| /* | 
 |  * Copyright 2018-2021 The OpenSSL Project Authors. All Rights Reserved. | 
 |  * Copyright (c) 2018-2019, Oracle and/or its affiliates.  All rights reserved. | 
 |  * | 
 |  * Licensed under the Apache License 2.0 (the "License").  You may not use | 
 |  * this file except in compliance with the License.  You can obtain a copy | 
 |  * in the file LICENSE in the source distribution or at | 
 |  * https://www.openssl.org/source/license.html | 
 |  */ | 
 |  | 
 | /* | 
 |  * According to NIST SP800-131A "Transitioning the use of cryptographic | 
 |  * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer | 
 |  * allowed for signatures (Table 2) or key transport (Table 5). In the code | 
 |  * below any attempt to generate 1024 bit RSA keys will result in an error (Note | 
 |  * that digital signature verification can still use deprecated 1024 bit keys). | 
 |  * | 
 |  * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that | 
 |  * must be generated before the module generates the RSA primes p and q. | 
 |  * Table B.1 in FIPS 186-4 specifies RSA modulus lengths of 2048 and | 
 |  * 3072 bits only, the min/max total length of the auxiliary primes. | 
 |  * FIPS 186-5 Table A.1 includes an additional entry for 4096 which has been | 
 |  * included here. | 
 |  */ | 
 | #include <stdio.h> | 
 | #include <openssl/bn.h> | 
 | #include "bn_local.h" | 
 | #include "crypto/bn.h" | 
 | #include "internal/nelem.h" | 
 |  | 
 | #if BN_BITS2 == 64 | 
 | # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo | 
 | #else | 
 | # define BN_DEF(lo, hi) lo, hi | 
 | #endif | 
 |  | 
 | /* 1 / sqrt(2) * 2^256, rounded up */ | 
 | static const BN_ULONG inv_sqrt_2_val[] = { | 
 |     BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL), | 
 |     BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL) | 
 | }; | 
 |  | 
 | const BIGNUM ossl_bn_inv_sqrt_2 = { | 
 |     (BN_ULONG *)inv_sqrt_2_val, | 
 |     OSSL_NELEM(inv_sqrt_2_val), | 
 |     OSSL_NELEM(inv_sqrt_2_val), | 
 |     0, | 
 |     BN_FLG_STATIC_DATA | 
 | }; | 
 |  | 
 | /* | 
 |  * FIPS 186-5 Table A.1. "Min length of auxiliary primes p1, p2, q1, q2". | 
 |  * (FIPS 186-5 has an entry for >= 4096 bits). | 
 |  * | 
 |  * Params: | 
 |  *     nbits The key size in bits. | 
 |  * Returns: | 
 |  *     The minimum size of the auxiliary primes or 0 if nbits is invalid. | 
 |  */ | 
 | static int bn_rsa_fips186_5_aux_prime_min_size(int nbits) | 
 | { | 
 |     if (nbits >= 4096) | 
 |         return 201; | 
 |     if (nbits >= 3072) | 
 |         return 171; | 
 |     if (nbits >= 2048) | 
 |         return 141; | 
 |     return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * FIPS 186-5 Table A.1 "Max of len(p1) + len(p2) and | 
 |  * len(q1) + len(q2) for p,q Probable Primes". | 
 |  * (FIPS 186-5 has an entry for >= 4096 bits). | 
 |  * Params: | 
 |  *     nbits The key size in bits. | 
 |  * Returns: | 
 |  *     The maximum length or 0 if nbits is invalid. | 
 |  */ | 
 | static int bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(int nbits) | 
 | { | 
 |     if (nbits >= 4096) | 
 |         return 2030; | 
 |     if (nbits >= 3072) | 
 |         return 1518; | 
 |     if (nbits >= 2048) | 
 |         return 1007; | 
 |     return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the first odd integer that is a probable prime. | 
 |  * | 
 |  * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2). | 
 |  * | 
 |  * Params: | 
 |  *     Xp1 The passed in starting point to find a probably prime. | 
 |  *     p1 The returned probable prime (first odd integer >= Xp1) | 
 |  *     ctx A BN_CTX object. | 
 |  *     cb An optional BIGNUM callback. | 
 |  * Returns: 1 on success otherwise it returns 0. | 
 |  */ | 
 | static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1, | 
 |                                                 BIGNUM *p1, BN_CTX *ctx, | 
 |                                                 BN_GENCB *cb) | 
 | { | 
 |     int ret = 0; | 
 |     int i = 0; | 
 |     int tmp = 0; | 
 |  | 
 |     if (BN_copy(p1, Xp1) == NULL) | 
 |         return 0; | 
 |     BN_set_flags(p1, BN_FLG_CONSTTIME); | 
 |  | 
 |     /* Find the first odd number >= Xp1 that is probably prime */ | 
 |     for (;;) { | 
 |         i++; | 
 |         BN_GENCB_call(cb, 0, i); | 
 |         /* MR test with trial division */ | 
 |         tmp = BN_check_prime(p1, ctx, cb); | 
 |         if (tmp > 0) | 
 |             break; | 
 |         if (tmp < 0) | 
 |             goto err; | 
 |         /* Get next odd number */ | 
 |         if (!BN_add_word(p1, 2)) | 
 |             goto err; | 
 |     } | 
 |     BN_GENCB_call(cb, 2, i); | 
 |     ret = 1; | 
 | err: | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Generate a probable prime (p or q). | 
 |  * | 
 |  * See FIPS 186-4 B.3.6 (Steps 4 & 5) | 
 |  * | 
 |  * Params: | 
 |  *     p The returned probable prime. | 
 |  *     Xpout An optionally returned random number used during generation of p. | 
 |  *     p1, p2 The returned auxiliary primes. If NULL they are not returned. | 
 |  *     Xp An optional passed in value (that is random number used during | 
 |  *        generation of p). | 
 |  *     Xp1, Xp2 Optional passed in values that are normally generated | 
 |  *              internally. Used to find p1, p2. | 
 |  *     nlen The bit length of the modulus (the key size). | 
 |  *     e The public exponent. | 
 |  *     ctx A BN_CTX object. | 
 |  *     cb An optional BIGNUM callback. | 
 |  * Returns: 1 on success otherwise it returns 0. | 
 |  */ | 
 | int ossl_bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout, | 
 |                                           BIGNUM *p1, BIGNUM *p2, | 
 |                                           const BIGNUM *Xp, const BIGNUM *Xp1, | 
 |                                           const BIGNUM *Xp2, int nlen, | 
 |                                           const BIGNUM *e, BN_CTX *ctx, | 
 |                                           BN_GENCB *cb) | 
 | { | 
 |     int ret = 0; | 
 |     BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL; | 
 |     int bitlen; | 
 |  | 
 |     if (p == NULL || Xpout == NULL) | 
 |         return 0; | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |  | 
 |     p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx); | 
 |     p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx); | 
 |     Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx); | 
 |     Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx); | 
 |     if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL) | 
 |         goto err; | 
 |  | 
 |     bitlen = bn_rsa_fips186_5_aux_prime_min_size(nlen); | 
 |     if (bitlen == 0) | 
 |         goto err; | 
 |  | 
 |     /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */ | 
 |     if (Xp1 == NULL) { | 
 |         /* Set the top and bottom bits to make it odd and the correct size */ | 
 |         if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, | 
 |                              0, ctx)) | 
 |             goto err; | 
 |     } | 
 |     /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */ | 
 |     if (Xp2 == NULL) { | 
 |         /* Set the top and bottom bits to make it odd and the correct size */ | 
 |         if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, | 
 |                              0, ctx)) | 
 |             goto err; | 
 |     } | 
 |  | 
 |     /* (Steps 4.2/5.2) - find first auxiliary probable primes */ | 
 |     if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb) | 
 |             || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb)) | 
 |         goto err; | 
 |     /* (Table B.1) auxiliary prime Max length check */ | 
 |     if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >= | 
 |             bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(nlen)) | 
 |         goto err; | 
 |     /* (Steps 4.3/5.3) - generate prime */ | 
 |     if (!ossl_bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e, | 
 |                                             ctx, cb)) | 
 |         goto err; | 
 |     ret = 1; | 
 | err: | 
 |     /* Zeroize any internally generated values that are not returned */ | 
 |     if (p1 == NULL) | 
 |         BN_clear(p1i); | 
 |     if (p2 == NULL) | 
 |         BN_clear(p2i); | 
 |     if (Xp1 == NULL) | 
 |         BN_clear(Xp1i); | 
 |     if (Xp2 == NULL) | 
 |         BN_clear(Xp2i); | 
 |     BN_CTX_end(ctx); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Constructs a probable prime (a candidate for p or q) using 2 auxiliary | 
 |  * prime numbers and the Chinese Remainder Theorem. | 
 |  * | 
 |  * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary | 
 |  * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q. | 
 |  * | 
 |  * Params: | 
 |  *     Y The returned prime factor (private_prime_factor) of the modulus n. | 
 |  *     X The returned random number used during generation of the prime factor. | 
 |  *     Xin An optional passed in value for X used for testing purposes. | 
 |  *     r1 An auxiliary prime. | 
 |  *     r2 An auxiliary prime. | 
 |  *     nlen The desired length of n (the RSA modulus). | 
 |  *     e The public exponent. | 
 |  *     ctx A BN_CTX object. | 
 |  *     cb An optional BIGNUM callback object. | 
 |  * Returns: 1 on success otherwise it returns 0. | 
 |  * Assumptions: | 
 |  *     Y, X, r1, r2, e are not NULL. | 
 |  */ | 
 | int ossl_bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin, | 
 |                                        const BIGNUM *r1, const BIGNUM *r2, | 
 |                                        int nlen, const BIGNUM *e, BN_CTX *ctx, | 
 |                                        BN_GENCB *cb) | 
 | { | 
 |     int ret = 0; | 
 |     int i, imax; | 
 |     int bits = nlen >> 1; | 
 |     BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2; | 
 |     BIGNUM *base, *range; | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |  | 
 |     base = BN_CTX_get(ctx); | 
 |     range = BN_CTX_get(ctx); | 
 |     R = BN_CTX_get(ctx); | 
 |     tmp = BN_CTX_get(ctx); | 
 |     r1r2x2 = BN_CTX_get(ctx); | 
 |     y1 = BN_CTX_get(ctx); | 
 |     r1x2 = BN_CTX_get(ctx); | 
 |     if (r1x2 == NULL) | 
 |         goto err; | 
 |  | 
 |     if (Xin != NULL && BN_copy(X, Xin) == NULL) | 
 |         goto err; | 
 |  | 
 |     /* | 
 |      * We need to generate a random number X in the range | 
 |      * 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2). | 
 |      * We can rewrite that as: | 
 |      * base = 1/sqrt(2) * 2^(nlen/2) | 
 |      * range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2)) | 
 |      * X = base + random(range) | 
 |      * We only have the first 256 bit of 1/sqrt(2) | 
 |      */ | 
 |     if (Xin == NULL) { | 
 |         if (bits < BN_num_bits(&ossl_bn_inv_sqrt_2)) | 
 |             goto err; | 
 |         if (!BN_lshift(base, &ossl_bn_inv_sqrt_2, | 
 |                        bits - BN_num_bits(&ossl_bn_inv_sqrt_2)) | 
 |             || !BN_lshift(range, BN_value_one(), bits) | 
 |             || !BN_sub(range, range, base)) | 
 |             goto err; | 
 |     } | 
 |  | 
 |     if (!(BN_lshift1(r1x2, r1) | 
 |             /* (Step 1) GCD(2r1, r2) = 1 */ | 
 |             && BN_gcd(tmp, r1x2, r2, ctx) | 
 |             && BN_is_one(tmp) | 
 |             /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */ | 
 |             && BN_mod_inverse(R, r2, r1x2, ctx) | 
 |             && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */ | 
 |             && BN_mod_inverse(tmp, r1x2, r2, ctx) | 
 |             && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */ | 
 |             && BN_sub(R, R, tmp) | 
 |             /* Calculate 2r1r2 */ | 
 |             && BN_mul(r1r2x2, r1x2, r2, ctx))) | 
 |         goto err; | 
 |     /* Make positive by adding the modulus */ | 
 |     if (BN_is_negative(R) && !BN_add(R, R, r1r2x2)) | 
 |         goto err; | 
 |  | 
 |     imax = 5 * bits; /* max = 5/2 * nbits */ | 
 |     for (;;) { | 
 |         if (Xin == NULL) { | 
 |             /* | 
 |              * (Step 3) Choose Random X such that | 
 |              *    sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1. | 
 |              */ | 
 |             if (!BN_priv_rand_range_ex(X, range, 0, ctx) || !BN_add(X, X, base)) | 
 |                 goto end; | 
 |         } | 
 |         /* (Step 4) Y = X + ((R - X) mod 2r1r2) */ | 
 |         if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X)) | 
 |             goto err; | 
 |         /* (Step 5) */ | 
 |         i = 0; | 
 |         for (;;) { | 
 |             /* (Step 6) */ | 
 |             if (BN_num_bits(Y) > bits) { | 
 |                 if (Xin == NULL) | 
 |                     break; /* Randomly Generated X so Go back to Step 3 */ | 
 |                 else | 
 |                     goto err; /* X is not random so it will always fail */ | 
 |             } | 
 |             BN_GENCB_call(cb, 0, 2); | 
 |  | 
 |             /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */ | 
 |             if (BN_copy(y1, Y) == NULL | 
 |                     || !BN_sub_word(y1, 1) | 
 |                     || !BN_gcd(tmp, y1, e, ctx)) | 
 |                 goto err; | 
 |             if (BN_is_one(tmp)) { | 
 |                 int rv = BN_check_prime(Y, ctx, cb); | 
 |  | 
 |                 if (rv > 0) | 
 |                     goto end; | 
 |                 if (rv < 0) | 
 |                     goto err; | 
 |             } | 
 |             /* (Step 8-10) */ | 
 |             if (++i >= imax || !BN_add(Y, Y, r1r2x2)) | 
 |                 goto err; | 
 |         } | 
 |     } | 
 | end: | 
 |     ret = 1; | 
 |     BN_GENCB_call(cb, 3, 0); | 
 | err: | 
 |     BN_clear(y1); | 
 |     BN_CTX_end(ctx); | 
 |     return ret; | 
 | } |