| /* |
| * Copyright 2018-2020 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <string.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/engine.h> |
| #include <openssl/params.h> |
| #include <openssl/core_names.h> |
| #include "crypto/evp.h" |
| #include "evp_local.h" |
| |
| /* MAC PKEY context structure */ |
| |
| typedef struct { |
| EVP_MAC_CTX *ctx; |
| |
| /* |
| * We know of two MAC types: |
| * |
| * 1. those who take a secret in raw form, i.e. raw data as a |
| * ASN1_OCTET_STRING embedded in a EVP_PKEY. So far, that's |
| * all of them but CMAC. |
| * 2. those who take a secret with associated cipher in very generic |
| * form, i.e. a complete EVP_MAC_CTX embedded in a PKEY. So far, |
| * only CMAC does this. |
| * |
| * (one might wonder why the second form isn't used for all) |
| */ |
| #define MAC_TYPE_RAW 1 /* HMAC like MAC type (all but CMAC so far) */ |
| #define MAC_TYPE_MAC 2 /* CMAC like MAC type (only CMAC known so far) */ |
| int type; |
| |
| /* The following is only used for MAC_TYPE_RAW implementations */ |
| struct { |
| const EVP_MD *md; /* temp storage of MD */ |
| ASN1_OCTET_STRING ktmp; /* temp storage for key */ |
| } raw_data; |
| } MAC_PKEY_CTX; |
| |
| static void pkey_mac_cleanup(EVP_PKEY_CTX *ctx); |
| |
| static int pkey_mac_init(EVP_PKEY_CTX *ctx) |
| { |
| MAC_PKEY_CTX *hctx; |
| /* We're being smart and using the same base NIDs for PKEY and for MAC */ |
| int nid = ctx->pmeth->pkey_id; |
| EVP_MAC *mac; |
| |
| ERR_set_mark(); |
| mac = EVP_MAC_fetch(ctx->libctx, OBJ_nid2sn(nid), ctx->propquery); |
| ERR_pop_to_mark(); |
| |
| /* |
| * mac == NULL may actually be ok in some situations. In an |
| * EVP_PKEY_new_mac_key() call a temporary EVP_PKEY_CTX is created with |
| * default libctx. We don't actually need the underlying MAC to be present |
| * to successfully set the key in that case. The resulting EVP_PKEY could |
| * then be used in some other libctx where the MAC *is* present |
| */ |
| |
| if ((hctx = OPENSSL_zalloc(sizeof(*hctx))) == NULL) { |
| EVPerr(EVP_F_PKEY_MAC_INIT, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| if (mac != NULL) { |
| hctx->ctx = EVP_MAC_CTX_new(mac); |
| if (hctx->ctx == NULL) { |
| OPENSSL_free(hctx); |
| return 0; |
| } |
| } |
| |
| if (nid == EVP_PKEY_CMAC) { |
| hctx->type = MAC_TYPE_MAC; |
| } else { |
| hctx->type = MAC_TYPE_RAW; |
| hctx->raw_data.ktmp.type = V_ASN1_OCTET_STRING; |
| } |
| |
| pkey_mac_cleanup(ctx); |
| EVP_PKEY_CTX_set_data(ctx, hctx); |
| ctx->keygen_info_count = 0; |
| |
| return 1; |
| } |
| |
| static int pkey_mac_copy(EVP_PKEY_CTX *dst, const EVP_PKEY_CTX *src) |
| { |
| MAC_PKEY_CTX *sctx, *dctx; |
| |
| sctx = EVP_PKEY_CTX_get_data(src); |
| |
| if (sctx->ctx == NULL) { |
| /* This actually means the fetch failed during the init call */ |
| EVPerr(0, EVP_R_FETCH_FAILED); |
| return 0; |
| } |
| |
| if (sctx->ctx->data == NULL) |
| return 0; |
| |
| dctx = OPENSSL_zalloc(sizeof(*dctx)); |
| if (dctx == NULL) { |
| EVPerr(EVP_F_PKEY_MAC_COPY, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| EVP_PKEY_CTX_set_data(dst, dctx); |
| dst->keygen_info_count = 0; |
| |
| dctx->ctx = EVP_MAC_CTX_dup(sctx->ctx); |
| if (dctx->ctx == NULL) |
| goto err; |
| |
| /* |
| * Normally, nothing special would be done with the MAC method. In |
| * this particular case, though, the MAC method was fetched internally |
| * by pkey_mac_init() above or by EVP_PKEY_new_CMAC_key() and passed |
| * via the EVP_MAC_CTX, so it is effectively like every new EVP_MAC_CTX |
| * fetches the MAC method anew in this case. Therefore, its reference |
| * count must be adjusted here. |
| */ |
| if (!EVP_MAC_up_ref(EVP_MAC_CTX_mac(dctx->ctx))) |
| goto err; |
| |
| dctx->type = sctx->type; |
| |
| switch (dctx->type) { |
| case MAC_TYPE_RAW: |
| dctx->raw_data.md = sctx->raw_data.md; |
| if (ASN1_STRING_get0_data(&sctx->raw_data.ktmp) != NULL && |
| !ASN1_STRING_copy(&dctx->raw_data.ktmp, &sctx->raw_data.ktmp)) |
| goto err; |
| break; |
| case MAC_TYPE_MAC: |
| /* Nothing more to do */ |
| break; |
| default: |
| /* This should be dead code */ |
| return 0; |
| } |
| return 1; |
| err: |
| pkey_mac_cleanup(dst); |
| return 0; |
| } |
| |
| static void pkey_mac_cleanup(EVP_PKEY_CTX *ctx) |
| { |
| /* |
| * For the exact same reasons the MAC reference count is incremented |
| * in pkey_mac_copy() above, it must be explicitly freed here. |
| */ |
| |
| MAC_PKEY_CTX *hctx = ctx == NULL ? NULL : EVP_PKEY_CTX_get_data(ctx); |
| |
| if (hctx != NULL) { |
| EVP_MAC *mac = hctx->ctx != NULL ? EVP_MAC_CTX_mac(hctx->ctx) : NULL; |
| |
| switch (hctx->type) { |
| case MAC_TYPE_RAW: |
| OPENSSL_clear_free(hctx->raw_data.ktmp.data, |
| hctx->raw_data.ktmp.length); |
| break; |
| } |
| EVP_MAC_CTX_free(hctx->ctx); |
| EVP_MAC_free(mac); |
| OPENSSL_free(hctx); |
| EVP_PKEY_CTX_set_data(ctx, NULL); |
| } |
| } |
| |
| static int pkey_mac_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) |
| { |
| MAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); |
| int nid = ctx->pmeth->pkey_id; |
| |
| switch (hctx->type) { |
| case MAC_TYPE_RAW: |
| { |
| ASN1_OCTET_STRING *hkey = NULL; |
| |
| if (!hctx->raw_data.ktmp.data) |
| return 0; |
| hkey = ASN1_OCTET_STRING_dup(&hctx->raw_data.ktmp); |
| if (!hkey) |
| return 0; |
| EVP_PKEY_assign(pkey, nid, hkey); |
| } |
| break; |
| case MAC_TYPE_MAC: |
| { |
| EVP_MAC_CTX *cmkey; |
| |
| if (hctx->ctx == NULL) { |
| /* This actually means the fetch failed during the init call */ |
| EVPerr(0, EVP_R_FETCH_FAILED); |
| return 0; |
| } |
| |
| cmkey = EVP_MAC_CTX_dup(hctx->ctx); |
| if (cmkey == NULL) |
| return 0; |
| if (!EVP_MAC_up_ref(EVP_MAC_CTX_mac(hctx->ctx))) |
| return 0; |
| EVP_PKEY_assign(pkey, nid, cmkey); |
| } |
| break; |
| default: |
| /* This should be dead code */ |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int int_update(EVP_MD_CTX *ctx, const void *data, size_t count) |
| { |
| MAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(EVP_MD_CTX_pkey_ctx(ctx)); |
| |
| if (!EVP_MAC_update(hctx->ctx, data, count)) |
| return 0; |
| return 1; |
| } |
| |
| static int pkey_mac_signctx_init(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx) |
| { |
| MAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); |
| ASN1_OCTET_STRING *key = NULL; |
| int rv = 1; |
| /* |
| * For MACs with the EVP_PKEY_FLAG_SIGCTX_CUSTOM flag set and that |
| * gets the key passed as an ASN.1 OCTET STRING, we set the key here, |
| * as this may be only time it's set during a DigestSign. |
| * |
| * MACs that pass around the key in form of EVP_MAC_CTX are setting |
| * the key through other mechanisms. (this is only CMAC for now) |
| */ |
| int set_key = |
| hctx->type == MAC_TYPE_RAW |
| && (ctx->pmeth->flags & EVP_PKEY_FLAG_SIGCTX_CUSTOM) != 0; |
| |
| if (hctx->ctx == NULL) { |
| /* This actually means the fetch failed during the init call */ |
| EVPerr(0, EVP_R_FETCH_FAILED); |
| return 0; |
| } |
| |
| if (set_key) { |
| if (!EVP_MAC_is_a(EVP_MAC_CTX_mac(hctx->ctx), |
| OBJ_nid2sn(EVP_PKEY_id(EVP_PKEY_CTX_get0_pkey(ctx))))) |
| return 0; |
| key = EVP_PKEY_get0(EVP_PKEY_CTX_get0_pkey(ctx)); |
| if (key == NULL) |
| return 0; |
| } |
| |
| EVP_MD_CTX_set_flags(mctx, EVP_MD_CTX_FLAG_NO_INIT); |
| EVP_MD_CTX_set_update_fn(mctx, int_update); |
| |
| /* Some MACs don't support this control... that's fine */ |
| { |
| OSSL_PARAM params[3]; |
| size_t params_n = 0; |
| int flags = EVP_MD_CTX_test_flags(mctx, ~EVP_MD_CTX_FLAG_NO_INIT); |
| |
| /* TODO(3.0) "flags" isn't quite right, i.e. a quick hack for now */ |
| params[params_n++] = |
| OSSL_PARAM_construct_int(OSSL_MAC_PARAM_FLAGS, &flags); |
| if (set_key) |
| params[params_n++] = |
| OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, |
| key->data, key->length); |
| params[params_n++] = OSSL_PARAM_construct_end(); |
| rv = EVP_MAC_CTX_set_params(hctx->ctx, params); |
| } |
| return rv; |
| } |
| |
| static int pkey_mac_signctx(EVP_PKEY_CTX *ctx, unsigned char *sig, |
| size_t *siglen, EVP_MD_CTX *mctx) |
| { |
| MAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); |
| |
| return EVP_MAC_final(hctx->ctx, sig, siglen, EVP_MAC_size(hctx->ctx)); |
| } |
| |
| static int pkey_mac_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) |
| { |
| MAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); |
| |
| switch (type) { |
| |
| case EVP_PKEY_CTRL_CIPHER: |
| switch (hctx->type) { |
| case MAC_TYPE_RAW: |
| return -2; /* The raw types don't support ciphers */ |
| case MAC_TYPE_MAC: |
| { |
| OSSL_PARAM params[3]; |
| size_t params_n = 0; |
| char *ciphname = (char *)OBJ_nid2sn(EVP_CIPHER_nid(p2)); |
| #ifndef OPENSSL_NO_ENGINE |
| char *engineid = (char *)ENGINE_get_id(ctx->engine); |
| |
| params[params_n++] = |
| OSSL_PARAM_construct_utf8_string("engine", engineid, 0); |
| #endif |
| params[params_n++] = |
| OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER, |
| ciphname, 0); |
| params[params_n] = OSSL_PARAM_construct_end(); |
| |
| if (hctx->ctx == NULL) { |
| /* |
| * This actually means the fetch failed during the init call |
| */ |
| EVPerr(0, EVP_R_FETCH_FAILED); |
| return 0; |
| } |
| |
| if (!EVP_MAC_CTX_set_params(hctx->ctx, params) |
| || !EVP_MAC_init(hctx->ctx)) |
| return 0; |
| } |
| break; |
| default: |
| /* This should be dead code */ |
| return 0; |
| } |
| break; |
| |
| case EVP_PKEY_CTRL_MD: |
| switch (hctx->type) { |
| case MAC_TYPE_RAW: |
| hctx->raw_data.md = p2; |
| break; |
| case MAC_TYPE_MAC: { |
| EVP_MAC_CTX *new_mac_ctx; |
| |
| if (ctx->pkey == NULL) |
| return 0; |
| new_mac_ctx = EVP_MAC_CTX_dup(ctx->pkey->pkey.ptr); |
| if (new_mac_ctx == NULL) |
| return 0; |
| EVP_MAC_CTX_free(hctx->ctx); |
| hctx->ctx = new_mac_ctx; |
| } |
| break; |
| default: |
| /* This should be dead code */ |
| return 0; |
| } |
| break; |
| |
| case EVP_PKEY_CTRL_SET_DIGEST_SIZE: |
| { |
| OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; |
| size_t size = (size_t)p1; |
| size_t verify = 0; |
| |
| /* |
| * We verify that the length is actually set by getting back |
| * the same parameter and checking that it matches what we |
| * tried to set. |
| * TODO(3.0) when we have a more direct mechanism to check if |
| * a parameter was used, we must refactor this to use that. |
| */ |
| |
| params[0] = |
| OSSL_PARAM_construct_size_t(OSSL_MAC_PARAM_SIZE, &size); |
| |
| if (hctx->ctx == NULL) { |
| /* |
| * This actually means the fetch failed during the init call |
| */ |
| EVPerr(0, EVP_R_FETCH_FAILED); |
| return 0; |
| } |
| |
| if (!EVP_MAC_CTX_set_params(hctx->ctx, params)) |
| return 0; |
| |
| params[0] = |
| OSSL_PARAM_construct_size_t(OSSL_MAC_PARAM_SIZE, &verify); |
| |
| if (!EVP_MAC_CTX_get_params(hctx->ctx, params)) |
| return 0; |
| |
| /* |
| * Since EVP_MAC_CTX_{get,set}_params() returned successfully, |
| * we can only assume that the size was ignored, i.e. this |
| * control is unsupported. |
| */ |
| if (verify != size) |
| return -2; |
| } |
| break; |
| case EVP_PKEY_CTRL_SET_MAC_KEY: |
| switch (hctx->type) { |
| case MAC_TYPE_RAW: |
| if ((!p2 && p1 > 0) || (p1 < -1)) |
| return 0; |
| if (!ASN1_OCTET_STRING_set(&hctx->raw_data.ktmp, p2, p1)) |
| return 0; |
| break; |
| case MAC_TYPE_MAC: |
| { |
| OSSL_PARAM params[2]; |
| size_t params_n = 0; |
| |
| params[params_n++] = |
| OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, |
| p2, p1); |
| params[params_n] = OSSL_PARAM_construct_end(); |
| |
| if (hctx->ctx == NULL) { |
| /* |
| * This actually means the fetch failed during the init call |
| */ |
| EVPerr(0, EVP_R_FETCH_FAILED); |
| return 0; |
| } |
| |
| return EVP_MAC_CTX_set_params(hctx->ctx, params); |
| } |
| break; |
| default: |
| /* This should be dead code */ |
| return 0; |
| } |
| break; |
| |
| case EVP_PKEY_CTRL_DIGESTINIT: |
| switch (hctx->type) { |
| case MAC_TYPE_RAW: |
| if (hctx->ctx == NULL) { |
| /* This actually means the fetch failed during the init call */ |
| EVPerr(0, EVP_R_FETCH_FAILED); |
| return 0; |
| } |
| |
| /* Ensure that we have attached the implementation */ |
| if (!EVP_MAC_init(hctx->ctx)) |
| return 0; |
| { |
| ASN1_OCTET_STRING *key = |
| (ASN1_OCTET_STRING *)ctx->pkey->pkey.ptr; |
| OSSL_PARAM params[4]; |
| size_t params_n = 0; |
| char *mdname = |
| (char *)OBJ_nid2sn(EVP_MD_nid(hctx->raw_data.md)); |
| #ifndef OPENSSL_NO_ENGINE |
| char *engineid = ctx->engine == NULL |
| ? NULL : (char *)ENGINE_get_id(ctx->engine); |
| |
| if (engineid != NULL) |
| params[params_n++] = |
| OSSL_PARAM_construct_utf8_string("engine", engineid, 0); |
| #endif |
| params[params_n++] = |
| OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, |
| mdname, 0); |
| params[params_n++] = |
| OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, |
| key->data, key->length); |
| params[params_n] = OSSL_PARAM_construct_end(); |
| |
| return EVP_MAC_CTX_set_params(hctx->ctx, params); |
| } |
| break; |
| case MAC_TYPE_MAC: |
| return -2; /* The mac types don't support ciphers */ |
| default: |
| /* This should be dead code */ |
| return 0; |
| } |
| break; |
| |
| default: |
| return -2; |
| |
| } |
| return 1; |
| } |
| |
| static int pkey_mac_ctrl_str(EVP_PKEY_CTX *ctx, |
| const char *type, const char *value) |
| { |
| MAC_PKEY_CTX *hctx = EVP_PKEY_CTX_get_data(ctx); |
| const EVP_MAC *mac; |
| OSSL_PARAM params[2]; |
| int ok = 0; |
| |
| if (hctx == NULL) { |
| EVPerr(0, EVP_R_NULL_MAC_PKEY_CTX); |
| return 0; |
| } |
| if (hctx->ctx == NULL) { |
| /* This actually means the fetch failed during the init call */ |
| EVPerr(0, EVP_R_FETCH_FAILED); |
| return 0; |
| } |
| mac = EVP_MAC_CTX_mac(hctx->ctx); |
| |
| /* |
| * Translation of some control names that are equivalent to a single |
| * parameter name. |
| * |
| * "md" and "digest" are the same thing, we use the single "digest" |
| * |
| * "digestsize" was a setting control in siphash, but naming wise, |
| * it's really the same as "size". |
| */ |
| if (strcmp(type, "md") == 0) |
| type = OSSL_MAC_PARAM_DIGEST; |
| else if (strcmp(type, "digestsize") == 0) |
| type = OSSL_MAC_PARAM_SIZE; |
| |
| if (!OSSL_PARAM_allocate_from_text(¶ms[0], |
| EVP_MAC_settable_ctx_params(mac), |
| type, value, strlen(value) + 1, NULL)) |
| return 0; |
| params[1] = OSSL_PARAM_construct_end(); |
| |
| ok = EVP_MAC_CTX_set_params(hctx->ctx, params); |
| OPENSSL_free(params[0].data); |
| return ok; |
| } |
| |
| static const EVP_PKEY_METHOD cmac_pkey_meth = { |
| EVP_PKEY_CMAC, |
| EVP_PKEY_FLAG_SIGCTX_CUSTOM, |
| pkey_mac_init, |
| pkey_mac_copy, |
| pkey_mac_cleanup, |
| |
| 0, 0, |
| |
| 0, |
| pkey_mac_keygen, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| pkey_mac_signctx_init, |
| pkey_mac_signctx, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| pkey_mac_ctrl, |
| pkey_mac_ctrl_str |
| }; |
| |
| const EVP_PKEY_METHOD *cmac_pkey_method(void) |
| { |
| return &cmac_pkey_meth; |
| } |
| |
| static const EVP_PKEY_METHOD hmac_pkey_meth = { |
| EVP_PKEY_HMAC, |
| 0, |
| pkey_mac_init, |
| pkey_mac_copy, |
| pkey_mac_cleanup, |
| |
| 0, 0, |
| |
| 0, |
| pkey_mac_keygen, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| pkey_mac_signctx_init, |
| pkey_mac_signctx, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| pkey_mac_ctrl, |
| pkey_mac_ctrl_str |
| }; |
| |
| const EVP_PKEY_METHOD *hmac_pkey_method(void) |
| { |
| return &hmac_pkey_meth; |
| } |
| |
| static const EVP_PKEY_METHOD siphash_pkey_meth = { |
| EVP_PKEY_SIPHASH, |
| EVP_PKEY_FLAG_SIGCTX_CUSTOM, |
| pkey_mac_init, |
| pkey_mac_copy, |
| pkey_mac_cleanup, |
| |
| 0, 0, |
| |
| 0, |
| pkey_mac_keygen, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| pkey_mac_signctx_init, |
| pkey_mac_signctx, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| pkey_mac_ctrl, |
| pkey_mac_ctrl_str |
| }; |
| |
| const EVP_PKEY_METHOD *siphash_pkey_method(void) |
| { |
| return &siphash_pkey_meth; |
| } |
| |
| static const EVP_PKEY_METHOD poly1305_pkey_meth = { |
| EVP_PKEY_POLY1305, |
| EVP_PKEY_FLAG_SIGCTX_CUSTOM, |
| pkey_mac_init, |
| pkey_mac_copy, |
| pkey_mac_cleanup, |
| |
| 0, 0, |
| |
| 0, |
| pkey_mac_keygen, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| pkey_mac_signctx_init, |
| pkey_mac_signctx, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| 0, 0, |
| |
| pkey_mac_ctrl, |
| pkey_mac_ctrl_str |
| }; |
| |
| const EVP_PKEY_METHOD *poly1305_pkey_method(void) |
| { |
| return &poly1305_pkey_meth; |
| } |