| /* |
| * Copyright 2015-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <stdlib.h> |
| #include <string.h> |
| #include <openssl/crypto.h> |
| |
| #include "crypto/poly1305.h" |
| |
| size_t Poly1305_ctx_size(void) |
| { |
| return sizeof(struct poly1305_context); |
| } |
| |
| /* pick 32-bit unsigned integer in little endian order */ |
| static unsigned int U8TOU32(const unsigned char *p) |
| { |
| return (((unsigned int)(p[0] & 0xff)) | |
| ((unsigned int)(p[1] & 0xff) << 8) | |
| ((unsigned int)(p[2] & 0xff) << 16) | |
| ((unsigned int)(p[3] & 0xff) << 24)); |
| } |
| |
| /* |
| * Implementations can be classified by amount of significant bits in |
| * words making up the multi-precision value, or in other words radix |
| * or base of numerical representation, e.g. base 2^64, base 2^32, |
| * base 2^26. Complementary characteristic is how wide is the result of |
| * multiplication of pair of digits, e.g. it would take 128 bits to |
| * accommodate multiplication result in base 2^64 case. These are used |
| * interchangeably. To describe implementation that is. But interface |
| * is designed to isolate this so that low-level primitives implemented |
| * in assembly can be self-contained/self-coherent. |
| */ |
| #ifndef POLY1305_ASM |
| /* |
| * Even though there is __int128 reference implementation targeting |
| * 64-bit platforms provided below, it's not obvious that it's optimal |
| * choice for every one of them. Depending on instruction set overall |
| * amount of instructions can be comparable to one in __int64 |
| * implementation. Amount of multiplication instructions would be lower, |
| * but not necessarily overall. And in out-of-order execution context, |
| * it is the latter that can be crucial... |
| * |
| * On related note. Poly1305 author, D. J. Bernstein, discusses and |
| * provides floating-point implementations of the algorithm in question. |
| * It made a lot of sense by the time of introduction, because most |
| * then-modern processors didn't have pipelined integer multiplier. |
| * [Not to mention that some had non-constant timing for integer |
| * multiplications.] Floating-point instructions on the other hand could |
| * be issued every cycle, which allowed to achieve better performance. |
| * Nowadays, with SIMD and/or out-or-order execution, shared or |
| * even emulated FPU, it's more complicated, and floating-point |
| * implementation is not necessarily optimal choice in every situation, |
| * rather contrary... |
| * |
| * <appro@openssl.org> |
| */ |
| |
| typedef unsigned int u32; |
| |
| /* |
| * poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks |
| * of |inp| no longer than |len|. Behaviour for |len| not divisible by |
| * block size is unspecified in general case, even though in reference |
| * implementation the trailing chunk is simply ignored. Per algorithm |
| * specification, every input block, complete or last partial, is to be |
| * padded with a bit past most significant byte. The latter kind is then |
| * padded with zeros till block size. This last partial block padding |
| * is caller(*)'s responsibility, and because of this the last partial |
| * block is always processed with separate call with |len| set to |
| * POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit| |
| * should be set to 1 to perform implicit padding with 128th bit. |
| * poly1305_blocks does not actually check for this constraint though, |
| * it's caller(*)'s responsibility to comply. |
| * |
| * (*) In the context "caller" is not application code, but higher |
| * level Poly1305_* from this very module, so that quirks are |
| * handled locally. |
| */ |
| static void |
| poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit); |
| |
| /* |
| * Type-agnostic "rip-off" from constant_time.h |
| */ |
| # define CONSTANT_TIME_CARRY(a,b) ( \ |
| (a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \ |
| ) |
| |
| # if defined(INT64_MAX) && defined(INT128_MAX) |
| |
| typedef unsigned long u64; |
| typedef uint128_t u128; |
| |
| typedef struct { |
| u64 h[3]; |
| u64 r[2]; |
| } poly1305_internal; |
| |
| /* pick 32-bit unsigned integer in little endian order */ |
| static u64 U8TOU64(const unsigned char *p) |
| { |
| return (((u64)(p[0] & 0xff)) | |
| ((u64)(p[1] & 0xff) << 8) | |
| ((u64)(p[2] & 0xff) << 16) | |
| ((u64)(p[3] & 0xff) << 24) | |
| ((u64)(p[4] & 0xff) << 32) | |
| ((u64)(p[5] & 0xff) << 40) | |
| ((u64)(p[6] & 0xff) << 48) | |
| ((u64)(p[7] & 0xff) << 56)); |
| } |
| |
| /* store a 32-bit unsigned integer in little endian */ |
| static void U64TO8(unsigned char *p, u64 v) |
| { |
| p[0] = (unsigned char)((v) & 0xff); |
| p[1] = (unsigned char)((v >> 8) & 0xff); |
| p[2] = (unsigned char)((v >> 16) & 0xff); |
| p[3] = (unsigned char)((v >> 24) & 0xff); |
| p[4] = (unsigned char)((v >> 32) & 0xff); |
| p[5] = (unsigned char)((v >> 40) & 0xff); |
| p[6] = (unsigned char)((v >> 48) & 0xff); |
| p[7] = (unsigned char)((v >> 56) & 0xff); |
| } |
| |
| static void poly1305_init(void *ctx, const unsigned char key[16]) |
| { |
| poly1305_internal *st = (poly1305_internal *) ctx; |
| |
| /* h = 0 */ |
| st->h[0] = 0; |
| st->h[1] = 0; |
| st->h[2] = 0; |
| |
| /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ |
| st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff; |
| st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc; |
| } |
| |
| static void |
| poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) |
| { |
| poly1305_internal *st = (poly1305_internal *)ctx; |
| u64 r0, r1; |
| u64 s1; |
| u64 h0, h1, h2, c; |
| u128 d0, d1; |
| |
| r0 = st->r[0]; |
| r1 = st->r[1]; |
| |
| s1 = r1 + (r1 >> 2); |
| |
| h0 = st->h[0]; |
| h1 = st->h[1]; |
| h2 = st->h[2]; |
| |
| while (len >= POLY1305_BLOCK_SIZE) { |
| /* h += m[i] */ |
| h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0)); |
| h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8)); |
| /* |
| * padbit can be zero only when original len was |
| * POLY1306_BLOCK_SIZE, but we don't check |
| */ |
| h2 += (u64)(d1 >> 64) + padbit; |
| |
| /* h *= r "%" p, where "%" stands for "partial remainder" */ |
| d0 = ((u128)h0 * r0) + |
| ((u128)h1 * s1); |
| d1 = ((u128)h0 * r1) + |
| ((u128)h1 * r0) + |
| (h2 * s1); |
| h2 = (h2 * r0); |
| |
| /* last reduction step: */ |
| /* a) h2:h0 = h2<<128 + d1<<64 + d0 */ |
| h0 = (u64)d0; |
| h1 = (u64)(d1 += d0 >> 64); |
| h2 += (u64)(d1 >> 64); |
| /* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */ |
| c = (h2 >> 2) + (h2 & ~3UL); |
| h2 &= 3; |
| h0 += c; |
| h1 += (c = CONSTANT_TIME_CARRY(h0,c)); |
| h2 += CONSTANT_TIME_CARRY(h1,c); |
| /* |
| * Occasional overflows to 3rd bit of h2 are taken care of |
| * "naturally". If after this point we end up at the top of |
| * this loop, then the overflow bit will be accounted for |
| * in next iteration. If we end up in poly1305_emit, then |
| * comparison to modulus below will still count as "carry |
| * into 131st bit", so that properly reduced value will be |
| * picked in conditional move. |
| */ |
| |
| inp += POLY1305_BLOCK_SIZE; |
| len -= POLY1305_BLOCK_SIZE; |
| } |
| |
| st->h[0] = h0; |
| st->h[1] = h1; |
| st->h[2] = h2; |
| } |
| |
| static void poly1305_emit(void *ctx, unsigned char mac[16], |
| const u32 nonce[4]) |
| { |
| poly1305_internal *st = (poly1305_internal *) ctx; |
| u64 h0, h1, h2; |
| u64 g0, g1, g2; |
| u128 t; |
| u64 mask; |
| |
| h0 = st->h[0]; |
| h1 = st->h[1]; |
| h2 = st->h[2]; |
| |
| /* compare to modulus by computing h + -p */ |
| g0 = (u64)(t = (u128)h0 + 5); |
| g1 = (u64)(t = (u128)h1 + (t >> 64)); |
| g2 = h2 + (u64)(t >> 64); |
| |
| /* if there was carry into 131st bit, h1:h0 = g1:g0 */ |
| mask = 0 - (g2 >> 2); |
| g0 &= mask; |
| g1 &= mask; |
| mask = ~mask; |
| h0 = (h0 & mask) | g0; |
| h1 = (h1 & mask) | g1; |
| |
| /* mac = (h + nonce) % (2^128) */ |
| h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32)); |
| h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64)); |
| |
| U64TO8(mac + 0, h0); |
| U64TO8(mac + 8, h1); |
| } |
| |
| # else |
| |
| # if defined(_WIN32) && !defined(__MINGW32__) |
| typedef unsigned __int64 u64; |
| # elif defined(__arch64__) |
| typedef unsigned long u64; |
| # else |
| typedef unsigned long long u64; |
| # endif |
| |
| typedef struct { |
| u32 h[5]; |
| u32 r[4]; |
| } poly1305_internal; |
| |
| /* store a 32-bit unsigned integer in little endian */ |
| static void U32TO8(unsigned char *p, unsigned int v) |
| { |
| p[0] = (unsigned char)((v) & 0xff); |
| p[1] = (unsigned char)((v >> 8) & 0xff); |
| p[2] = (unsigned char)((v >> 16) & 0xff); |
| p[3] = (unsigned char)((v >> 24) & 0xff); |
| } |
| |
| static void poly1305_init(void *ctx, const unsigned char key[16]) |
| { |
| poly1305_internal *st = (poly1305_internal *) ctx; |
| |
| /* h = 0 */ |
| st->h[0] = 0; |
| st->h[1] = 0; |
| st->h[2] = 0; |
| st->h[3] = 0; |
| st->h[4] = 0; |
| |
| /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ |
| st->r[0] = U8TOU32(&key[0]) & 0x0fffffff; |
| st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc; |
| st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc; |
| st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc; |
| } |
| |
| static void |
| poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) |
| { |
| poly1305_internal *st = (poly1305_internal *)ctx; |
| u32 r0, r1, r2, r3; |
| u32 s1, s2, s3; |
| u32 h0, h1, h2, h3, h4, c; |
| u64 d0, d1, d2, d3; |
| |
| r0 = st->r[0]; |
| r1 = st->r[1]; |
| r2 = st->r[2]; |
| r3 = st->r[3]; |
| |
| s1 = r1 + (r1 >> 2); |
| s2 = r2 + (r2 >> 2); |
| s3 = r3 + (r3 >> 2); |
| |
| h0 = st->h[0]; |
| h1 = st->h[1]; |
| h2 = st->h[2]; |
| h3 = st->h[3]; |
| h4 = st->h[4]; |
| |
| while (len >= POLY1305_BLOCK_SIZE) { |
| /* h += m[i] */ |
| h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0)); |
| h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4)); |
| h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8)); |
| h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12)); |
| h4 += (u32)(d3 >> 32) + padbit; |
| |
| /* h *= r "%" p, where "%" stands for "partial remainder" */ |
| d0 = ((u64)h0 * r0) + |
| ((u64)h1 * s3) + |
| ((u64)h2 * s2) + |
| ((u64)h3 * s1); |
| d1 = ((u64)h0 * r1) + |
| ((u64)h1 * r0) + |
| ((u64)h2 * s3) + |
| ((u64)h3 * s2) + |
| (h4 * s1); |
| d2 = ((u64)h0 * r2) + |
| ((u64)h1 * r1) + |
| ((u64)h2 * r0) + |
| ((u64)h3 * s3) + |
| (h4 * s2); |
| d3 = ((u64)h0 * r3) + |
| ((u64)h1 * r2) + |
| ((u64)h2 * r1) + |
| ((u64)h3 * r0) + |
| (h4 * s3); |
| h4 = (h4 * r0); |
| |
| /* last reduction step: */ |
| /* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */ |
| h0 = (u32)d0; |
| h1 = (u32)(d1 += d0 >> 32); |
| h2 = (u32)(d2 += d1 >> 32); |
| h3 = (u32)(d3 += d2 >> 32); |
| h4 += (u32)(d3 >> 32); |
| /* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */ |
| c = (h4 >> 2) + (h4 & ~3U); |
| h4 &= 3; |
| h0 += c; |
| h1 += (c = CONSTANT_TIME_CARRY(h0,c)); |
| h2 += (c = CONSTANT_TIME_CARRY(h1,c)); |
| h3 += (c = CONSTANT_TIME_CARRY(h2,c)); |
| h4 += CONSTANT_TIME_CARRY(h3,c); |
| /* |
| * Occasional overflows to 3rd bit of h4 are taken care of |
| * "naturally". If after this point we end up at the top of |
| * this loop, then the overflow bit will be accounted for |
| * in next iteration. If we end up in poly1305_emit, then |
| * comparison to modulus below will still count as "carry |
| * into 131st bit", so that properly reduced value will be |
| * picked in conditional move. |
| */ |
| |
| inp += POLY1305_BLOCK_SIZE; |
| len -= POLY1305_BLOCK_SIZE; |
| } |
| |
| st->h[0] = h0; |
| st->h[1] = h1; |
| st->h[2] = h2; |
| st->h[3] = h3; |
| st->h[4] = h4; |
| } |
| |
| static void poly1305_emit(void *ctx, unsigned char mac[16], |
| const u32 nonce[4]) |
| { |
| poly1305_internal *st = (poly1305_internal *) ctx; |
| u32 h0, h1, h2, h3, h4; |
| u32 g0, g1, g2, g3, g4; |
| u64 t; |
| u32 mask; |
| |
| h0 = st->h[0]; |
| h1 = st->h[1]; |
| h2 = st->h[2]; |
| h3 = st->h[3]; |
| h4 = st->h[4]; |
| |
| /* compare to modulus by computing h + -p */ |
| g0 = (u32)(t = (u64)h0 + 5); |
| g1 = (u32)(t = (u64)h1 + (t >> 32)); |
| g2 = (u32)(t = (u64)h2 + (t >> 32)); |
| g3 = (u32)(t = (u64)h3 + (t >> 32)); |
| g4 = h4 + (u32)(t >> 32); |
| |
| /* if there was carry into 131st bit, h3:h0 = g3:g0 */ |
| mask = 0 - (g4 >> 2); |
| g0 &= mask; |
| g1 &= mask; |
| g2 &= mask; |
| g3 &= mask; |
| mask = ~mask; |
| h0 = (h0 & mask) | g0; |
| h1 = (h1 & mask) | g1; |
| h2 = (h2 & mask) | g2; |
| h3 = (h3 & mask) | g3; |
| |
| /* mac = (h + nonce) % (2^128) */ |
| h0 = (u32)(t = (u64)h0 + nonce[0]); |
| h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]); |
| h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]); |
| h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]); |
| |
| U32TO8(mac + 0, h0); |
| U32TO8(mac + 4, h1); |
| U32TO8(mac + 8, h2); |
| U32TO8(mac + 12, h3); |
| } |
| # endif |
| #else |
| int poly1305_init(void *ctx, const unsigned char key[16], void *func); |
| void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, |
| unsigned int padbit); |
| void poly1305_emit(void *ctx, unsigned char mac[16], |
| const unsigned int nonce[4]); |
| #endif |
| |
| void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32]) |
| { |
| ctx->nonce[0] = U8TOU32(&key[16]); |
| ctx->nonce[1] = U8TOU32(&key[20]); |
| ctx->nonce[2] = U8TOU32(&key[24]); |
| ctx->nonce[3] = U8TOU32(&key[28]); |
| |
| #ifndef POLY1305_ASM |
| poly1305_init(ctx->opaque, key); |
| #else |
| /* |
| * Unlike reference poly1305_init assembly counterpart is expected |
| * to return a value: non-zero if it initializes ctx->func, and zero |
| * otherwise. Latter is to simplify assembly in cases when there no |
| * multiple code paths to switch between. |
| */ |
| if (!poly1305_init(ctx->opaque, key, &ctx->func)) { |
| ctx->func.blocks = poly1305_blocks; |
| ctx->func.emit = poly1305_emit; |
| } |
| #endif |
| |
| ctx->num = 0; |
| |
| } |
| |
| #ifdef POLY1305_ASM |
| /* |
| * This "eclipses" poly1305_blocks and poly1305_emit, but it's |
| * conscious choice imposed by -Wshadow compiler warnings. |
| */ |
| # define poly1305_blocks (*poly1305_blocks_p) |
| # define poly1305_emit (*poly1305_emit_p) |
| #endif |
| |
| void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len) |
| { |
| #ifdef POLY1305_ASM |
| /* |
| * As documented, poly1305_blocks is never called with input |
| * longer than single block and padbit argument set to 0. This |
| * property is fluently used in assembly modules to optimize |
| * padbit handling on loop boundary. |
| */ |
| poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks; |
| #endif |
| size_t rem, num; |
| |
| if ((num = ctx->num)) { |
| rem = POLY1305_BLOCK_SIZE - num; |
| if (len >= rem) { |
| memcpy(ctx->data + num, inp, rem); |
| poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1); |
| inp += rem; |
| len -= rem; |
| } else { |
| /* Still not enough data to process a block. */ |
| memcpy(ctx->data + num, inp, len); |
| ctx->num = num + len; |
| return; |
| } |
| } |
| |
| rem = len % POLY1305_BLOCK_SIZE; |
| len -= rem; |
| |
| if (len >= POLY1305_BLOCK_SIZE) { |
| poly1305_blocks(ctx->opaque, inp, len, 1); |
| inp += len; |
| } |
| |
| if (rem) |
| memcpy(ctx->data, inp, rem); |
| |
| ctx->num = rem; |
| } |
| |
| void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16]) |
| { |
| #ifdef POLY1305_ASM |
| poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks; |
| poly1305_emit_f poly1305_emit_p = ctx->func.emit; |
| #endif |
| size_t num; |
| |
| if ((num = ctx->num)) { |
| ctx->data[num++] = 1; /* pad bit */ |
| while (num < POLY1305_BLOCK_SIZE) |
| ctx->data[num++] = 0; |
| poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0); |
| } |
| |
| poly1305_emit(ctx->opaque, mac, ctx->nonce); |
| |
| /* zero out the state */ |
| OPENSSL_cleanse(ctx, sizeof(*ctx)); |
| } |