| /* | 
 |  * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. | 
 |  * | 
 |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
 |  * this file except in compliance with the License.  You can obtain a copy | 
 |  * in the file LICENSE in the source distribution or at | 
 |  * https://www.openssl.org/source/license.html | 
 |  */ | 
 |  | 
 | #include <assert.h> | 
 | #include <openssl/bn.h> | 
 | #include "internal/cryptlib.h" | 
 | #include "bn_local.h" | 
 |  | 
 | /* The old slow way */ | 
 | #if 0 | 
 | int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, | 
 |            BN_CTX *ctx) | 
 | { | 
 |     int i, nm, nd; | 
 |     int ret = 0; | 
 |     BIGNUM *D; | 
 |  | 
 |     bn_check_top(m); | 
 |     bn_check_top(d); | 
 |     if (BN_is_zero(d)) { | 
 |         ERR_raise(ERR_LIB_BN, BN_R_DIV_BY_ZERO); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     if (BN_ucmp(m, d) < 0) { | 
 |         if (rem != NULL) { | 
 |             if (BN_copy(rem, m) == NULL) | 
 |                 return 0; | 
 |         } | 
 |         if (dv != NULL) | 
 |             BN_zero(dv); | 
 |         return 1; | 
 |     } | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |     D = BN_CTX_get(ctx); | 
 |     if (dv == NULL) | 
 |         dv = BN_CTX_get(ctx); | 
 |     if (rem == NULL) | 
 |         rem = BN_CTX_get(ctx); | 
 |     if (D == NULL || dv == NULL || rem == NULL) | 
 |         goto end; | 
 |  | 
 |     nd = BN_num_bits(d); | 
 |     nm = BN_num_bits(m); | 
 |     if (BN_copy(D, d) == NULL) | 
 |         goto end; | 
 |     if (BN_copy(rem, m) == NULL) | 
 |         goto end; | 
 |  | 
 |     /* | 
 |      * The next 2 are needed so we can do a dv->d[0]|=1 later since | 
 |      * BN_lshift1 will only work once there is a value :-) | 
 |      */ | 
 |     BN_zero(dv); | 
 |     if (bn_wexpand(dv, 1) == NULL) | 
 |         goto end; | 
 |     dv->top = 1; | 
 |  | 
 |     if (!BN_lshift(D, D, nm - nd)) | 
 |         goto end; | 
 |     for (i = nm - nd; i >= 0; i--) { | 
 |         if (!BN_lshift1(dv, dv)) | 
 |             goto end; | 
 |         if (BN_ucmp(rem, D) >= 0) { | 
 |             dv->d[0] |= 1; | 
 |             if (!BN_usub(rem, rem, D)) | 
 |                 goto end; | 
 |         } | 
 | /* CAN IMPROVE (and have now :=) */ | 
 |         if (!BN_rshift1(D, D)) | 
 |             goto end; | 
 |     } | 
 |     rem->neg = BN_is_zero(rem) ? 0 : m->neg; | 
 |     dv->neg = m->neg ^ d->neg; | 
 |     ret = 1; | 
 |  end: | 
 |     BN_CTX_end(ctx); | 
 |     return ret; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | # if defined(BN_DIV3W) | 
 | BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0); | 
 | # elif 0 | 
 | /* | 
 |  * This is #if-ed away, because it's a reference for assembly implementations, | 
 |  * where it can and should be made constant-time. But if you want to test it, | 
 |  * just replace 0 with 1. | 
 |  */ | 
 | #  if BN_BITS2 == 64 && defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 | 
 | #   undef BN_ULLONG | 
 | #   define BN_ULLONG uint128_t | 
 | #   define BN_LLONG | 
 | #  endif | 
 |  | 
 | #  ifdef BN_LLONG | 
 | #   define BN_DIV3W | 
 | /* | 
 |  * Interface is somewhat quirky, |m| is pointer to most significant limb, | 
 |  * and less significant limb is referred at |m[-1]|. This means that caller | 
 |  * is responsible for ensuring that |m[-1]| is valid. Second condition that | 
 |  * has to be met is that |d0|'s most significant bit has to be set. Or in | 
 |  * other words divisor has to be "bit-aligned to the left." bn_div_fixed_top | 
 |  * does all this. The subroutine considers four limbs, two of which are | 
 |  * "overlapping," hence the name... | 
 |  */ | 
 | static BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0) | 
 | { | 
 |     BN_ULLONG R = ((BN_ULLONG)m[0] << BN_BITS2) | m[-1]; | 
 |     BN_ULLONG D = ((BN_ULLONG)d0 << BN_BITS2) | d1; | 
 |     BN_ULONG Q = 0, mask; | 
 |     int i; | 
 |  | 
 |     for (i = 0; i < BN_BITS2; i++) { | 
 |         Q <<= 1; | 
 |         if (R >= D) { | 
 |             Q |= 1; | 
 |             R -= D; | 
 |         } | 
 |         D >>= 1; | 
 |     } | 
 |  | 
 |     mask = 0 - (Q >> (BN_BITS2 - 1));   /* does it overflow? */ | 
 |  | 
 |     Q <<= 1; | 
 |     Q |= (R >= D); | 
 |  | 
 |     return (Q | mask) & BN_MASK2; | 
 | } | 
 | #  endif | 
 | # endif | 
 |  | 
 | static int bn_left_align(BIGNUM *num) | 
 | { | 
 |     BN_ULONG *d = num->d, n, m, rmask; | 
 |     int top = num->top; | 
 |     int rshift = BN_num_bits_word(d[top - 1]), lshift, i; | 
 |  | 
 |     lshift = BN_BITS2 - rshift; | 
 |     rshift %= BN_BITS2;            /* say no to undefined behaviour */ | 
 |     rmask = (BN_ULONG)0 - rshift;  /* rmask = 0 - (rshift != 0) */ | 
 |     rmask |= rmask >> 8; | 
 |  | 
 |     for (i = 0, m = 0; i < top; i++) { | 
 |         n = d[i]; | 
 |         d[i] = ((n << lshift) | m) & BN_MASK2; | 
 |         m = (n >> rshift) & rmask; | 
 |     } | 
 |  | 
 |     return lshift; | 
 | } | 
 |  | 
 | # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \ | 
 |     && !defined(PEDANTIC) && !defined(BN_DIV3W) | 
 | #  if defined(__GNUC__) && __GNUC__>=2 | 
 | #   if defined(__i386) || defined (__i386__) | 
 |    /*- | 
 |     * There were two reasons for implementing this template: | 
 |     * - GNU C generates a call to a function (__udivdi3 to be exact) | 
 |     *   in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to | 
 |     *   understand why...); | 
 |     * - divl doesn't only calculate quotient, but also leaves | 
 |     *   remainder in %edx which we can definitely use here:-) | 
 |     */ | 
 | #    undef bn_div_words | 
 | #    define bn_div_words(n0,n1,d0)                \ | 
 |         ({  asm volatile (                      \ | 
 |                 "divl   %4"                     \ | 
 |                 : "=a"(q), "=d"(rem)            \ | 
 |                 : "a"(n1), "d"(n0), "r"(d0)     \ | 
 |                 : "cc");                        \ | 
 |             q;                                  \ | 
 |         }) | 
 | #    define REMAINDER_IS_ALREADY_CALCULATED | 
 | #   elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG) | 
 |    /* | 
 |     * Same story here, but it's 128-bit by 64-bit division. Wow! | 
 |     */ | 
 | #    undef bn_div_words | 
 | #    define bn_div_words(n0,n1,d0)                \ | 
 |         ({  asm volatile (                      \ | 
 |                 "divq   %4"                     \ | 
 |                 : "=a"(q), "=d"(rem)            \ | 
 |                 : "a"(n1), "d"(n0), "r"(d0)     \ | 
 |                 : "cc");                        \ | 
 |             q;                                  \ | 
 |         }) | 
 | #    define REMAINDER_IS_ALREADY_CALCULATED | 
 | #   endif                       /* __<cpu> */ | 
 | #  endif                        /* __GNUC__ */ | 
 | # endif                         /* OPENSSL_NO_ASM */ | 
 |  | 
 | /*- | 
 |  * BN_div computes  dv := num / divisor, rounding towards | 
 |  * zero, and sets up rm  such that  dv*divisor + rm = num  holds. | 
 |  * Thus: | 
 |  *     dv->neg == num->neg ^ divisor->neg  (unless the result is zero) | 
 |  *     rm->neg == num->neg                 (unless the remainder is zero) | 
 |  * If 'dv' or 'rm' is NULL, the respective value is not returned. | 
 |  */ | 
 | int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, | 
 |            BN_CTX *ctx) | 
 | { | 
 |     int ret; | 
 |  | 
 |     if (BN_is_zero(divisor)) { | 
 |         ERR_raise(ERR_LIB_BN, BN_R_DIV_BY_ZERO); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     /* | 
 |      * Invalid zero-padding would have particularly bad consequences so don't | 
 |      * just rely on bn_check_top() here (bn_check_top() works only for | 
 |      * BN_DEBUG builds) | 
 |      */ | 
 |     if (divisor->d[divisor->top - 1] == 0) { | 
 |         ERR_raise(ERR_LIB_BN, BN_R_NOT_INITIALIZED); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     ret = bn_div_fixed_top(dv, rm, num, divisor, ctx); | 
 |  | 
 |     if (ret) { | 
 |         if (dv != NULL) | 
 |             bn_correct_top(dv); | 
 |         if (rm != NULL) | 
 |             bn_correct_top(rm); | 
 |     } | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * It's argued that *length* of *significant* part of divisor is public. | 
 |  * Even if it's private modulus that is. Again, *length* is assumed | 
 |  * public, but not *value*. Former is likely to be pre-defined by | 
 |  * algorithm with bit granularity, though below subroutine is invariant | 
 |  * of limb length. Thanks to this assumption we can require that |divisor| | 
 |  * may not be zero-padded, yet claim this subroutine "constant-time"(*). | 
 |  * This is because zero-padded dividend, |num|, is tolerated, so that | 
 |  * caller can pass dividend of public length(*), but with smaller amount | 
 |  * of significant limbs. This naturally means that quotient, |dv|, would | 
 |  * contain correspongly less significant limbs as well, and will be zero- | 
 |  * padded accordingly. Returned remainder, |rm|, will have same bit length | 
 |  * as divisor, also zero-padded if needed. These actually leave sign bits | 
 |  * in ambiguous state. In sense that we try to avoid negative zeros, while | 
 |  * zero-padded zeros would retain sign. | 
 |  * | 
 |  * (*) "Constant-time-ness" has two pre-conditions: | 
 |  * | 
 |  *     - availability of constant-time bn_div_3_words; | 
 |  *     - dividend is at least as "wide" as divisor, limb-wise, zero-padded | 
 |  *       if so required, which shouldn't be a privacy problem, because | 
 |  *       divisor's length is considered public; | 
 |  */ | 
 | int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, | 
 |                      const BIGNUM *divisor, BN_CTX *ctx) | 
 | { | 
 |     int norm_shift, i, j, loop; | 
 |     BIGNUM *tmp, *snum, *sdiv, *res; | 
 |     BN_ULONG *resp, *wnum, *wnumtop; | 
 |     BN_ULONG d0, d1; | 
 |     int num_n, div_n, num_neg; | 
 |  | 
 |     assert(divisor->top > 0 && divisor->d[divisor->top - 1] != 0); | 
 |  | 
 |     bn_check_top(num); | 
 |     bn_check_top(divisor); | 
 |     bn_check_top(dv); | 
 |     bn_check_top(rm); | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |     res = (dv == NULL) ? BN_CTX_get(ctx) : dv; | 
 |     tmp = BN_CTX_get(ctx); | 
 |     snum = BN_CTX_get(ctx); | 
 |     sdiv = BN_CTX_get(ctx); | 
 |     if (sdiv == NULL) | 
 |         goto err; | 
 |  | 
 |     /* First we normalise the numbers */ | 
 |     if (!BN_copy(sdiv, divisor)) | 
 |         goto err; | 
 |     norm_shift = bn_left_align(sdiv); | 
 |     sdiv->neg = 0; | 
 |     /* | 
 |      * Note that bn_lshift_fixed_top's output is always one limb longer | 
 |      * than input, even when norm_shift is zero. This means that amount of | 
 |      * inner loop iterations is invariant of dividend value, and that one | 
 |      * doesn't need to compare dividend and divisor if they were originally | 
 |      * of the same bit length. | 
 |      */ | 
 |     if (!(bn_lshift_fixed_top(snum, num, norm_shift))) | 
 |         goto err; | 
 |  | 
 |     div_n = sdiv->top; | 
 |     num_n = snum->top; | 
 |  | 
 |     if (num_n <= div_n) { | 
 |         /* caller didn't pad dividend -> no constant-time guarantee... */ | 
 |         if (bn_wexpand(snum, div_n + 1) == NULL) | 
 |             goto err; | 
 |         memset(&(snum->d[num_n]), 0, (div_n - num_n + 1) * sizeof(BN_ULONG)); | 
 |         snum->top = num_n = div_n + 1; | 
 |     } | 
 |  | 
 |     loop = num_n - div_n; | 
 |     /* | 
 |      * Lets setup a 'window' into snum This is the part that corresponds to | 
 |      * the current 'area' being divided | 
 |      */ | 
 |     wnum = &(snum->d[loop]); | 
 |     wnumtop = &(snum->d[num_n - 1]); | 
 |  | 
 |     /* Get the top 2 words of sdiv */ | 
 |     d0 = sdiv->d[div_n - 1]; | 
 |     d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2]; | 
 |  | 
 |     /* Setup quotient */ | 
 |     if (!bn_wexpand(res, loop)) | 
 |         goto err; | 
 |     num_neg = num->neg; | 
 |     res->neg = (num_neg ^ divisor->neg); | 
 |     res->top = loop; | 
 |     res->flags |= BN_FLG_FIXED_TOP; | 
 |     resp = &(res->d[loop]); | 
 |  | 
 |     /* space for temp */ | 
 |     if (!bn_wexpand(tmp, (div_n + 1))) | 
 |         goto err; | 
 |  | 
 |     for (i = 0; i < loop; i++, wnumtop--) { | 
 |         BN_ULONG q, l0; | 
 |         /* | 
 |          * the first part of the loop uses the top two words of snum and sdiv | 
 |          * to calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv | 
 |          */ | 
 | # if defined(BN_DIV3W) | 
 |         q = bn_div_3_words(wnumtop, d1, d0); | 
 | # else | 
 |         BN_ULONG n0, n1, rem = 0; | 
 |  | 
 |         n0 = wnumtop[0]; | 
 |         n1 = wnumtop[-1]; | 
 |         if (n0 == d0) | 
 |             q = BN_MASK2; | 
 |         else {                  /* n0 < d0 */ | 
 |             BN_ULONG n2 = (wnumtop == wnum) ? 0 : wnumtop[-2]; | 
 | #  ifdef BN_LLONG | 
 |             BN_ULLONG t2; | 
 |  | 
 | #   if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words) | 
 |             q = (BN_ULONG)(((((BN_ULLONG) n0) << BN_BITS2) | n1) / d0); | 
 | #   else | 
 |             q = bn_div_words(n0, n1, d0); | 
 | #   endif | 
 |  | 
 | #   ifndef REMAINDER_IS_ALREADY_CALCULATED | 
 |             /* | 
 |              * rem doesn't have to be BN_ULLONG. The least we | 
 |              * know it's less that d0, isn't it? | 
 |              */ | 
 |             rem = (n1 - q * d0) & BN_MASK2; | 
 | #   endif | 
 |             t2 = (BN_ULLONG) d1 *q; | 
 |  | 
 |             for (;;) { | 
 |                 if (t2 <= ((((BN_ULLONG) rem) << BN_BITS2) | n2)) | 
 |                     break; | 
 |                 q--; | 
 |                 rem += d0; | 
 |                 if (rem < d0) | 
 |                     break;      /* don't let rem overflow */ | 
 |                 t2 -= d1; | 
 |             } | 
 | #  else                         /* !BN_LLONG */ | 
 |             BN_ULONG t2l, t2h; | 
 |  | 
 |             q = bn_div_words(n0, n1, d0); | 
 | #   ifndef REMAINDER_IS_ALREADY_CALCULATED | 
 |             rem = (n1 - q * d0) & BN_MASK2; | 
 | #   endif | 
 |  | 
 | #   if defined(BN_UMULT_LOHI) | 
 |             BN_UMULT_LOHI(t2l, t2h, d1, q); | 
 | #   elif defined(BN_UMULT_HIGH) | 
 |             t2l = d1 * q; | 
 |             t2h = BN_UMULT_HIGH(d1, q); | 
 | #   else | 
 |             { | 
 |                 BN_ULONG ql, qh; | 
 |                 t2l = LBITS(d1); | 
 |                 t2h = HBITS(d1); | 
 |                 ql = LBITS(q); | 
 |                 qh = HBITS(q); | 
 |                 mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */ | 
 |             } | 
 | #   endif | 
 |  | 
 |             for (;;) { | 
 |                 if ((t2h < rem) || ((t2h == rem) && (t2l <= n2))) | 
 |                     break; | 
 |                 q--; | 
 |                 rem += d0; | 
 |                 if (rem < d0) | 
 |                     break;      /* don't let rem overflow */ | 
 |                 if (t2l < d1) | 
 |                     t2h--; | 
 |                 t2l -= d1; | 
 |             } | 
 | #  endif                        /* !BN_LLONG */ | 
 |         } | 
 | # endif                         /* !BN_DIV3W */ | 
 |  | 
 |         l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q); | 
 |         tmp->d[div_n] = l0; | 
 |         wnum--; | 
 |         /* | 
 |          * ignore top values of the bignums just sub the two BN_ULONG arrays | 
 |          * with bn_sub_words | 
 |          */ | 
 |         l0 = bn_sub_words(wnum, wnum, tmp->d, div_n + 1); | 
 |         q -= l0; | 
 |         /* | 
 |          * Note: As we have considered only the leading two BN_ULONGs in | 
 |          * the calculation of q, sdiv * q might be greater than wnum (but | 
 |          * then (q-1) * sdiv is less or equal than wnum) | 
 |          */ | 
 |         for (l0 = 0 - l0, j = 0; j < div_n; j++) | 
 |             tmp->d[j] = sdiv->d[j] & l0; | 
 |         l0 = bn_add_words(wnum, wnum, tmp->d, div_n); | 
 |         (*wnumtop) += l0; | 
 |         assert((*wnumtop) == 0); | 
 |  | 
 |         /* store part of the result */ | 
 |         *--resp = q; | 
 |     } | 
 |     /* snum holds remainder, it's as wide as divisor */ | 
 |     snum->neg = num_neg; | 
 |     snum->top = div_n; | 
 |     snum->flags |= BN_FLG_FIXED_TOP; | 
 |  | 
 |     if (rm != NULL && bn_rshift_fixed_top(rm, snum, norm_shift) == 0) | 
 |         goto err; | 
 |  | 
 |     BN_CTX_end(ctx); | 
 |     return 1; | 
 |  err: | 
 |     bn_check_top(rm); | 
 |     BN_CTX_end(ctx); | 
 |     return 0; | 
 | } | 
 | #endif |