| /* crypto/bn/bn_mul.c */ |
| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| |
| #include <stdio.h> |
| #include "cryptlib.h" |
| #include "bn_lcl.h" |
| |
| #ifdef BN_RECURSION |
| /* r is 2*n2 words in size, |
| * a and b are both n2 words in size. |
| * n2 must be a power of 2. |
| * We multiply and return the result. |
| * t must be 2*n2 words in size |
| * We calulate |
| * a[0]*b[0] |
| * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) |
| * a[1]*b[1] |
| */ |
| void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
| BN_ULONG *t) |
| { |
| int n=n2/2,c1,c2; |
| unsigned int neg,zero; |
| BN_ULONG ln,lo,*p; |
| |
| #ifdef BN_COUNT |
| printf(" bn_mul_recursive %d * %d\n",n2,n2); |
| #endif |
| #ifdef BN_MUL_COMBA |
| /* if (n2 == 4) |
| { |
| bn_mul_comba4(r,a,b); |
| return; |
| } |
| else */ if (n2 == 8) |
| { |
| bn_mul_comba8(r,a,b); |
| return; |
| } |
| #endif |
| if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) |
| { |
| /* This should not happen */ |
| bn_mul_normal(r,a,n2,b,n2); |
| return; |
| } |
| /* r=(a[0]-a[1])*(b[1]-b[0]) */ |
| c1=bn_cmp_words(a,&(a[n]),n); |
| c2=bn_cmp_words(&(b[n]),b,n); |
| zero=neg=0; |
| switch (c1*3+c2) |
| { |
| case -4: |
| bn_sub_words(t, &(a[n]),a, n); /* - */ |
| bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ |
| break; |
| case -3: |
| zero=1; |
| break; |
| case -2: |
| bn_sub_words(t, &(a[n]),a, n); /* - */ |
| bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ |
| neg=1; |
| break; |
| case -1: |
| case 0: |
| case 1: |
| zero=1; |
| break; |
| case 2: |
| bn_sub_words(t, a, &(a[n]),n); /* + */ |
| bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ |
| neg=1; |
| break; |
| case 3: |
| zero=1; |
| break; |
| case 4: |
| bn_sub_words(t, a, &(a[n]),n); |
| bn_sub_words(&(t[n]),&(b[n]),b, n); |
| break; |
| } |
| |
| #ifdef BN_MUL_COMBA |
| if (n == 4) |
| { |
| if (!zero) |
| bn_mul_comba4(&(t[n2]),t,&(t[n])); |
| else |
| memset(&(t[n2]),0,8*sizeof(BN_ULONG)); |
| |
| bn_mul_comba4(r,a,b); |
| bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); |
| } |
| else if (n == 8) |
| { |
| if (!zero) |
| bn_mul_comba8(&(t[n2]),t,&(t[n])); |
| else |
| memset(&(t[n2]),0,16*sizeof(BN_ULONG)); |
| |
| bn_mul_comba8(r,a,b); |
| bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); |
| } |
| else |
| #endif |
| { |
| p= &(t[n2*2]); |
| if (!zero) |
| bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); |
| else |
| memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); |
| bn_mul_recursive(r,a,b,n,p); |
| bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p); |
| } |
| |
| /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign |
| * r[10] holds (a[0]*b[0]) |
| * r[32] holds (b[1]*b[1]) |
| */ |
| |
| c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); |
| |
| if (neg) /* if t[32] is negative */ |
| { |
| c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); |
| } |
| else |
| { |
| /* Might have a carry */ |
| c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); |
| } |
| |
| /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) |
| * r[10] holds (a[0]*b[0]) |
| * r[32] holds (b[1]*b[1]) |
| * c1 holds the carry bits |
| */ |
| c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); |
| if (c1) |
| { |
| p= &(r[n+n2]); |
| lo= *p; |
| ln=(lo+c1)&BN_MASK2; |
| *p=ln; |
| |
| /* The overflow will stop before we over write |
| * words we should not overwrite */ |
| if (ln < (BN_ULONG)c1) |
| { |
| do { |
| p++; |
| lo= *p; |
| ln=(lo+1)&BN_MASK2; |
| *p=ln; |
| } while (ln == 0); |
| } |
| } |
| } |
| |
| /* n+tn is the word length |
| * t needs to be n*4 is size, as does r */ |
| void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn, |
| int n, BN_ULONG *t) |
| { |
| int i,j,n2=n*2; |
| unsigned int c1; |
| BN_ULONG ln,lo,*p; |
| |
| #ifdef BN_COUNT |
| printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n); |
| #endif |
| if (n < 8) |
| { |
| i=tn+n; |
| bn_mul_normal(r,a,i,b,i); |
| return; |
| } |
| |
| /* r=(a[0]-a[1])*(b[1]-b[0]) */ |
| bn_sub_words(t, a, &(a[n]),n); /* + */ |
| bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ |
| |
| /* if (n == 4) |
| { |
| bn_mul_comba4(&(t[n2]),t,&(t[n])); |
| bn_mul_comba4(r,a,b); |
| bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); |
| memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); |
| } |
| else */ if (n == 8) |
| { |
| bn_mul_comba8(&(t[n2]),t,&(t[n])); |
| bn_mul_comba8(r,a,b); |
| bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); |
| memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); |
| } |
| else |
| { |
| p= &(t[n2*2]); |
| bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); |
| bn_mul_recursive(r,a,b,n,p); |
| i=n/2; |
| /* If there is only a bottom half to the number, |
| * just do it */ |
| j=tn-i; |
| if (j == 0) |
| { |
| bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p); |
| memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); |
| } |
| else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ |
| { |
| bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), |
| j,i,p); |
| memset(&(r[n2+tn*2]),0, |
| sizeof(BN_ULONG)*(n2-tn*2)); |
| } |
| else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ |
| { |
| memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); |
| if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL) |
| { |
| bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); |
| } |
| else |
| { |
| for (;;) |
| { |
| i/=2; |
| if (i < tn) |
| { |
| bn_mul_part_recursive(&(r[n2]), |
| &(a[n]),&(b[n]), |
| tn-i,i,p); |
| break; |
| } |
| else if (i == tn) |
| { |
| bn_mul_recursive(&(r[n2]), |
| &(a[n]),&(b[n]), |
| i,p); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign |
| * r[10] holds (a[0]*b[0]) |
| * r[32] holds (b[1]*b[1]) |
| */ |
| |
| c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); |
| c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); |
| |
| /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) |
| * r[10] holds (a[0]*b[0]) |
| * r[32] holds (b[1]*b[1]) |
| * c1 holds the carry bits |
| */ |
| c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); |
| if (c1) |
| { |
| p= &(r[n+n2]); |
| lo= *p; |
| ln=(lo+c1)&BN_MASK2; |
| *p=ln; |
| |
| /* The overflow will stop before we over write |
| * words we should not overwrite */ |
| if (ln < c1) |
| { |
| do { |
| p++; |
| lo= *p; |
| ln=(lo+1)&BN_MASK2; |
| *p=ln; |
| } while (ln == 0); |
| } |
| } |
| } |
| |
| /* a and b must be the same size, which is n2. |
| * r needs to be n2 words and t needs to be n2*2 |
| */ |
| void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
| BN_ULONG *t) |
| { |
| int n=n2/2; |
| |
| #ifdef BN_COUNT |
| printf(" bn_mul_low_recursive %d * %d\n",n2,n2); |
| #endif |
| |
| bn_mul_recursive(r,a,b,n,&(t[0])); |
| if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) |
| { |
| bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); |
| bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); |
| bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2])); |
| bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); |
| } |
| else |
| { |
| bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n); |
| bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n); |
| bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); |
| bn_add_words(&(r[n]),&(r[n]),&(t[n]),n); |
| } |
| } |
| |
| /* a and b must be the same size, which is n2. |
| * r needs to be n2 words and t needs to be n2*2 |
| * l is the low words of the output. |
| * t needs to be n2*3 |
| */ |
| void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, |
| BN_ULONG *t) |
| { |
| int i,n; |
| int c1,c2; |
| int neg,oneg,zero; |
| BN_ULONG ll,lc,*lp,*mp; |
| |
| #ifdef BN_COUNT |
| printf(" bn_mul_high %d * %d\n",n2,n2); |
| #endif |
| n=n2/2; |
| |
| /* Calculate (al-ah)*(bh-bl) */ |
| neg=zero=0; |
| c1=bn_cmp_words(&(a[0]),&(a[n]),n); |
| c2=bn_cmp_words(&(b[n]),&(b[0]),n); |
| switch (c1*3+c2) |
| { |
| case -4: |
| bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); |
| bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); |
| break; |
| case -3: |
| zero=1; |
| break; |
| case -2: |
| bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); |
| bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); |
| neg=1; |
| break; |
| case -1: |
| case 0: |
| case 1: |
| zero=1; |
| break; |
| case 2: |
| bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); |
| bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); |
| neg=1; |
| break; |
| case 3: |
| zero=1; |
| break; |
| case 4: |
| bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); |
| bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); |
| break; |
| } |
| |
| oneg=neg; |
| /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ |
| /* r[10] = (a[1]*b[1]) */ |
| #ifdef BN_MUL_COMBA |
| if (n == 8) |
| { |
| bn_mul_comba8(&(t[0]),&(r[0]),&(r[n])); |
| bn_mul_comba8(r,&(a[n]),&(b[n])); |
| } |
| else |
| #endif |
| { |
| bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2])); |
| bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2])); |
| } |
| |
| /* s0 == low(al*bl) |
| * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) |
| * We know s0 and s1 so the only unknown is high(al*bl) |
| * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) |
| * high(al*bl) == s1 - (r[0]+l[0]+t[0]) |
| */ |
| if (l != NULL) |
| { |
| lp= &(t[n2+n]); |
| c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n)); |
| } |
| else |
| { |
| c1=0; |
| lp= &(r[0]); |
| } |
| |
| if (neg) |
| neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n)); |
| else |
| { |
| bn_add_words(&(t[n2]),lp,&(t[0]),n); |
| neg=0; |
| } |
| |
| if (l != NULL) |
| { |
| bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n); |
| } |
| else |
| { |
| lp= &(t[n2+n]); |
| mp= &(t[n2]); |
| for (i=0; i<n; i++) |
| lp[i]=((~mp[i])+1)&BN_MASK2; |
| } |
| |
| /* s[0] = low(al*bl) |
| * t[3] = high(al*bl) |
| * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign |
| * r[10] = (a[1]*b[1]) |
| */ |
| /* R[10] = al*bl |
| * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) |
| * R[32] = ah*bh |
| */ |
| /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) |
| * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) |
| * R[3]=r[1]+(carry/borrow) |
| */ |
| if (l != NULL) |
| { |
| lp= &(t[n2]); |
| c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n)); |
| } |
| else |
| { |
| lp= &(t[n2+n]); |
| c1=0; |
| } |
| c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n)); |
| if (oneg) |
| c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n)); |
| else |
| c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n)); |
| |
| c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n)); |
| c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n)); |
| if (oneg) |
| c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n)); |
| else |
| c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n)); |
| |
| if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ |
| { |
| i=0; |
| if (c1 > 0) |
| { |
| lc=c1; |
| do { |
| ll=(r[i]+lc)&BN_MASK2; |
| r[i++]=ll; |
| lc=(lc > ll); |
| } while (lc); |
| } |
| else |
| { |
| lc= -c1; |
| do { |
| ll=r[i]; |
| r[i++]=(ll-lc)&BN_MASK2; |
| lc=(lc > ll); |
| } while (lc); |
| } |
| } |
| if (c2 != 0) /* Add starting at r[1] */ |
| { |
| i=n; |
| if (c2 > 0) |
| { |
| lc=c2; |
| do { |
| ll=(r[i]+lc)&BN_MASK2; |
| r[i++]=ll; |
| lc=(lc > ll); |
| } while (lc); |
| } |
| else |
| { |
| lc= -c2; |
| do { |
| ll=r[i]; |
| r[i++]=(ll-lc)&BN_MASK2; |
| lc=(lc > ll); |
| } while (lc); |
| } |
| } |
| } |
| #endif |
| |
| int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) |
| { |
| int top,al,bl; |
| BIGNUM *rr; |
| #ifdef BN_RECURSION |
| BIGNUM *t; |
| int i,j,k; |
| #endif |
| |
| #ifdef BN_COUNT |
| printf("BN_mul %d * %d\n",a->top,b->top); |
| #endif |
| |
| bn_check_top(a); |
| bn_check_top(b); |
| bn_check_top(r); |
| |
| al=a->top; |
| bl=b->top; |
| r->neg=a->neg^b->neg; |
| |
| if ((al == 0) || (bl == 0)) |
| { |
| BN_zero(r); |
| return(1); |
| } |
| top=al+bl; |
| |
| if ((r == a) || (r == b)) |
| rr= &(ctx->bn[ctx->tos+1]); |
| else |
| rr=r; |
| |
| #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
| if (al == bl) |
| { |
| # ifdef BN_MUL_COMBA |
| /* if (al == 4) |
| { |
| if (bn_wexpand(rr,8) == NULL) return(0); |
| r->top=8; |
| bn_mul_comba4(rr->d,a->d,b->d); |
| goto end; |
| } |
| else */ if (al == 8) |
| { |
| if (bn_wexpand(rr,16) == NULL) return(0); |
| r->top=16; |
| bn_mul_comba8(rr->d,a->d,b->d); |
| goto end; |
| } |
| else |
| # endif |
| #ifdef BN_RECURSION |
| if (al < BN_MULL_SIZE_NORMAL) |
| #endif |
| { |
| if (bn_wexpand(rr,top) == NULL) return(0); |
| rr->top=top; |
| bn_mul_normal(rr->d,a->d,al,b->d,bl); |
| goto end; |
| } |
| # ifdef BN_RECURSION |
| goto symetric; |
| # endif |
| } |
| #endif |
| #ifdef BN_RECURSION |
| else if ((al < BN_MULL_SIZE_NORMAL) || (bl < BN_MULL_SIZE_NORMAL)) |
| { |
| if (bn_wexpand(rr,top) == NULL) return(0); |
| rr->top=top; |
| bn_mul_normal(rr->d,a->d,al,b->d,bl); |
| goto end; |
| } |
| else |
| { |
| i=(al-bl); |
| if ((i == 1) && !BN_get_flags(b,BN_FLG_STATIC_DATA)) |
| { |
| bn_wexpand(b,al); |
| b->d[bl]=0; |
| bl++; |
| goto symetric; |
| } |
| else if ((i == -1) && !BN_get_flags(a,BN_FLG_STATIC_DATA)) |
| { |
| bn_wexpand(a,bl); |
| a->d[al]=0; |
| al++; |
| goto symetric; |
| } |
| } |
| #endif |
| |
| /* asymetric and >= 4 */ |
| if (bn_wexpand(rr,top) == NULL) return(0); |
| rr->top=top; |
| bn_mul_normal(rr->d,a->d,al,b->d,bl); |
| |
| #ifdef BN_RECURSION |
| if (0) |
| { |
| symetric: |
| /* symetric and > 4 */ |
| /* 16 or larger */ |
| j=BN_num_bits_word((BN_ULONG)al); |
| j=1<<(j-1); |
| k=j+j; |
| t= &(ctx->bn[ctx->tos]); |
| if (al == j) /* exact multiple */ |
| { |
| bn_wexpand(t,k*2); |
| bn_wexpand(rr,k*2); |
| bn_mul_recursive(rr->d,a->d,b->d,al,t->d); |
| } |
| else |
| { |
| bn_wexpand(a,k); |
| bn_wexpand(b,k); |
| bn_wexpand(t,k*4); |
| bn_wexpand(rr,k*4); |
| for (i=a->top; i<k; i++) |
| a->d[i]=0; |
| for (i=b->top; i<k; i++) |
| b->d[i]=0; |
| bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); |
| } |
| rr->top=top; |
| } |
| #endif |
| #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
| end: |
| #endif |
| bn_fix_top(rr); |
| if (r != rr) BN_copy(r,rr); |
| return(1); |
| } |
| |
| void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) |
| { |
| BN_ULONG *rr; |
| |
| #ifdef BN_COUNT |
| printf(" bn_mul_normal %d * %d\n",na,nb); |
| #endif |
| |
| if (na < nb) |
| { |
| int itmp; |
| BN_ULONG *ltmp; |
| |
| itmp=na; na=nb; nb=itmp; |
| ltmp=a; a=b; b=ltmp; |
| |
| } |
| rr= &(r[na]); |
| rr[0]=bn_mul_words(r,a,na,b[0]); |
| |
| for (;;) |
| { |
| if (--nb <= 0) return; |
| rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]); |
| if (--nb <= 0) return; |
| rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]); |
| if (--nb <= 0) return; |
| rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]); |
| if (--nb <= 0) return; |
| rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]); |
| rr+=4; |
| r+=4; |
| b+=4; |
| } |
| } |
| |
| void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) |
| { |
| #ifdef BN_COUNT |
| printf(" bn_mul_low_normal %d * %d\n",n,n); |
| #endif |
| bn_mul_words(r,a,n,b[0]); |
| |
| for (;;) |
| { |
| if (--n <= 0) return; |
| bn_mul_add_words(&(r[1]),a,n,b[1]); |
| if (--n <= 0) return; |
| bn_mul_add_words(&(r[2]),a,n,b[2]); |
| if (--n <= 0) return; |
| bn_mul_add_words(&(r[3]),a,n,b[3]); |
| if (--n <= 0) return; |
| bn_mul_add_words(&(r[4]),a,n,b[4]); |
| r+=4; |
| b+=4; |
| } |
| } |
| |