| else if (BN_is_zero(r)) |
| legendre = 0; |
| else { |
| if (!BN_add_word(r, 1)) |
| goto err; |
| if (0 != BN_ucmp(r, b)) { |
| printf("Legendre symbol computation failed\n"); |
| goto err; |
| } |
| legendre = -1; |
| } |
| |
| kronecker = BN_kronecker(a, b, ctx); |
| if (kronecker < -1) |
| goto err; |
| /* we actually need BN_kronecker(a, |b|) */ |
| if (a->neg && b->neg) |
| kronecker = -kronecker; |
| |
| if (legendre != kronecker) { |
| printf("legendre != kronecker; a = "); |
| BN_print_fp(stdout, a); |
| printf(", b = "); |
| BN_print_fp(stdout, b); |
| printf("\n"); |
| goto err; |
| } |
| } |
| |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b); |
| BN_free(r); |
| BN_free(t); |
| return st; |
| } |
| |
| static int file_sum(STANZA *s) |
| { |
| BIGNUM *a = getBN(s, "A"); |
| BIGNUM *b = getBN(s, "B"); |
| BIGNUM *sum = getBN(s, "Sum"); |
| BIGNUM *ret = BN_new(); |
| BN_ULONG b_word; |
| int st = 0; |
| |
| if (a == NULL || b == NULL || sum == NULL || ret == NULL) |
| goto err; |
| |
| if (!BN_add(ret, a, b) |
| || !equalBN("A + B", sum, ret) |
| || !BN_sub(ret, sum, a) |
| || !equalBN("Sum - A", b, ret) |
| || !BN_sub(ret, sum, b) |
| || !equalBN("Sum - B", a, ret)) |
| goto err; |
| |
| /* |
| * Test that the functions work when |r| and |a| point to the same BIGNUM, |
| * or when |r| and |b| point to the same BIGNUM. |
| * TODO: Test where all of |r|, |a|, and |b| point to the same BIGNUM. |
| */ |
| if (!BN_copy(ret, a) |
| || !BN_add(ret, ret, b) |
| || !equalBN("A + B (r is a)", sum, ret) |
| || !BN_copy(ret, b) |
| || !BN_add(ret, a, ret) |
| || !equalBN("A + B (r is b)", sum, ret) |
| || !BN_copy(ret, sum) |
| || !BN_sub(ret, ret, a) |
| || !equalBN("Sum - A (r is a)", b, ret) |
| || !BN_copy(ret, a) |
| || !BN_sub(ret, sum, ret) |
| || !equalBN("Sum - A (r is b)", b, ret) |
| || !BN_copy(ret, sum) |
| || !BN_sub(ret, ret, b) |
| || !equalBN("Sum - B (r is a)", a, ret) |
| || !BN_copy(ret, b) |
| || !BN_sub(ret, sum, ret) |
| || !equalBN("Sum - B (r is b)", a, ret)) |
| goto err; |
| |
| /* |
| * Test BN_uadd() and BN_usub() with the prerequisites they are |
| * documented as having. Note that these functions are frequently used |
| * when the prerequisites don't hold. In those cases, they are supposed |
| * to work as if the prerequisite hold, but we don't test that yet. |
| * TODO: test that. |
| */ |
| if (!BN_is_negative(a) && !BN_is_negative(b) && BN_cmp(a, b) >= 0) { |
| if (!BN_uadd(ret, a, b) |
| || !equalBN("A +u B", sum, ret) |
| || !BN_usub(ret, sum, a) |
| || !equalBN("Sum -u A", b, ret) |
| || !BN_usub(ret, sum, b) |
| || !equalBN("Sum -u B", a, ret)) |
| goto err; |
| /* |
| * Test that the functions work when |r| and |a| point to the same |
| * BIGNUM, or when |r| and |b| point to the same BIGNUM. |
| * TODO: Test where all of |r|, |a|, and |b| point to the same BIGNUM. |
| */ |
| if (!BN_copy(ret, a) |
| || !BN_uadd(ret, ret, b) |
| || !equalBN("A +u B (r is a)", sum, ret) |
| || !BN_copy(ret, b) |
| || !BN_uadd(ret, a, ret) |
| || !equalBN("A +u B (r is b)", sum, ret) |
| || !BN_copy(ret, sum) |
| || !BN_usub(ret, ret, a) |
| || !equalBN("Sum -u A (r is a)", b, ret) |
| || !BN_copy(ret, a) |
| || !BN_usub(ret, sum, ret) |
| || !equalBN("Sum -u A (r is b)", b, ret) |
| || !BN_copy(ret, sum) |
| || !BN_usub(ret, ret, b) |
| || !equalBN("Sum -u B (r is a)", a, ret) |
| || !BN_copy(ret, b) |
| || !BN_usub(ret, sum, ret) |
| || !equalBN("Sum -u B (r is b)", a, ret)) |
| goto err; |
| } |
| |
| /* |
| * Test with BN_add_word() and BN_sub_word() if |b| is small enough. |
| */ |
| b_word = BN_get_word(b); |
| if (!BN_is_negative(b) && b_word != (BN_ULONG)-1) { |
| if (!BN_copy(ret, a) |
| || !BN_add_word(ret, b_word) |
| || !equalBN("A + B (word)", sum, ret) |
| || !BN_copy(ret, sum) |
| || !BN_sub_word(ret, b_word) |
| || !equalBN("Sum - B (word)", a, ret)) |
| goto err; |
| } |
| st = 1; |
| |
| err: |
| BN_free(a); |
| BN_free(b); |
| BN_free(sum); |
| BN_free(ret); |
| return st; |
| } |
| |
| static int file_lshift1(STANZA *s) |
| { |
| BIGNUM *a = getBN(s, "A"); |
| BIGNUM *lshift1 = getBN(s, "LShift1"); |
| BIGNUM *zero = BN_new(); |
| BIGNUM *ret = BN_new(); |
| BIGNUM *two = BN_new(); |
| BIGNUM *remainder = BN_new(); |
| int st = 0; |
| |
| if (a == NULL || lshift1 == NULL || zero == NULL |
| || ret == NULL || two == NULL || remainder == NULL) |
| goto err; |
| |
| BN_zero(zero); |
| |
| if (!BN_set_word(two, 2) |
| || !BN_add(ret, a, a) |
| || !equalBN("A + A", lshift1, ret) |
| || !BN_mul(ret, a, two, ctx) |
| || !equalBN("A * 2", lshift1, ret) |
| || !BN_div(ret, remainder, lshift1, two, ctx) |
| || !equalBN("LShift1 / 2", a, ret) |
| || !equalBN("LShift1 % 2", zero, remainder) |
| || !BN_lshift1(ret, a) |
| || !equalBN("A << 1", lshift1, ret) |
| || !BN_rshift1(ret, lshift1) |
| || !equalBN("LShift >> 1", a, ret) |
| || !BN_rshift1(ret, lshift1) |
| || !equalBN("LShift >> 1", a, ret)) |
| goto err; |
| |
| /* Set the LSB to 1 and test rshift1 again. */ |
| if (!BN_set_bit(lshift1, 0) |
| || !BN_div(ret, NULL /* rem */ , lshift1, two, ctx) |
| || !equalBN("(LShift1 | 1) / 2", a, ret) |
| || !BN_rshift1(ret, lshift1) |
| || !equalBN("(LShift | 1) >> 1", a, ret)) |
| goto err; |
| |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(lshift1); |
| BN_free(zero); |
| BN_free(ret); |
| BN_free(two); |
| BN_free(remainder); |
| |
| return st; |
| } |
| |
| static int file_lshift(STANZA *s) |
| { |
| BIGNUM *a = getBN(s, "A"); |
| BIGNUM *lshift = getBN(s, "LShift"); |
| BIGNUM *ret = BN_new(); |
| int n = 0; |
| int st = 0; |
| |
| if (a == NULL || lshift == NULL || ret == NULL || !getint(s, &n, "N")) |
| goto err; |
| |
| if (!BN_lshift(ret, a, n) |
| || !equalBN("A << N", lshift, ret) |
| || !BN_rshift(ret, lshift, n) |
| || !equalBN("A >> N", a, ret)) |
| goto err; |
| |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(lshift); |
| BN_free(ret); |
| return st; |
| } |
| |
| static int file_rshift(STANZA *s) |
| { |
| BIGNUM *a = getBN(s, "A"); |
| BIGNUM *rshift = getBN(s, "RShift"); |
| BIGNUM *ret = BN_new(); |
| int n = 0; |
| int errcnt = 1; |
| |
| if (a == NULL || rshift == NULL || ret == NULL || !getint(s, &n, "N")) |
| goto err; |
| |
| errcnt = 0; |
| if (!BN_rshift(ret, a, n) |
| || !equalBN("A >> N", rshift, ret)) |
| errcnt++; |
| |
| /* If N == 1, try with rshift1 as well */ |
| if (n == 1) { |
| if (!BN_rshift1(ret, a) |
| || !equalBN("A >> 1 (rshift1)", rshift, ret)) |
| errcnt++; |
| } |
| |
| err: |
| BN_free(a); |
| BN_free(rshift); |
| BN_free(ret); |
| return errcnt == 0; |
| } |
| |
| static int file_square(STANZA *s) |
| { |
| BIGNUM *a = getBN(s, "A"); |
| BIGNUM *square = getBN(s, "Square"); |
| BIGNUM *zero = BN_new(); |
| BIGNUM *ret = BN_new(); |
| BIGNUM *remainder = BN_new(); |
| BIGNUM *tmp = NULL; |
| int st = 0; |
| |
| if (a == NULL || square == NULL || zero == NULL || ret == NULL |
| || remainder == NULL) |
| goto err; |
| |
| BN_zero(zero); |
| |
| if (!BN_sqr(ret, a, ctx) |
| || !equalBN("A^2", square, ret) |
| || !BN_mul(ret, a, a, ctx) |
| || !equalBN("A * A", square, ret) |
| || !BN_div(ret, remainder, square, a, ctx) |
| || !equalBN("Square / A", a, ret) |
| || !equalBN("Square % A", zero, remainder)) |
| goto err; |
| |
| #if HAVE_BN_SQRT |
| BN_set_negative(a, 0); |
| if (!BN_sqrt(ret, square, ctx) |
| || !equalBN("sqrt(Square)", a, ret)) |
| goto err; |
| |
| /* BN_sqrt should fail on non-squares and negative numbers. */ |
| if (!BN_is_zero(square)) { |
| tmp = BN_new(); |
| if (tmp == NULL || !BN_copy(tmp, square)) |
| goto err; |
| BN_set_negative(tmp, 1); |
| |
| if (BN_sqrt(ret, tmp, ctx)) { |
| fprintf(stderr, "BN_sqrt succeeded on a negative number"); |
| goto err; |
| } |
| ERR_clear_error(); |
| |
| BN_set_negative(tmp, 0); |
| if (BN_add(tmp, tmp, BN_value_one())) |
| goto err; |
| if (BN_sqrt(ret, tmp, ctx)) { |
| fprintf(stderr, "BN_sqrt succeeded on a non-square"); |
| goto err; |
| } |
| ERR_clear_error(); |
| } |
| #endif |
| |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(square); |
| BN_free(zero); |
| BN_free(ret); |
| BN_free(remainder); |
| BN_free(tmp); |
| return st; |
| } |
| |
| static int file_product(STANZA *s) |
| { |
| BIGNUM *a = getBN(s, "A"); |
| BIGNUM *b = getBN(s, "B"); |
| BIGNUM *product = getBN(s, "Product"); |
| BIGNUM *ret = BN_new(); |
| BIGNUM *remainder = BN_new(); |
| BIGNUM *zero = BN_new(); |
| int st = 0; |
| |
| if (a == NULL || b == NULL || product == NULL || ret == NULL |
| || remainder == NULL || zero == NULL) |
| goto err; |
| |
| BN_zero(zero); |
| |
| if (!BN_mul(ret, a, b, ctx) |
| || !equalBN("A * B", product, ret) |
| || !BN_div(ret, remainder, product, a, ctx) |
| || !equalBN("Product / A", b, ret) |
| || !equalBN("Product % A", zero, remainder) |
| || !BN_div(ret, remainder, product, b, ctx) |
| || !equalBN("Product / B", a, ret) |
| || !equalBN("Product % B", zero, remainder)) |
| goto err; |
| |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b); |
| BN_free(product); |
| BN_free(ret); |
| BN_free(remainder); |
| BN_free(zero); |
| return st; |
| } |
| |
| static int file_quotient(STANZA *s) |
| { |
| BIGNUM *a = getBN(s, "A"); |
| BIGNUM *b = getBN(s, "B"); |
| BIGNUM *quotient = getBN(s, "Quotient"); |
| BIGNUM *remainder = getBN(s, "Remainder"); |
| BIGNUM *ret = BN_new(); |
| BIGNUM *ret2 = BN_new(); |
| BIGNUM *nnmod = BN_new(); |
| BN_ULONG b_word, ret_word; |
| int st = 0; |
| |
| if (a == NULL || b == NULL || quotient == NULL || remainder == NULL |
| || ret == NULL || ret2 == NULL || nnmod == NULL) |
| goto err; |
| |
| if (!BN_div(ret, ret2, a, b, ctx) |
| || !equalBN("A / B", quotient, ret) |
| || !equalBN("A % B", remainder, ret2) |
| || !BN_mul(ret, quotient, b, ctx) |
| || !BN_add(ret, ret, remainder) |
| || !equalBN("Quotient * B + Remainder", a, ret)) |
| goto err; |
| |
| /* |
| * Test with BN_mod_word() and BN_div_word() if the divisor is |
| * small enough. |
| */ |
| b_word = BN_get_word(b); |
| if (!BN_is_negative(b) && b_word != (BN_ULONG)-1) { |
| BN_ULONG remainder_word = BN_get_word(remainder); |
| |
| assert(remainder_word != (BN_ULONG)-1); |
| if (!BN_copy(ret, a)) |
| goto err; |
| ret_word = BN_div_word(ret, b_word); |
| if (ret_word != remainder_word) { |
| #ifdef BN_DEC_FMT1 |
| fprintf(stderr, |
| "Got A %% B (word) = " BN_DEC_FMT1 ", wanted " BN_DEC_FMT1 "\n", |
| ret_word, remainder_word); |
| #else |
| fprintf(stderr, "Got A %% B (word) mismatch\n"); |
| #endif |
| goto err; |
| } |
| if (!equalBN ("A / B (word)", quotient, ret)) |
| goto err; |
| |
| ret_word = BN_mod_word(a, b_word); |
| if (ret_word != remainder_word) { |
| #ifdef BN_DEC_FMT1 |
| fprintf(stderr, |
| "Got A %% B (word) = " BN_DEC_FMT1 ", wanted " BN_DEC_FMT1 "\n", |
| ret_word, remainder_word); |
| #else |
| fprintf(stderr, "Got A %% B (word) mismatch\n"); |
| #endif |
| goto err; |
| } |
| } |
| |
| /* Test BN_nnmod. */ |
| if (!BN_is_negative(b)) { |
| if (!BN_copy(nnmod, remainder) |
| || (BN_is_negative(nnmod) && !BN_add(nnmod, nnmod, b)) |
| || !BN_nnmod(ret, a, b, ctx) |
| || !equalBN("A % B (non-negative)", nnmod, ret)) |
| goto err; |
| } |
| |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b); |
| BN_free(quotient); |
| BN_free(remainder); |
| BN_free(ret); |
| BN_free(ret2); |
| BN_free(nnmod); |
| return st; |
| } |
| |
| static int file_modmul(STANZA *s) |
| { |
| BIGNUM *a = getBN(s, "A"); |
| BIGNUM *b = getBN(s, "B"); |
| BIGNUM *m = getBN(s, "M"); |
| BIGNUM *mod_mul = getBN(s, "ModMul"); |
| BIGNUM *ret = BN_new(); |
| int st = 0; |
| |
| if (a == NULL || b == NULL || m == NULL || mod_mul == NULL || ret == NULL) |
| goto err; |
| |
| if (!BN_mod_mul(ret, a, b, m, ctx) |
| || !equalBN("A * B (mod M)", mod_mul, ret)) |
| goto err; |
| |
| if (BN_is_odd(m)) { |
| /* Reduce |a| and |b| and test the Montgomery version. */ |
| BN_MONT_CTX *mont = BN_MONT_CTX_new(); |
| BIGNUM *a_tmp = BN_new(); |
| BIGNUM *b_tmp = BN_new(); |
| if (mont == NULL || a_tmp == NULL || b_tmp == NULL |
| || !BN_MONT_CTX_set(mont, m, ctx) |
| || !BN_nnmod(a_tmp, a, m, ctx) |
| || !BN_nnmod(b_tmp, b, m, ctx) |
| || !BN_to_montgomery(a_tmp, a_tmp, mont, ctx) |
| || !BN_to_montgomery(b_tmp, b_tmp, mont, ctx) |
| || !BN_mod_mul_montgomery(ret, a_tmp, b_tmp, mont, ctx) |
| || !BN_from_montgomery(ret, ret, mont, ctx) |
| || !equalBN("A * B (mod M) (mont)", mod_mul, ret)) { |
| st = 0; |
| } else { |
| st = 1; |
| } |
| BN_MONT_CTX_free(mont); |
| BN_free(a_tmp); |
| BN_free(b_tmp); |
| if (st == 0) |
| goto err; |
| } |
| |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b); |
| BN_free(m); |
| BN_free(mod_mul); |
| BN_free(ret); |
| return st; |
| } |
| |
| static int file_modexp(STANZA *s) |
| { |
| BIGNUM *a = getBN(s, "A"); |
| BIGNUM *e = getBN(s, "E"); |
| BIGNUM *m = getBN(s, "M"); |
| BIGNUM *mod_exp = getBN(s, "ModExp"); |
| BIGNUM *ret = BN_new(); |
| BIGNUM *b = NULL, *c = NULL, *d = BN_new(); |
| int st = 0; |
| |
| if (a == NULL || e == NULL || m == NULL || mod_exp == NULL || ret == NULL) |
| goto err; |
| |
| if (!BN_mod_exp(ret, a, e, m, ctx) |
| || !equalBN("A ^ E (mod M)", mod_exp, ret)) |
| goto err; |
| |
| if (BN_is_odd(m)) { |
| if (!BN_mod_exp_mont(ret, a, e, m, ctx, NULL) |
| || !equalBN("A ^ E (mod M) (mont)", mod_exp, ret) |
| || !BN_mod_exp_mont_consttime(ret, a, e, m, ctx, NULL) |
| || !equalBN("A ^ E (mod M) (mont const", mod_exp, ret)) |
| goto err; |
| } |
| |
| /* Regression test for carry propagation bug in sqr8x_reduction */ |
| BN_hex2bn(&a, "050505050505"); |
| BN_hex2bn(&b, "02"); |
| BN_hex2bn(&c, |
| "4141414141414141414141274141414141414141414141414141414141414141" |
| "4141414141414141414141414141414141414141414141414141414141414141" |
| "4141414141414141414141800000000000000000000000000000000000000000" |
| "0000000000000000000000000000000000000000000000000000000000000000" |
| "0000000000000000000000000000000000000000000000000000000000000000" |
| "0000000000000000000000000000000000000000000000000000000001"); |
| BN_mod_exp(d, a, b, c, ctx); |
| BN_mul(e, a, a, ctx); |
| if (BN_cmp(d, e)) { |
| fprintf(stderr, "BN_mod_exp and BN_mul produce different results!\n"); |
| goto err; |
| } |
| |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b); |
| BN_free(c); |
| BN_free(d); |
| BN_free(e); |
| BN_free(m); |
| BN_free(mod_exp); |
| BN_free(ret); |
| return st; |
| } |
| |
| static int file_exp(STANZA *s) |
| { |
| BIGNUM *a = getBN(s, "A"); |
| BIGNUM *e = getBN(s, "E"); |
| BIGNUM *exp = getBN(s, "Exp"); |
| BIGNUM *ret = BN_new(); |
| int st = 0; |
| |
| if (a == NULL || e == NULL || exp == NULL || ret == NULL) |
| goto err; |
| |
| if (!BN_exp(ret, a, e, ctx) |
| || !equalBN("A ^ E", exp, ret)) |
| goto err; |
| |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(e); |
| BN_free(exp); |
| BN_free(ret); |
| return st; |
| } |
| |
| static int file_modsqrt(STANZA *s) |
| { |
| BIGNUM *a = getBN(s, "A"); |
| BIGNUM *p = getBN(s, "P"); |
| BIGNUM *mod_sqrt = getBN(s, "ModSqrt"); |
| BIGNUM *ret = BN_new(); |
| BIGNUM *ret2 = BN_new(); |
| int st = 0; |
| |
| if (a == NULL || p == NULL || mod_sqrt == NULL |
| || ret == NULL || ret2 == NULL) |
| goto err; |
| |
| /* There are two possible answers. */ |
| if (!BN_mod_sqrt(ret, a, p, ctx) || !BN_sub(ret2, p, ret)) |
| goto err; |
| |
| if (BN_cmp(ret2, mod_sqrt) != 0 |
| && !equalBN("sqrt(A) (mod P)", mod_sqrt, ret)) |
| goto err; |
| |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(p); |
| BN_free(mod_sqrt); |
| BN_free(ret); |
| BN_free(ret2); |
| return st; |
| } |
| |
| static int test_bn2padded() |
| { |
| #if HAVE_BN_PADDED |
| uint8_t zeros[256], out[256], reference[128]; |
| BIGNUM *n = BN_new(); |
| int st = 0; |
| |
| /* Test edge case at 0. */ |
| if (n == NULL) |
| goto err; |
| if (!BN_bn2bin_padded(NULL, 0, n)) { |
| fprintf(stderr, |
| "BN_bn2bin_padded failed to encode 0 in an empty buffer.\n"); |
| goto err; |
| } |
| memset(out, -1, sizeof(out)); |
| if (!BN_bn2bin_padded(out, sizeof(out), n)) { |
| fprintf(stderr, |
| "BN_bn2bin_padded failed to encode 0 in a non-empty buffer.\n"); |
| goto err; |
| } |
| memset(zeros, 0, sizeof(zeros)); |
| if (memcmp(zeros, out, sizeof(out))) { |
| fprintf(stderr, "BN_bn2bin_padded did not zero buffer.\n"); |
| goto err; |
| } |
| |
| /* Test a random numbers at various byte lengths. */ |
| for (size_t bytes = 128 - 7; bytes <= 128; bytes++) { |
| #define TOP_BIT_ON 0 |
| #define BOTTOM_BIT_NOTOUCH 0 |
| if (!BN_rand(n, bytes * 8, TOP_BIT_ON, BOTTOM_BIT_NOTOUCH)) { |
| ERR_print_errors_fp(stderr); |
| goto err; |
| } |
| if (BN_num_bytes(n) != bytes |
| || BN_bn2bin(n, reference) != bytes) { |
| fprintf(stderr, "Bad result from BN_rand; bytes.\n"); |
| goto err; |
| } |
| /* Empty buffer should fail. */ |
| if (BN_bn2bin_padded(NULL, 0, n)) { |
| fprintf(stderr, |
| "BN_bn2bin_padded incorrectly succeeded on empty buffer.\n"); |
| goto err; |
| } |
| /* One byte short should fail. */ |
| if (BN_bn2bin_padded(out, bytes - 1, n)) { |
| fprintf(stderr, |
| "BN_bn2bin_padded incorrectly succeeded on short.\n"); |
| goto err; |
| } |
| /* Exactly right size should encode. */ |
| if (!BN_bn2bin_padded(out, bytes, n) |
| || memcmp(out, reference, bytes) != 0) { |
| fprintf(stderr, |
| "BN_bn2bin_padded gave a bad result.\n"); |
| goto err; |
| } |
| /* Pad up one byte extra. */ |
| if (!BN_bn2bin_padded(out, bytes + 1, n) |
| || memcmp(out + 1, reference, bytes) |
| || memcmp(out, zeros, 1)) { |
| fprintf(stderr, |
| "BN_bn2bin_padded gave a bad result.\n"); |
| goto err; |
| } |
| /* Pad up to 256. */ |
| if (!BN_bn2bin_padded(out, sizeof(out), n) |
| || memcmp(out + sizeof(out) - bytes, reference, bytes) |
| || memcmp(out, zeros, sizeof(out) - bytes)) { |
| fprintf(stderr, |
| "BN_bn2bin_padded gave a bad result.\n"); |
| goto err; |
| } |
| } |
| |
| st = 1; |
| err: |
| BN_free(n); |
| return st; |
| #else |
| return ctx != NULL; |
| #endif |
| } |
| |
| static int test_dec2bn() |
| { |
| BIGNUM *bn = NULL; |
| int st = 0; |
| |
| int ret = parsedecBN(&bn, "0"); |
| if (ret != 1 || !BN_is_zero(bn) || BN_is_negative(bn)) { |
| fprintf(stderr, "BN_dec2bn(0) gave a bad result.\n"); |
| goto err; |
| } |
| BN_free(bn); |
| |
| ret = parsedecBN(&bn, "256"); |
| if (ret != 3 || !BN_is_word(bn, 256) || BN_is_negative(bn)) { |
| fprintf(stderr, "BN_dec2bn(256) gave a bad result.\n"); |
| goto err; |
| } |
| BN_free(bn); |
| |
| ret = parsedecBN(&bn, "-42"); |
| if (ret != 3 || !BN_abs_is_word(bn, 42) || !BN_is_negative(bn)) { |
| fprintf(stderr, "BN_dec2bn(42) gave a bad result.\n"); |
| goto err; |
| } |
| BN_free(bn); |
| |
| ret = parsedecBN(&bn, "-0"); |
| if (ret != 2 || !BN_is_zero(bn) || BN_is_negative(bn)) { |
| fprintf(stderr, "BN_dec2bn(-0) gave a bad result.\n"); |
| goto err; |
| } |
| BN_free(bn); |
| |
| ret = parsedecBN(&bn, "42trailing garbage is ignored"); |
| if (ret != 2 || !BN_abs_is_word(bn, 42) |
| || BN_is_negative(bn)) { |
| fprintf(stderr, "BN_dec2bn(42trailing...) gave a bad result.\n"); |
| goto err; |
| } |
| |
| st = 1; |
| err: |
| BN_free(bn); |
| return st; |
| } |
| |
| static int test_hex2bn() |
| { |
| BIGNUM *bn = NULL; |
| int ret, st = 0; |
| |
| ret = parseBN(&bn, "0"); |
| if (ret != 1 || !BN_is_zero(bn) || BN_is_negative(bn)) { |
| fprintf(stderr, "BN_hex2bn(0) gave a bad result.\n"); |
| goto err; |
| } |
| BN_free(bn); |
| |
| ret = parseBN(&bn, "256"); |
| if (ret != 3 || !BN_is_word(bn, 0x256) || BN_is_negative(bn)) { |
| fprintf(stderr, "BN_hex2bn(256) gave a bad result.\n"); |
| goto err; |
| } |
| BN_free(bn); |
| |
| ret = parseBN(&bn, "-42"); |
| if (ret != 3 || !BN_abs_is_word(bn, 0x42) || !BN_is_negative(bn)) { |
| fprintf(stderr, "BN_hex2bn(-42) gave a bad result.\n"); |
| goto err; |
| } |
| BN_free(bn); |
| |
| ret = parseBN(&bn, "-0"); |
| if (ret != 2 || !BN_is_zero(bn) || BN_is_negative(bn)) { |
| fprintf(stderr, "BN_hex2bn(-0) gave a bad result.\n"); |
| goto err; |
| } |
| BN_free(bn); |
| |
| ret = parseBN(&bn, "abctrailing garbage is ignored"); |
| if (ret != 3 || !BN_is_word(bn, 0xabc) || BN_is_negative(bn)) { |
| fprintf(stderr, "BN_hex2bn(abctrail...) gave a bad result.\n"); |
| goto err; |
| } |
| st = 1; |
| |
| err: |
| BN_free(bn); |
| return st; |
| } |
| |
| static int test_asc2bn() |
| { |
| BIGNUM *bn = BN_new(); |
| int st = 0; |
| |
| if (!BN_asc2bn(&bn, "0") || !BN_is_zero(bn) || BN_is_negative(bn)) { |
| fprintf(stderr, "BN_asc2bn(0) gave a bad result.\n"); |
| goto err; |
| } |
| |
| if (!BN_asc2bn(&bn, "256") || !BN_is_word(bn, 256) || BN_is_negative(bn)) { |
| fprintf(stderr, "BN_asc2bn(256) gave a bad result.\n"); |
| goto err; |
| } |
| |
| if (!BN_asc2bn(&bn, "-42") |
| || !BN_abs_is_word(bn, 42) || !BN_is_negative(bn)) { |
| fprintf(stderr, "BN_asc2bn(-42) gave a bad result.\n"); |
| goto err; |
| } |
| |
| if (!BN_asc2bn(&bn, "0x1234") |
| || !BN_is_word(bn, 0x1234) || BN_is_negative(bn)) { |
| fprintf(stderr, "BN_asc2bn(0x1234) gave a bad result.\n"); |
| goto err; |
| } |
| |
| if (!BN_asc2bn(&bn, "0X1234") |
| || !BN_is_word(bn, 0x1234) || BN_is_negative(bn)) { |
| fprintf(stderr, "BN_asc2bn(0X1234) gave a bad result.\n"); |
| goto err; |
| } |
| |
| if (!BN_asc2bn(&bn, "-0xabcd") |
| || !BN_abs_is_word(bn, 0xabcd) || !BN_is_negative(bn)) { |
| fprintf(stderr, "BN_asc2bn(-0xabcd) gave a bad result.\n"); |
| goto err; |
| } |
| |
| if (!BN_asc2bn(&bn, "-0") || !BN_is_zero(bn) || BN_is_negative(bn)) { |
| fprintf(stderr, "BN_asc2bn(-0) gave a bad result.\n"); |
| goto err; |
| } |
| |
| if (!BN_asc2bn(&bn, "123trailing garbage is ignored") |
| || !BN_is_word(bn, 123) || BN_is_negative(bn)) { |
| fprintf(stderr, "BN_asc2bn(123trail...) gave a bad result.\n"); |
| goto err; |
| } |
| |
| st = 1; |
| err: |
| BN_free(bn); |
| return st; |
| } |
| |
| static const MPITEST kMPITests[] = { |
| {"0", "\x00\x00\x00\x00", 4}, |
| {"1", "\x00\x00\x00\x01\x01", 5}, |
| {"-1", "\x00\x00\x00\x01\x81", 5}, |
| {"128", "\x00\x00\x00\x02\x00\x80", 6}, |
| {"256", "\x00\x00\x00\x02\x01\x00", 6}, |
| {"-256", "\x00\x00\x00\x02\x81\x00", 6}, |
| }; |
| |
| static int test_mpi() |
| { |
| uint8_t scratch[8]; |
| int i = (int)sizeof(kMPITests) / sizeof(kMPITests[0]); |
| const MPITEST *test = kMPITests; |
| size_t mpi_len, mpi_len2; |
| BIGNUM *bn = BN_new(); |
| BIGNUM *bn2 = NULL; |
| int st = 0; |
| |
| for ( ; --i >= 0; test++) { |
| if (!BN_asc2bn(&bn, test->base10)) { |
| fprintf(stderr, "Can't convert %s\n", test->base10); |
| goto err; |
| } |
| mpi_len = BN_bn2mpi(bn, NULL); |
| if (mpi_len > sizeof (scratch)) { |
| fprintf(stderr, |
| "MPI test #%u: MPI size is too large to test.\n", |
| (unsigned)i); |
| goto err; |
| } |
| |
| mpi_len2 = BN_bn2mpi(bn, scratch); |
| if (mpi_len != mpi_len2) { |
| fprintf(stderr, "MPI test #%u: length changes.\n", |
| (unsigned)i); |
| goto err; |
| } |
| |
| if (mpi_len != test->mpi_len |
| || memcmp(test->mpi, scratch, mpi_len) != 0) { |
| fprintf(stderr, "MPI test #%u failed:\n", (unsigned)i); |
| goto err; |
| } |
| |
| bn2 = BN_mpi2bn(scratch, mpi_len, NULL); |
| if (bn2 == NULL) { |
| fprintf(stderr, "MPI test #%u: failed to parse\n", |
| (unsigned)i); |
| goto err; |
| } |
| |
| if (BN_cmp(bn, bn2) != 0) { |
| fprintf(stderr, "MPI test #%u: wrong result\n", |
| (unsigned)i); |
| BN_free(bn2); |
| goto err; |
| } |
| BN_free(bn2); |
| } |
| |
| st = 1; |
| err: |
| BN_free(bn); |
| return st; |
| } |
| |
| static int test_rand() |
| { |
| BIGNUM *bn = BN_new(); |
| int st = 0; |
| |
| if (bn == NULL) |
| return 0; |
| |
| /* |
| * Test BN_rand for degenerate cases with |top| and |bottom| parameters. |
| */ |
| if (BN_rand(bn, 0, 0 /* top */ , 0 /* bottom */ )) { |
| fprintf(stderr, "BN_rand1 gave a bad result.\n"); |
| goto err; |
| } |
| if (BN_rand(bn, 0, 1 /* top */ , 1 /* bottom */ )) { |
| fprintf(stderr, "BN_rand2 gave a bad result.\n"); |
| goto err; |
| } |
| |
| if (!BN_rand(bn, 1, 0 /* top */ , 0 /* bottom */ ) || !BN_is_word(bn, 1)) { |
| fprintf(stderr, "BN_rand3 gave a bad result.\n"); |
| goto err; |
| } |
| if (BN_rand(bn, 1, 1 /* top */ , 0 /* bottom */ )) { |
| fprintf(stderr, "BN_rand4 gave a bad result.\n"); |
| goto err; |
| } |
| if (!BN_rand(bn, 1, -1 /* top */ , 1 /* bottom */ ) || !BN_is_word(bn, 1)) { |
| fprintf(stderr, "BN_rand5 gave a bad result.\n"); |
| goto err; |
| } |
| |
| if (!BN_rand(bn, 2, 1 /* top */ , 0 /* bottom */ ) || !BN_is_word(bn, 3)) { |
| fprintf(stderr, "BN_rand6 gave a bad result.\n"); |
| goto err; |
| } |
| |
| st = 1; |
| err: |
| BN_free(bn); |
| return st; |
| } |
| |
| static int test_negzero() |
| { |
| BIGNUM *a = BN_new(); |
| BIGNUM *b = BN_new(); |
| BIGNUM *c = BN_new(); |
| BIGNUM *d = BN_new(); |
| BIGNUM *numerator = NULL, *denominator = NULL; |
| int consttime, st = 0; |
| |
| if (a == NULL || b == NULL || c == NULL || d == NULL) |
| goto err; |
| |
| /* Test that BN_mul never gives negative zero. */ |
| if (!BN_set_word(a, 1)) |
| goto err; |
| BN_set_negative(a, 1); |
| BN_zero(b); |
| if (!BN_mul(c, a, b, ctx)) |
| goto err; |
| if (!BN_is_zero(c) || BN_is_negative(c)) { |
| fprintf(stderr, "Multiplication test failed!\n"); |
| goto err; |
| } |
| |
| for (consttime = 0; consttime < 2; consttime++) { |
| numerator = BN_new(); |
| denominator = BN_new(); |
| if (numerator == NULL || denominator == NULL) |
| goto err; |
| if (consttime) { |
| BN_set_flags(numerator, BN_FLG_CONSTTIME); |
| BN_set_flags(denominator, BN_FLG_CONSTTIME); |
| } |
| /* Test that BN_div never gives negative zero in the quotient. */ |
| if (!BN_set_word(numerator, 1) || !BN_set_word(denominator, 2)) |
| goto err; |
| BN_set_negative(numerator, 1); |
| if (!BN_div(a, b, numerator, denominator, ctx)) |
| goto err; |
| if (!BN_is_zero(a) || BN_is_negative(a)) { |
| fprintf(stderr, "Incorrect quotient (consttime = %d).\n", |
| consttime); |
| goto err; |
| } |
| |
| /* Test that BN_div never gives negative zero in the remainder. */ |
| if (!BN_set_word(denominator, 1)) |
| goto err; |
| if (!BN_div(a, b, numerator, denominator, ctx)) |
| goto err; |
| if (!BN_is_zero(b) || BN_is_negative(b)) { |
| fprintf(stderr, "Incorrect remainder (consttime = %d).\n", |
| consttime); |
| goto err; |
| } |
| BN_free(numerator); |
| BN_free(denominator); |
| numerator = denominator = NULL; |
| } |
| |
| /* Test that BN_set_negative will not produce a negative zero. */ |
| BN_zero(a); |
| BN_set_negative(a, 1); |
| if (BN_is_negative(a)) { |
| fprintf(stderr, "BN_set_negative produced a negative zero.\n"); |
| goto err; |
| } |
| |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b); |
| BN_free(c); |
| BN_free(d); |
| BN_free(numerator); |
| BN_free(denominator); |
| return st; |
| } |
| |
| static int test_badmod() |
| { |
| BIGNUM *a = BN_new(); |
| BIGNUM *b = BN_new(); |
| BIGNUM *zero = BN_new(); |
| BN_MONT_CTX *mont = BN_MONT_CTX_new(); |
| int st = 0; |
| |
| if (a == NULL || b == NULL || zero == NULL || mont == NULL) |
| goto err; |
| BN_zero(zero); |
| |
| if (BN_div(a, b, BN_value_one(), zero, ctx)) { |
| fprintf(stderr, "Division by zero succeeded!\n"); |
| goto err; |
| } |
| ERR_clear_error(); |
| |
| if (BN_mod_mul(a, BN_value_one(), BN_value_one(), zero, ctx)) { |
| fprintf(stderr, "BN_mod_mul with zero modulus succeeded!\n"); |
| goto err; |
| } |
| ERR_clear_error(); |
| |
| if (BN_mod_exp(a, BN_value_one(), BN_value_one(), zero, ctx)) { |
| fprintf(stderr, "BN_mod_exp with zero modulus succeeded!\n"); |
| goto err; |
| } |
| ERR_clear_error(); |
| |
| if (BN_mod_exp_mont(a, BN_value_one(), BN_value_one(), zero, ctx, NULL)) { |
| fprintf(stderr, "BN_mod_exp_mont with zero modulus succeeded!\n"); |
| goto err; |
| } |
| ERR_clear_error(); |
| |
| if (BN_mod_exp_mont_consttime(a, BN_value_one(), BN_value_one(), |
| zero, ctx, NULL)) { |
| fprintf(stderr, |
| "BN_mod_exp_mont_consttime with zero modulus succeeded!\n"); |
| goto err; |
| } |
| ERR_clear_error(); |
| |
| if (BN_MONT_CTX_set(mont, zero, ctx)) { |
| fprintf(stderr, "BN_MONT_CTX_set succeeded for zero modulus!\n"); |
| goto err; |
| } |
| ERR_clear_error(); |
| |
| /* Some operations also may not be used with an even modulus. */ |
| if (!BN_set_word(b, 16)) |
| goto err; |
| |
| if (BN_MONT_CTX_set(mont, b, ctx)) { |
| fprintf(stderr, |
| "BN_MONT_CTX_set succeeded for even modulus!\n"); |
| goto err; |
| } |
| ERR_clear_error(); |
| |
| if (BN_mod_exp_mont(a, BN_value_one(), BN_value_one(), b, ctx, NULL)) { |
| fprintf(stderr, |
| "BN_mod_exp_mont with even modulus succeeded!\n"); |
| goto err; |
| } |
| ERR_clear_error(); |
| |
| if (BN_mod_exp_mont_consttime(a, BN_value_one(), BN_value_one(), |
| b, ctx, NULL)) { |
| fprintf(stderr, |
| "BN_mod_exp_mont_consttime with even modulus succeeded!\n"); |
| goto err; |
| } |
| ERR_clear_error(); |
| |
| st = 1; |
| err: |
| BN_free(a); |
| BN_free(b); |
| BN_free(zero); |
| BN_MONT_CTX_free(mont); |
| return st; |
| } |
| |
| static int test_expmodzero() |
| { |
| BIGNUM *zero = BN_new(); |
| BIGNUM *a = BN_new(); |
| BIGNUM *r = BN_new(); |
| int st = 0; |
| |
| if (zero == NULL || a == NULL || r == NULL || !BN_rand(a, 1024, 0, 0)) |
| goto err; |
| BN_zero(zero); |
| |
| if (!BN_mod_exp(r, a, zero, BN_value_one(), NULL) |
| || !BN_is_zero(r) |
| || !BN_mod_exp_mont(r, a, zero, BN_value_one(), NULL, NULL) |
| || !BN_is_zero(r) |
| || !BN_mod_exp_mont_consttime(r, a, zero, BN_value_one(), NULL, NULL) |
| || !BN_is_zero(r) |
| || !BN_mod_exp_mont_word(r, 42, zero, BN_value_one(), NULL, NULL) |
| || !BN_is_zero(r)) |
| goto err; |
| |
| st = 1; |
| err: |
| BN_free(zero); |
| BN_free(a); |
| BN_free(r); |
| return st; |
| } |
| |
| static int test_smallprime() |
| { |
| static const int kBits = 10; |
| BIGNUM *r = BN_new(); |
| int st = 0; |
| |
| if (r == NULL |
| || !BN_generate_prime_ex(r, (int)kBits, 0, NULL, NULL, NULL)) |
| goto err; |
| if (BN_num_bits(r) != kBits) { |
| fprintf(stderr, "Expected %u bit prime, got %u bit number\n", |
| kBits, BN_num_bits(r)); |
| goto err; |
| } |
| |
| st = 1; |
| err: |
| BN_free(r); |
| return st; |
| } |
| |
| |
| /* Delete leading and trailing spaces from a string */ |
| static char *strip_spaces(char *p) |
| { |
| char *q; |
| |
| /* Skip over leading spaces */ |
| while (*p && isspace(*p)) |
| p++; |
| if (!*p) |
| return NULL; |
| |
| for (q = p + strlen(p) - 1; q != p && isspace(*q); ) |
| *q-- = '\0'; |
| return *p ? p : NULL; |
| } |
| |
| /* |
| * Read next test stanza; return 1 if found, 0 on EOF or error. |
| */ |
| static int readstanza(STANZA *s, int *linesread) |
| { |
| PAIR *pp = s->pairs; |
| char *p, *equals, *key, *value; |
| char buff[1024]; |
| |
| while (fgets(buff, sizeof(buff), fp) != NULL) { |
| (*linesread)++; |
| if ((p = strchr(buff, '\n')) == NULL) { |
| fprintf(stderr, "Line %d too long.\n", s->start); |
| return 0; |
| } |
| *p = '\0'; |
| |
| /* Blank line marks end of tests. */ |
| if (buff[0] == '\0') |
| break; |
| |
| /* Lines starting with a pound sign are ignored. */ |
| if (buff[0] == '#') |
| continue; |
| |
| if ((equals = strchr(buff, '=')) == NULL) { |
| fprintf(stderr, "Line %d missing equals.\n", s->start); |
| return 0; |
| } |
| *equals++ = '\0'; |
| |
| key = strip_spaces(buff); |
| value = strip_spaces(equals); |
| if (key == NULL || value == NULL) { |
| fprintf(stderr, "Line %d missing field.\n", s->start); |
| return 0; |
| } |
| s->numpairs++; |
| if (s->numpairs >= MAXPAIRS) { |
| fprintf(stderr, "Line %d too many lines\n", s->start); |
| return 0; |
| } |
| pp->key = OPENSSL_strdup(key); |
| pp->value = OPENSSL_strdup(value); |
| pp++; |
| } |
| |
| /* If we read anything, return ok. */ |
| return 1; |
| } |
| |
| static void clearstanza(STANZA *s) |
| { |
| PAIR *pp = s->pairs; |
| int i = s->numpairs; |
| int start = s->start; |
| |
| for ( ; --i >= 0; pp++) { |
| OPENSSL_free(pp->key); |
| OPENSSL_free(pp->value); |
| } |
| memset(s, 0, sizeof(*s)); |
| s->start = start; |
| } |
| |
| static int file_test_run(STANZA *s) |
| { |
| static const FILETEST filetests[] = { |
| {"Sum", file_sum}, |
| {"LShift1", file_lshift1}, |
| {"LShift", file_lshift}, |
| {"RShift", file_rshift}, |
| {"Square", file_square}, |
| {"Product", file_product}, |
| {"Quotient", file_quotient}, |
| {"ModMul", file_modmul}, |
| {"ModExp", file_modexp}, |
| {"Exp", file_exp}, |
| {"ModSqrt", file_modsqrt}, |
| }; |
| int numtests = OSSL_NELEM(filetests); |
| const FILETEST *tp = filetests; |
| |
| for ( ; --numtests >= 0; tp++) { |
| if (findattr(s, tp->name) != NULL) |
| return tp->func(s); |
| } |
| fprintf(stderr, "Unknown test at %d\n", s->start); |
| return 0; |
| } |
| |
| static int file_tests() |
| { |
| STANZA s; |
| int linesread = 0, errcnt = 0; |
| |
| /* Read test file. */ |
| memset(&s, 0, sizeof(s)); |
| while (!feof(fp) && readstanza(&s, &linesread)) { |
| if (s.numpairs == 0) |
| continue; |
| if (!file_test_run(&s)) { |
| fprintf(stderr, "Test at %d failed\n", s.start); |
| errcnt++; |
| } |
| clearstanza(&s); |
| s.start = linesread; |
| } |
| |
| return errcnt == 0; |
| } |
| |
| int test_main(int argc, char *argv[]) |
| { |
| static const char rnd_seed[] = |
| "If not seeded, BN_generate_prime might fail"; |
| int result = 0; |
| |
| if (argc != 2) { |
| fprintf(stderr, "%s TEST_FILE\n", argv[0]); |
| return 1; |
| } |
| |
| ADD_TEST(test_sub); |
| ADD_TEST(test_div_recip); |
| ADD_TEST(test_mod); |
| ADD_TEST(test_modexp_mont5); |
| ADD_TEST(test_kronecker); |
| ADD_TEST(test_rand); |
| ADD_TEST(test_bn2padded); |
| ADD_TEST(test_dec2bn); |
| ADD_TEST(test_hex2bn); |
| ADD_TEST(test_asc2bn); |
| ADD_TEST(test_mpi); |
| ADD_TEST(test_negzero); |
| ADD_TEST(test_badmod); |
| ADD_TEST(test_expmodzero); |
| ADD_TEST(test_smallprime); |
| #ifndef OPENSSL_NO_EC2M |
| ADD_TEST(test_gf2m_add); |
| ADD_TEST(test_gf2m_mod); |
| ADD_TEST(test_gf2m_mul); |
| ADD_TEST(test_gf2m_sqr); |
| ADD_TEST(test_gf2m_modinv); |
| ADD_TEST(test_gf2m_moddiv); |
| ADD_TEST(test_gf2m_modexp); |
| ADD_TEST(test_gf2m_modsqrt); |
| ADD_TEST(test_gf2m_modsolvequad); |
| #endif |
| ADD_TEST(file_tests); |
| |
| RAND_seed(rnd_seed, sizeof rnd_seed); |
| ctx = BN_CTX_new(); |
| TEST_check(ctx != NULL); |
| |
| fp = fopen(argv[1], "r"); |
| TEST_check(fp != NULL); |
| result = run_tests(argv[0]); |
| fclose(fp); |
| |
| BN_CTX_free(ctx); |
| return result; |
| } |