|  | /* | 
|  | * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the Apache License 2.0 (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <time.h> | 
|  | #include "internal/cryptlib.h" | 
|  | #include "bn_local.h" | 
|  |  | 
|  | /* | 
|  | * The quick sieve algorithm approach to weeding out primes is Philip | 
|  | * Zimmermann's, as implemented in PGP.  I have had a read of his comments | 
|  | * and implemented my own version. | 
|  | */ | 
|  | #include "bn_prime.h" | 
|  |  | 
|  | static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods, | 
|  | BN_CTX *ctx); | 
|  | static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods, | 
|  | const BIGNUM *add, const BIGNUM *rem, | 
|  | BN_CTX *ctx); | 
|  | static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx, | 
|  | int do_trial_division, BN_GENCB *cb); | 
|  |  | 
|  | #define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x)) | 
|  |  | 
|  | #if BN_BITS2 == 64 | 
|  | # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo | 
|  | #else | 
|  | # define BN_DEF(lo, hi) lo, hi | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * See SP800 89 5.3.3 (Step f) | 
|  | * The product of the set of primes ranging from 3 to 751 | 
|  | * Generated using process in test/bn_internal_test.c test_bn_small_factors(). | 
|  | * This includes 751 (which is not currently included in SP 800-89). | 
|  | */ | 
|  | static const BN_ULONG small_prime_factors[] = { | 
|  | BN_DEF(0x3ef4e3e1, 0xc4309333), BN_DEF(0xcd2d655f, 0x71161eb6), | 
|  | BN_DEF(0x0bf94862, 0x95e2238c), BN_DEF(0x24f7912b, 0x3eb233d3), | 
|  | BN_DEF(0xbf26c483, 0x6b55514b), BN_DEF(0x5a144871, 0x0a84d817), | 
|  | BN_DEF(0x9b82210a, 0x77d12fee), BN_DEF(0x97f050b3, 0xdb5b93c2), | 
|  | BN_DEF(0x4d6c026b, 0x4acad6b9), BN_DEF(0x54aec893, 0xeb7751f3), | 
|  | BN_DEF(0x36bc85c4, 0xdba53368), BN_DEF(0x7f5ec78e, 0xd85a1b28), | 
|  | BN_DEF(0x6b322244, 0x2eb072d8), BN_DEF(0x5e2b3aea, 0xbba51112), | 
|  | BN_DEF(0x0e2486bf, 0x36ed1a6c), BN_DEF(0xec0c5727, 0x5f270460), | 
|  | (BN_ULONG)0x000017b1 | 
|  | }; | 
|  |  | 
|  | #define BN_SMALL_PRIME_FACTORS_TOP OSSL_NELEM(small_prime_factors) | 
|  | static const BIGNUM _bignum_small_prime_factors = { | 
|  | (BN_ULONG *)small_prime_factors, | 
|  | BN_SMALL_PRIME_FACTORS_TOP, | 
|  | BN_SMALL_PRIME_FACTORS_TOP, | 
|  | 0, | 
|  | BN_FLG_STATIC_DATA | 
|  | }; | 
|  |  | 
|  | const BIGNUM *ossl_bn_get0_small_factors(void) | 
|  | { | 
|  | return &_bignum_small_prime_factors; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the number of trial divisions that gives the best speed in | 
|  | * combination with Miller-Rabin prime test, based on the sized of the prime. | 
|  | */ | 
|  | static int calc_trial_divisions(int bits) | 
|  | { | 
|  | if (bits <= 512) | 
|  | return 64; | 
|  | else if (bits <= 1024) | 
|  | return 128; | 
|  | else if (bits <= 2048) | 
|  | return 384; | 
|  | else if (bits <= 4096) | 
|  | return 1024; | 
|  | return NUMPRIMES; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use a minimum of 64 rounds of Miller-Rabin, which should give a false | 
|  | * positive rate of 2^-128. If the size of the prime is larger than 2048 | 
|  | * the user probably wants a higher security level than 128, so switch | 
|  | * to 128 rounds giving a false positive rate of 2^-256. | 
|  | * Returns the number of rounds. | 
|  | */ | 
|  | static int bn_mr_min_checks(int bits) | 
|  | { | 
|  | if (bits > 2048) | 
|  | return 128; | 
|  | return 64; | 
|  | } | 
|  |  | 
|  | int BN_GENCB_call(BN_GENCB *cb, int a, int b) | 
|  | { | 
|  | /* No callback means continue */ | 
|  | if (!cb) | 
|  | return 1; | 
|  | switch (cb->ver) { | 
|  | case 1: | 
|  | /* Deprecated-style callbacks */ | 
|  | if (!cb->cb.cb_1) | 
|  | return 1; | 
|  | cb->cb.cb_1(a, b, cb->arg); | 
|  | return 1; | 
|  | case 2: | 
|  | /* New-style callbacks */ | 
|  | return cb->cb.cb_2(a, b, cb); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | /* Unrecognised callback type */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe, | 
|  | const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb, | 
|  | BN_CTX *ctx) | 
|  | { | 
|  | BIGNUM *t; | 
|  | int found = 0; | 
|  | int i, j, c1 = 0; | 
|  | prime_t *mods = NULL; | 
|  | int checks = bn_mr_min_checks(bits); | 
|  |  | 
|  | if (bits < 2) { | 
|  | /* There are no prime numbers this small. */ | 
|  | ERR_raise(ERR_LIB_BN, BN_R_BITS_TOO_SMALL); | 
|  | return 0; | 
|  | } else if (add == NULL && safe && bits < 6 && bits != 3) { | 
|  | /* | 
|  | * The smallest safe prime (7) is three bits. | 
|  | * But the following two safe primes with less than 6 bits (11, 23) | 
|  | * are unreachable for BN_rand with BN_RAND_TOP_TWO. | 
|  | */ | 
|  | ERR_raise(ERR_LIB_BN, BN_R_BITS_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES); | 
|  | if (mods == NULL) { | 
|  | ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | t = BN_CTX_get(ctx); | 
|  | if (t == NULL) | 
|  | goto err; | 
|  | loop: | 
|  | /* make a random number and set the top and bottom bits */ | 
|  | if (add == NULL) { | 
|  | if (!probable_prime(ret, bits, safe, mods, ctx)) | 
|  | goto err; | 
|  | } else { | 
|  | if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!BN_GENCB_call(cb, 0, c1++)) | 
|  | /* aborted */ | 
|  | goto err; | 
|  |  | 
|  | if (!safe) { | 
|  | i = bn_is_prime_int(ret, checks, ctx, 0, cb); | 
|  | if (i == -1) | 
|  | goto err; | 
|  | if (i == 0) | 
|  | goto loop; | 
|  | } else { | 
|  | /* | 
|  | * for "safe prime" generation, check that (p-1)/2 is prime. Since a | 
|  | * prime is odd, We just need to divide by 2 | 
|  | */ | 
|  | if (!BN_rshift1(t, ret)) | 
|  | goto err; | 
|  |  | 
|  | for (i = 0; i < checks; i++) { | 
|  | j = bn_is_prime_int(ret, 1, ctx, 0, cb); | 
|  | if (j == -1) | 
|  | goto err; | 
|  | if (j == 0) | 
|  | goto loop; | 
|  |  | 
|  | j = bn_is_prime_int(t, 1, ctx, 0, cb); | 
|  | if (j == -1) | 
|  | goto err; | 
|  | if (j == 0) | 
|  | goto loop; | 
|  |  | 
|  | if (!BN_GENCB_call(cb, 2, c1 - 1)) | 
|  | goto err; | 
|  | /* We have a safe prime test pass */ | 
|  | } | 
|  | } | 
|  | /* we have a prime :-) */ | 
|  | found = 1; | 
|  | err: | 
|  | OPENSSL_free(mods); | 
|  | BN_CTX_end(ctx); | 
|  | bn_check_top(ret); | 
|  | return found; | 
|  | } | 
|  |  | 
|  | #ifndef FIPS_MODULE | 
|  | int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, | 
|  | const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb) | 
|  | { | 
|  | BN_CTX *ctx = BN_CTX_new(); | 
|  | int retval; | 
|  |  | 
|  | if (ctx == NULL) | 
|  | return 0; | 
|  |  | 
|  | retval = BN_generate_prime_ex2(ret, bits, safe, add, rem, cb, ctx); | 
|  |  | 
|  | BN_CTX_free(ctx); | 
|  | return retval; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef OPENSSL_NO_DEPRECATED_3_0 | 
|  | int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, | 
|  | BN_GENCB *cb) | 
|  | { | 
|  | return ossl_bn_check_prime(a, checks, ctx_passed, 0, cb); | 
|  | } | 
|  |  | 
|  | int BN_is_prime_fasttest_ex(const BIGNUM *w, int checks, BN_CTX *ctx, | 
|  | int do_trial_division, BN_GENCB *cb) | 
|  | { | 
|  | return ossl_bn_check_prime(w, checks, ctx, do_trial_division, cb); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Wrapper around bn_is_prime_int that sets the minimum number of checks */ | 
|  | int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx, | 
|  | int do_trial_division, BN_GENCB *cb) | 
|  | { | 
|  | int min_checks = bn_mr_min_checks(BN_num_bits(w)); | 
|  |  | 
|  | if (checks < min_checks) | 
|  | checks = min_checks; | 
|  |  | 
|  | return bn_is_prime_int(w, checks, ctx, do_trial_division, cb); | 
|  | } | 
|  |  | 
|  | int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb) | 
|  | { | 
|  | return ossl_bn_check_prime(p, 0, ctx, 1, cb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tests that |w| is probably prime | 
|  | * See FIPS 186-4 C.3.1 Miller Rabin Probabilistic Primality Test. | 
|  | * | 
|  | * Returns 0 when composite, 1 when probable prime, -1 on error. | 
|  | */ | 
|  | static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx, | 
|  | int do_trial_division, BN_GENCB *cb) | 
|  | { | 
|  | int i, status, ret = -1; | 
|  | #ifndef FIPS_MODULE | 
|  | BN_CTX *ctxlocal = NULL; | 
|  | #else | 
|  |  | 
|  | if (ctx == NULL) | 
|  | return -1; | 
|  | #endif | 
|  |  | 
|  | /* w must be bigger than 1 */ | 
|  | if (BN_cmp(w, BN_value_one()) <= 0) | 
|  | return 0; | 
|  |  | 
|  | /* w must be odd */ | 
|  | if (BN_is_odd(w)) { | 
|  | /* Take care of the really small prime 3 */ | 
|  | if (BN_is_word(w, 3)) | 
|  | return 1; | 
|  | } else { | 
|  | /* 2 is the only even prime */ | 
|  | return BN_is_word(w, 2); | 
|  | } | 
|  |  | 
|  | /* first look for small factors */ | 
|  | if (do_trial_division) { | 
|  | int trial_divisions = calc_trial_divisions(BN_num_bits(w)); | 
|  |  | 
|  | for (i = 1; i < trial_divisions; i++) { | 
|  | BN_ULONG mod = BN_mod_word(w, primes[i]); | 
|  | if (mod == (BN_ULONG)-1) | 
|  | return -1; | 
|  | if (mod == 0) | 
|  | return BN_is_word(w, primes[i]); | 
|  | } | 
|  | if (!BN_GENCB_call(cb, 1, -1)) | 
|  | return -1; | 
|  | } | 
|  | #ifndef FIPS_MODULE | 
|  | if (ctx == NULL && (ctxlocal = ctx = BN_CTX_new()) == NULL) | 
|  | goto err; | 
|  | #endif | 
|  |  | 
|  | ret = ossl_bn_miller_rabin_is_prime(w, checks, ctx, cb, 0, &status); | 
|  | if (!ret) | 
|  | goto err; | 
|  | ret = (status == BN_PRIMETEST_PROBABLY_PRIME); | 
|  | err: | 
|  | #ifndef FIPS_MODULE | 
|  | BN_CTX_free(ctxlocal); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test. | 
|  | * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero). | 
|  | * The Step numbers listed in the code refer to the enhanced case. | 
|  | * | 
|  | * if enhanced is set, then status returns one of the following: | 
|  | *     BN_PRIMETEST_PROBABLY_PRIME | 
|  | *     BN_PRIMETEST_COMPOSITE_WITH_FACTOR | 
|  | *     BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME | 
|  | * if enhanced is zero, then status returns either | 
|  | *     BN_PRIMETEST_PROBABLY_PRIME or | 
|  | *     BN_PRIMETEST_COMPOSITE | 
|  | * | 
|  | * returns 0 if there was an error, otherwise it returns 1. | 
|  | */ | 
|  | int ossl_bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx, | 
|  | BN_GENCB *cb, int enhanced, int *status) | 
|  | { | 
|  | int i, j, a, ret = 0; | 
|  | BIGNUM *g, *w1, *w3, *x, *m, *z, *b; | 
|  | BN_MONT_CTX *mont = NULL; | 
|  |  | 
|  | /* w must be odd */ | 
|  | if (!BN_is_odd(w)) | 
|  | return 0; | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | g = BN_CTX_get(ctx); | 
|  | w1 = BN_CTX_get(ctx); | 
|  | w3 = BN_CTX_get(ctx); | 
|  | x = BN_CTX_get(ctx); | 
|  | m = BN_CTX_get(ctx); | 
|  | z = BN_CTX_get(ctx); | 
|  | b = BN_CTX_get(ctx); | 
|  |  | 
|  | if (!(b != NULL | 
|  | /* w1 := w - 1 */ | 
|  | && BN_copy(w1, w) | 
|  | && BN_sub_word(w1, 1) | 
|  | /* w3 := w - 3 */ | 
|  | && BN_copy(w3, w) | 
|  | && BN_sub_word(w3, 3))) | 
|  | goto err; | 
|  |  | 
|  | /* check w is larger than 3, otherwise the random b will be too small */ | 
|  | if (BN_is_zero(w3) || BN_is_negative(w3)) | 
|  | goto err; | 
|  |  | 
|  | /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */ | 
|  | a = 1; | 
|  | while (!BN_is_bit_set(w1, a)) | 
|  | a++; | 
|  | /* (Step 2) m = (w-1) / 2^a */ | 
|  | if (!BN_rshift(m, w1, a)) | 
|  | goto err; | 
|  |  | 
|  | /* Montgomery setup for computations mod a */ | 
|  | mont = BN_MONT_CTX_new(); | 
|  | if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx)) | 
|  | goto err; | 
|  |  | 
|  | if (iterations == 0) | 
|  | iterations = bn_mr_min_checks(BN_num_bits(w)); | 
|  |  | 
|  | /* (Step 4) */ | 
|  | for (i = 0; i < iterations; ++i) { | 
|  | /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */ | 
|  | if (!BN_priv_rand_range_ex(b, w3, 0, ctx) | 
|  | || !BN_add_word(b, 2)) /* 1 < b < w-1 */ | 
|  | goto err; | 
|  |  | 
|  | if (enhanced) { | 
|  | /* (Step 4.3) */ | 
|  | if (!BN_gcd(g, b, w, ctx)) | 
|  | goto err; | 
|  | /* (Step 4.4) */ | 
|  | if (!BN_is_one(g)) { | 
|  | *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR; | 
|  | ret = 1; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | /* (Step 4.5) z = b^m mod w */ | 
|  | if (!BN_mod_exp_mont(z, b, m, w, ctx, mont)) | 
|  | goto err; | 
|  | /* (Step 4.6) if (z = 1 or z = w-1) */ | 
|  | if (BN_is_one(z) || BN_cmp(z, w1) == 0) | 
|  | goto outer_loop; | 
|  | /* (Step 4.7) for j = 1 to a-1 */ | 
|  | for (j = 1; j < a ; ++j) { | 
|  | /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */ | 
|  | if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) | 
|  | goto err; | 
|  | /* (Step 4.7.3) */ | 
|  | if (BN_cmp(z, w1) == 0) | 
|  | goto outer_loop; | 
|  | /* (Step 4.7.4) */ | 
|  | if (BN_is_one(z)) | 
|  | goto composite; | 
|  | } | 
|  | /* At this point z = b^((w-1)/2) mod w */ | 
|  | /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */ | 
|  | if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) | 
|  | goto err; | 
|  | /* (Step 4.10) */ | 
|  | if (BN_is_one(z)) | 
|  | goto composite; | 
|  | /* (Step 4.11) x = b^(w-1) mod w */ | 
|  | if (!BN_copy(x, z)) | 
|  | goto err; | 
|  | composite: | 
|  | if (enhanced) { | 
|  | /* (Step 4.1.2) g = GCD(x-1, w) */ | 
|  | if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx)) | 
|  | goto err; | 
|  | /* (Steps 4.1.3 - 4.1.4) */ | 
|  | if (BN_is_one(g)) | 
|  | *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME; | 
|  | else | 
|  | *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR; | 
|  | } else { | 
|  | *status = BN_PRIMETEST_COMPOSITE; | 
|  | } | 
|  | ret = 1; | 
|  | goto err; | 
|  | outer_loop: ; | 
|  | /* (Step 4.1.5) */ | 
|  | if (!BN_GENCB_call(cb, 1, i)) | 
|  | goto err; | 
|  | } | 
|  | /* (Step 5) */ | 
|  | *status = BN_PRIMETEST_PROBABLY_PRIME; | 
|  | ret = 1; | 
|  | err: | 
|  | BN_clear(g); | 
|  | BN_clear(w1); | 
|  | BN_clear(w3); | 
|  | BN_clear(x); | 
|  | BN_clear(m); | 
|  | BN_clear(z); | 
|  | BN_clear(b); | 
|  | BN_CTX_end(ctx); | 
|  | BN_MONT_CTX_free(mont); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate a random number of |bits| bits that is probably prime by sieving. | 
|  | * If |safe| != 0, it generates a safe prime. | 
|  | * |mods| is a preallocated array that gets reused when called again. | 
|  | * | 
|  | * The probably prime is saved in |rnd|. | 
|  | * | 
|  | * Returns 1 on success and 0 on error. | 
|  | */ | 
|  | static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods, | 
|  | BN_CTX *ctx) | 
|  | { | 
|  | int i; | 
|  | BN_ULONG delta; | 
|  | int trial_divisions = calc_trial_divisions(bits); | 
|  | BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1]; | 
|  |  | 
|  | again: | 
|  | if (!BN_priv_rand_ex(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD, 0, | 
|  | ctx)) | 
|  | return 0; | 
|  | if (safe && !BN_set_bit(rnd, 1)) | 
|  | return 0; | 
|  | /* we now have a random number 'rnd' to test. */ | 
|  | for (i = 1; i < trial_divisions; i++) { | 
|  | BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); | 
|  | if (mod == (BN_ULONG)-1) | 
|  | return 0; | 
|  | mods[i] = (prime_t) mod; | 
|  | } | 
|  | delta = 0; | 
|  | loop: | 
|  | for (i = 1; i < trial_divisions; i++) { | 
|  | /* | 
|  | * check that rnd is a prime and also that | 
|  | * gcd(rnd-1,primes) == 1 (except for 2) | 
|  | * do the second check only if we are interested in safe primes | 
|  | * in the case that the candidate prime is a single word then | 
|  | * we check only the primes up to sqrt(rnd) | 
|  | */ | 
|  | if (bits <= 31 && delta <= 0x7fffffff | 
|  | && square(primes[i]) > BN_get_word(rnd) + delta) | 
|  | break; | 
|  | if (safe ? (mods[i] + delta) % primes[i] <= 1 | 
|  | : (mods[i] + delta) % primes[i] == 0) { | 
|  | delta += safe ? 4 : 2; | 
|  | if (delta > maxdelta) | 
|  | goto again; | 
|  | goto loop; | 
|  | } | 
|  | } | 
|  | if (!BN_add_word(rnd, delta)) | 
|  | return 0; | 
|  | if (BN_num_bits(rnd) != bits) | 
|  | goto again; | 
|  | bn_check_top(rnd); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate a random number |rnd| of |bits| bits that is probably prime | 
|  | * and satisfies |rnd| % |add| == |rem| by sieving. | 
|  | * If |safe| != 0, it generates a safe prime. | 
|  | * |mods| is a preallocated array that gets reused when called again. | 
|  | * | 
|  | * Returns 1 on success and 0 on error. | 
|  | */ | 
|  | static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods, | 
|  | const BIGNUM *add, const BIGNUM *rem, | 
|  | BN_CTX *ctx) | 
|  | { | 
|  | int i, ret = 0; | 
|  | BIGNUM *t1; | 
|  | BN_ULONG delta; | 
|  | int trial_divisions = calc_trial_divisions(bits); | 
|  | BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1]; | 
|  |  | 
|  | BN_CTX_start(ctx); | 
|  | if ((t1 = BN_CTX_get(ctx)) == NULL) | 
|  | goto err; | 
|  |  | 
|  | if (maxdelta > BN_MASK2 - BN_get_word(add)) | 
|  | maxdelta = BN_MASK2 - BN_get_word(add); | 
|  |  | 
|  | again: | 
|  | if (!BN_rand_ex(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, 0, ctx)) | 
|  | goto err; | 
|  |  | 
|  | /* we need ((rnd-rem) % add) == 0 */ | 
|  |  | 
|  | if (!BN_mod(t1, rnd, add, ctx)) | 
|  | goto err; | 
|  | if (!BN_sub(rnd, rnd, t1)) | 
|  | goto err; | 
|  | if (rem == NULL) { | 
|  | if (!BN_add_word(rnd, safe ? 3u : 1u)) | 
|  | goto err; | 
|  | } else { | 
|  | if (!BN_add(rnd, rnd, rem)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (BN_num_bits(rnd) < bits | 
|  | || BN_get_word(rnd) < (safe ? 5u : 3u)) { | 
|  | if (!BN_add(rnd, rnd, add)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* we now have a random number 'rnd' to test. */ | 
|  | for (i = 1; i < trial_divisions; i++) { | 
|  | BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); | 
|  | if (mod == (BN_ULONG)-1) | 
|  | goto err; | 
|  | mods[i] = (prime_t) mod; | 
|  | } | 
|  | delta = 0; | 
|  | loop: | 
|  | for (i = 1; i < trial_divisions; i++) { | 
|  | /* check that rnd is a prime */ | 
|  | if (bits <= 31 && delta <= 0x7fffffff | 
|  | && square(primes[i]) > BN_get_word(rnd) + delta) | 
|  | break; | 
|  | /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */ | 
|  | if (safe ? (mods[i] + delta) % primes[i] <= 1 | 
|  | : (mods[i] + delta) % primes[i] == 0) { | 
|  | delta += BN_get_word(add); | 
|  | if (delta > maxdelta) | 
|  | goto again; | 
|  | goto loop; | 
|  | } | 
|  | } | 
|  | if (!BN_add_word(rnd, delta)) | 
|  | goto err; | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | bn_check_top(rnd); | 
|  | return ret; | 
|  | } |