|  | /* crypto/rand/md_rand.c */ | 
|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | */ | 
|  |  | 
|  | #ifdef MD_RAND_DEBUG | 
|  | # ifndef NDEBUG | 
|  | #  define NDEBUG | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <stdio.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "e_os.h" | 
|  |  | 
|  | #if !(defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_DSPBIOS)) | 
|  | # include <sys/time.h> | 
|  | #endif | 
|  | #if defined(OPENSSL_SYS_VXWORKS) | 
|  | # include <time.h> | 
|  | #endif | 
|  |  | 
|  | #include <openssl/crypto.h> | 
|  | #include <openssl/rand.h> | 
|  | #include "rand_lcl.h" | 
|  |  | 
|  | #include <openssl/err.h> | 
|  |  | 
|  | #ifdef OPENSSL_FIPS | 
|  | # include <openssl/fips.h> | 
|  | #endif | 
|  |  | 
|  | #ifdef BN_DEBUG | 
|  | # define PREDICT | 
|  | #endif | 
|  |  | 
|  | /* #define PREDICT      1 */ | 
|  |  | 
|  | #define STATE_SIZE      1023 | 
|  | static int state_num = 0, state_index = 0; | 
|  | static unsigned char state[STATE_SIZE + MD_DIGEST_LENGTH]; | 
|  | static unsigned char md[MD_DIGEST_LENGTH]; | 
|  | static long md_count[2] = { 0, 0 }; | 
|  |  | 
|  | static double entropy = 0; | 
|  | static int initialized = 0; | 
|  |  | 
|  | static unsigned int crypto_lock_rand = 0; /* may be set only when a thread | 
|  | * holds CRYPTO_LOCK_RAND (to | 
|  | * prevent double locking) */ | 
|  | /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */ | 
|  | /* valid iff crypto_lock_rand is set */ | 
|  | static CRYPTO_THREADID locking_threadid; | 
|  |  | 
|  | #ifdef PREDICT | 
|  | int rand_predictable = 0; | 
|  | #endif | 
|  |  | 
|  | static void rand_hw_seed(EVP_MD_CTX *ctx); | 
|  |  | 
|  | static void ssleay_rand_cleanup(void); | 
|  | static int ssleay_rand_seed(const void *buf, int num); | 
|  | static int ssleay_rand_add(const void *buf, int num, double add_entropy); | 
|  | static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo); | 
|  | static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num); | 
|  | #ifndef OPENSSL_NO_DEPRECATED | 
|  | static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num); | 
|  | #endif | 
|  | static int ssleay_rand_status(void); | 
|  |  | 
|  | static RAND_METHOD rand_ssleay_meth = { | 
|  | ssleay_rand_seed, | 
|  | ssleay_rand_nopseudo_bytes, | 
|  | ssleay_rand_cleanup, | 
|  | ssleay_rand_add, | 
|  | #ifndef OPENSSL_NO_DEPRECATED | 
|  | ssleay_rand_pseudo_bytes, | 
|  | #else | 
|  | NULL, | 
|  | #endif | 
|  | ssleay_rand_status | 
|  | }; | 
|  |  | 
|  | RAND_METHOD *RAND_SSLeay(void) | 
|  | { | 
|  | return (&rand_ssleay_meth); | 
|  | } | 
|  |  | 
|  | static void ssleay_rand_cleanup(void) | 
|  | { | 
|  | OPENSSL_cleanse(state, sizeof(state)); | 
|  | state_num = 0; | 
|  | state_index = 0; | 
|  | OPENSSL_cleanse(md, MD_DIGEST_LENGTH); | 
|  | md_count[0] = 0; | 
|  | md_count[1] = 0; | 
|  | entropy = 0; | 
|  | initialized = 0; | 
|  | } | 
|  |  | 
|  | static int ssleay_rand_add(const void *buf, int num, double add) | 
|  | { | 
|  | int i, j, k, st_idx; | 
|  | long md_c[2]; | 
|  | unsigned char local_md[MD_DIGEST_LENGTH]; | 
|  | EVP_MD_CTX m; | 
|  | int do_not_lock; | 
|  | int rv = 0; | 
|  |  | 
|  | if (!num) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * (Based on the rand(3) manpage) | 
|  | * | 
|  | * The input is chopped up into units of 20 bytes (or less for | 
|  | * the last block).  Each of these blocks is run through the hash | 
|  | * function as follows:  The data passed to the hash function | 
|  | * is the current 'md', the same number of bytes from the 'state' | 
|  | * (the location determined by in incremented looping index) as | 
|  | * the current 'block', the new key data 'block', and 'count' | 
|  | * (which is incremented after each use). | 
|  | * The result of this is kept in 'md' and also xored into the | 
|  | * 'state' at the same locations that were used as input into the | 
|  | * hash function. | 
|  | */ | 
|  |  | 
|  | EVP_MD_CTX_init(&m); | 
|  | /* check if we already have the lock */ | 
|  | if (crypto_lock_rand) { | 
|  | CRYPTO_THREADID cur; | 
|  | CRYPTO_THREADID_current(&cur); | 
|  | CRYPTO_r_lock(CRYPTO_LOCK_RAND2); | 
|  | do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur); | 
|  | CRYPTO_r_unlock(CRYPTO_LOCK_RAND2); | 
|  | } else | 
|  | do_not_lock = 0; | 
|  |  | 
|  | if (!do_not_lock) | 
|  | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | 
|  | st_idx = state_index; | 
|  |  | 
|  | /* | 
|  | * use our own copies of the counters so that even if a concurrent thread | 
|  | * seeds with exactly the same data and uses the same subarray there's | 
|  | * _some_ difference | 
|  | */ | 
|  | md_c[0] = md_count[0]; | 
|  | md_c[1] = md_count[1]; | 
|  |  | 
|  | memcpy(local_md, md, sizeof md); | 
|  |  | 
|  | /* state_index <= state_num <= STATE_SIZE */ | 
|  | state_index += num; | 
|  | if (state_index >= STATE_SIZE) { | 
|  | state_index %= STATE_SIZE; | 
|  | state_num = STATE_SIZE; | 
|  | } else if (state_num < STATE_SIZE) { | 
|  | if (state_index > state_num) | 
|  | state_num = state_index; | 
|  | } | 
|  | /* state_index <= state_num <= STATE_SIZE */ | 
|  |  | 
|  | /* | 
|  | * state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE] are what we | 
|  | * will use now, but other threads may use them as well | 
|  | */ | 
|  |  | 
|  | md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0); | 
|  |  | 
|  | if (!do_not_lock) | 
|  | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | 
|  |  | 
|  | for (i = 0; i < num; i += MD_DIGEST_LENGTH) { | 
|  | j = (num - i); | 
|  | j = (j > MD_DIGEST_LENGTH) ? MD_DIGEST_LENGTH : j; | 
|  |  | 
|  | if (!MD_Init(&m)) | 
|  | goto err; | 
|  | if (!MD_Update(&m, local_md, MD_DIGEST_LENGTH)) | 
|  | goto err; | 
|  | k = (st_idx + j) - STATE_SIZE; | 
|  | if (k > 0) { | 
|  | if (!MD_Update(&m, &(state[st_idx]), j - k)) | 
|  | goto err; | 
|  | if (!MD_Update(&m, &(state[0]), k)) | 
|  | goto err; | 
|  | } else if (!MD_Update(&m, &(state[st_idx]), j)) | 
|  | goto err; | 
|  |  | 
|  | /* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */ | 
|  | if (!MD_Update(&m, buf, j)) | 
|  | goto err; | 
|  | /* | 
|  | * We know that line may cause programs such as purify and valgrind | 
|  | * to complain about use of uninitialized data.  The problem is not, | 
|  | * it's with the caller.  Removing that line will make sure you get | 
|  | * really bad randomness and thereby other problems such as very | 
|  | * insecure keys. | 
|  | */ | 
|  |  | 
|  | if (!MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c))) | 
|  | goto err; | 
|  | if (!MD_Final(&m, local_md)) | 
|  | goto err; | 
|  | md_c[1]++; | 
|  |  | 
|  | buf = (const char *)buf + j; | 
|  |  | 
|  | for (k = 0; k < j; k++) { | 
|  | /* | 
|  | * Parallel threads may interfere with this, but always each byte | 
|  | * of the new state is the XOR of some previous value of its and | 
|  | * local_md (itermediate values may be lost). Alway using locking | 
|  | * could hurt performance more than necessary given that | 
|  | * conflicts occur only when the total seeding is longer than the | 
|  | * random state. | 
|  | */ | 
|  | state[st_idx++] ^= local_md[k]; | 
|  | if (st_idx >= STATE_SIZE) | 
|  | st_idx = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!do_not_lock) | 
|  | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | 
|  | /* | 
|  | * Don't just copy back local_md into md -- this could mean that other | 
|  | * thread's seeding remains without effect (except for the incremented | 
|  | * counter).  By XORing it we keep at least as much entropy as fits into | 
|  | * md. | 
|  | */ | 
|  | for (k = 0; k < (int)sizeof(md); k++) { | 
|  | md[k] ^= local_md[k]; | 
|  | } | 
|  | if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */ | 
|  | entropy += add; | 
|  | if (!do_not_lock) | 
|  | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | 
|  |  | 
|  | #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) | 
|  | assert(md_c[1] == md_count[1]); | 
|  | #endif | 
|  | rv = 1; | 
|  | err: | 
|  | EVP_MD_CTX_cleanup(&m); | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | static int ssleay_rand_seed(const void *buf, int num) | 
|  | { | 
|  | return ssleay_rand_add(buf, num, (double)num); | 
|  | } | 
|  |  | 
|  | static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo) | 
|  | { | 
|  | static volatile int stirred_pool = 0; | 
|  | int i, j, k, st_num, st_idx; | 
|  | int num_ceil; | 
|  | int ok; | 
|  | long md_c[2]; | 
|  | unsigned char local_md[MD_DIGEST_LENGTH]; | 
|  | EVP_MD_CTX m; | 
|  | #ifndef GETPID_IS_MEANINGLESS | 
|  | pid_t curr_pid = getpid(); | 
|  | #endif | 
|  | time_t curr_time = time(NULL); | 
|  | int do_stir_pool = 0; | 
|  | /* time value for various platforms */ | 
|  | #ifdef OPENSSL_SYS_WIN32 | 
|  | FILETIME tv; | 
|  | # ifdef _WIN32_WCE | 
|  | SYSTEMTIME t; | 
|  | GetSystemTime(&t); | 
|  | SystemTimeToFileTime(&t, &tv); | 
|  | # else | 
|  | GetSystemTimeAsFileTime(&tv); | 
|  | # endif | 
|  | #elif defined(OPENSSL_SYS_VXWORKS) | 
|  | struct timespec tv; | 
|  | clock_gettime(CLOCK_REALTIME, &ts); | 
|  | #elif defined(OPENSSL_SYS_DSPBIOS) | 
|  | unsigned long long tv, OPENSSL_rdtsc(); | 
|  | tv = OPENSSL_rdtsc(); | 
|  | #else | 
|  | struct timeval tv; | 
|  | gettimeofday(&tv, NULL); | 
|  | #endif | 
|  |  | 
|  | #ifdef PREDICT | 
|  | if (rand_predictable) { | 
|  | static unsigned char val = 0; | 
|  |  | 
|  | for (i = 0; i < num; i++) | 
|  | buf[i] = val++; | 
|  | return (1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (num <= 0) | 
|  | return 1; | 
|  |  | 
|  | EVP_MD_CTX_init(&m); | 
|  | /* round upwards to multiple of MD_DIGEST_LENGTH/2 */ | 
|  | num_ceil = | 
|  | (1 + (num - 1) / (MD_DIGEST_LENGTH / 2)) * (MD_DIGEST_LENGTH / 2); | 
|  |  | 
|  | /* | 
|  | * (Based on the rand(3) manpage:) | 
|  | * | 
|  | * For each group of 10 bytes (or less), we do the following: | 
|  | * | 
|  | * Input into the hash function the local 'md' (which is initialized from | 
|  | * the global 'md' before any bytes are generated), the bytes that are to | 
|  | * be overwritten by the random bytes, and bytes from the 'state' | 
|  | * (incrementing looping index). From this digest output (which is kept | 
|  | * in 'md'), the top (up to) 10 bytes are returned to the caller and the | 
|  | * bottom 10 bytes are xored into the 'state'. | 
|  | * | 
|  | * Finally, after we have finished 'num' random bytes for the | 
|  | * caller, 'count' (which is incremented) and the local and global 'md' | 
|  | * are fed into the hash function and the results are kept in the | 
|  | * global 'md'. | 
|  | */ | 
|  |  | 
|  | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | 
|  |  | 
|  | /* prevent ssleay_rand_bytes() from trying to obtain the lock again */ | 
|  | CRYPTO_w_lock(CRYPTO_LOCK_RAND2); | 
|  | CRYPTO_THREADID_current(&locking_threadid); | 
|  | CRYPTO_w_unlock(CRYPTO_LOCK_RAND2); | 
|  | crypto_lock_rand = 1; | 
|  |  | 
|  | if (!initialized) { | 
|  | RAND_poll(); | 
|  | initialized = 1; | 
|  | } | 
|  |  | 
|  | if (!stirred_pool) | 
|  | do_stir_pool = 1; | 
|  |  | 
|  | ok = (entropy >= ENTROPY_NEEDED); | 
|  | if (!ok) { | 
|  | /* | 
|  | * If the PRNG state is not yet unpredictable, then seeing the PRNG | 
|  | * output may help attackers to determine the new state; thus we have | 
|  | * to decrease the entropy estimate. Once we've had enough initial | 
|  | * seeding we don't bother to adjust the entropy count, though, | 
|  | * because we're not ambitious to provide *information-theoretic* | 
|  | * randomness. NOTE: This approach fails if the program forks before | 
|  | * we have enough entropy. Entropy should be collected in a separate | 
|  | * input pool and be transferred to the output pool only when the | 
|  | * entropy limit has been reached. | 
|  | */ | 
|  | entropy -= num; | 
|  | if (entropy < 0) | 
|  | entropy = 0; | 
|  | } | 
|  |  | 
|  | if (do_stir_pool) { | 
|  | /* | 
|  | * In the output function only half of 'md' remains secret, so we | 
|  | * better make sure that the required entropy gets 'evenly | 
|  | * distributed' through 'state', our randomness pool. The input | 
|  | * function (ssleay_rand_add) chains all of 'md', which makes it more | 
|  | * suitable for this purpose. | 
|  | */ | 
|  |  | 
|  | int n = STATE_SIZE;     /* so that the complete pool gets accessed */ | 
|  | while (n > 0) { | 
|  | #if MD_DIGEST_LENGTH > 20 | 
|  | # error "Please adjust DUMMY_SEED." | 
|  | #endif | 
|  | #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */ | 
|  | /* | 
|  | * Note that the seed does not matter, it's just that | 
|  | * ssleay_rand_add expects to have something to hash. | 
|  | */ | 
|  | ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0); | 
|  | n -= MD_DIGEST_LENGTH; | 
|  | } | 
|  | if (ok) | 
|  | stirred_pool = 1; | 
|  | } | 
|  |  | 
|  | st_idx = state_index; | 
|  | st_num = state_num; | 
|  | md_c[0] = md_count[0]; | 
|  | md_c[1] = md_count[1]; | 
|  | memcpy(local_md, md, sizeof md); | 
|  |  | 
|  | state_index += num_ceil; | 
|  | if (state_index > state_num) | 
|  | state_index %= state_num; | 
|  |  | 
|  | /* | 
|  | * state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] are now | 
|  | * ours (but other threads may use them too) | 
|  | */ | 
|  |  | 
|  | md_count[0] += 1; | 
|  |  | 
|  | /* before unlocking, we must clear 'crypto_lock_rand' */ | 
|  | crypto_lock_rand = 0; | 
|  | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | 
|  |  | 
|  | while (num > 0) { | 
|  | /* num_ceil -= MD_DIGEST_LENGTH/2 */ | 
|  | j = (num >= MD_DIGEST_LENGTH / 2) ? MD_DIGEST_LENGTH / 2 : num; | 
|  | num -= j; | 
|  | if (!MD_Init(&m)) | 
|  | goto err; | 
|  | #ifndef GETPID_IS_MEANINGLESS | 
|  | if (curr_pid) {         /* just in the first iteration to save time */ | 
|  | if (!MD_Update(&m, (unsigned char *)&curr_pid, sizeof curr_pid)) | 
|  | goto err; | 
|  | curr_pid = 0; | 
|  | } | 
|  | #endif | 
|  | if (curr_time) {        /* just in the first iteration to save time */ | 
|  | if (!MD_Update(&m, (unsigned char *)&curr_time, sizeof curr_time)) | 
|  | goto err; | 
|  | if (!MD_Update(&m, (unsigned char *)&tv, sizeof tv)) | 
|  | goto err; | 
|  | curr_time = 0; | 
|  | rand_hw_seed(&m); | 
|  | } | 
|  | if (!MD_Update(&m, local_md, MD_DIGEST_LENGTH)) | 
|  | goto err; | 
|  | if (!MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c))) | 
|  | goto err; | 
|  |  | 
|  | #ifndef PURIFY                  /* purify complains */ | 
|  | /* | 
|  | * The following line uses the supplied buffer as a small source of | 
|  | * entropy: since this buffer is often uninitialised it may cause | 
|  | * programs such as purify or valgrind to complain. So for those | 
|  | * builds it is not used: the removal of such a small source of | 
|  | * entropy has negligible impact on security. | 
|  | */ | 
|  | if (!MD_Update(&m, buf, j)) | 
|  | goto err; | 
|  | #endif | 
|  |  | 
|  | k = (st_idx + MD_DIGEST_LENGTH / 2) - st_num; | 
|  | if (k > 0) { | 
|  | if (!MD_Update(&m, &(state[st_idx]), MD_DIGEST_LENGTH / 2 - k)) | 
|  | goto err; | 
|  | if (!MD_Update(&m, &(state[0]), k)) | 
|  | goto err; | 
|  | } else if (!MD_Update(&m, &(state[st_idx]), MD_DIGEST_LENGTH / 2)) | 
|  | goto err; | 
|  | if (!MD_Final(&m, local_md)) | 
|  | goto err; | 
|  |  | 
|  | for (i = 0; i < MD_DIGEST_LENGTH / 2; i++) { | 
|  | /* may compete with other threads */ | 
|  | state[st_idx++] ^= local_md[i]; | 
|  | if (st_idx >= st_num) | 
|  | st_idx = 0; | 
|  | if (i < j) | 
|  | *(buf++) = local_md[i + MD_DIGEST_LENGTH / 2]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MD_Init(&m) | 
|  | || !MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c)) | 
|  | || !MD_Update(&m, local_md, MD_DIGEST_LENGTH)) | 
|  | goto err; | 
|  | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | 
|  | if (!MD_Update(&m, md, MD_DIGEST_LENGTH) || !MD_Final(&m, md)) { | 
|  | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | 
|  | goto err; | 
|  | } | 
|  | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | 
|  |  | 
|  | EVP_MD_CTX_cleanup(&m); | 
|  | if (ok) | 
|  | return (1); | 
|  | else if (pseudo) | 
|  | return 0; | 
|  | else { | 
|  | RANDerr(RAND_F_SSLEAY_RAND_BYTES, RAND_R_PRNG_NOT_SEEDED); | 
|  | ERR_add_error_data(1, "You need to read the OpenSSL FAQ, " | 
|  | "http://www.openssl.org/support/faq.html"); | 
|  | return (0); | 
|  | } | 
|  | err: | 
|  | EVP_MD_CTX_cleanup(&m); | 
|  | RANDerr(RAND_F_SSLEAY_RAND_BYTES, ERR_R_EVP_LIB); | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num) | 
|  | { | 
|  | return ssleay_rand_bytes(buf, num, 0); | 
|  | } | 
|  |  | 
|  | #ifndef OPENSSL_NO_DEPRECATED | 
|  | /* | 
|  | * pseudo-random bytes that are guaranteed to be unique but not unpredictable | 
|  | */ | 
|  | static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num) | 
|  | { | 
|  | return ssleay_rand_bytes(buf, num, 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int ssleay_rand_status(void) | 
|  | { | 
|  | CRYPTO_THREADID cur; | 
|  | int ret; | 
|  | int do_not_lock; | 
|  |  | 
|  | CRYPTO_THREADID_current(&cur); | 
|  | /* | 
|  | * check if we already have the lock (could happen if a RAND_poll() | 
|  | * implementation calls RAND_status()) | 
|  | */ | 
|  | if (crypto_lock_rand) { | 
|  | CRYPTO_r_lock(CRYPTO_LOCK_RAND2); | 
|  | do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur); | 
|  | CRYPTO_r_unlock(CRYPTO_LOCK_RAND2); | 
|  | } else | 
|  | do_not_lock = 0; | 
|  |  | 
|  | if (!do_not_lock) { | 
|  | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | 
|  |  | 
|  | /* | 
|  | * prevent ssleay_rand_bytes() from trying to obtain the lock again | 
|  | */ | 
|  | CRYPTO_w_lock(CRYPTO_LOCK_RAND2); | 
|  | CRYPTO_THREADID_cpy(&locking_threadid, &cur); | 
|  | CRYPTO_w_unlock(CRYPTO_LOCK_RAND2); | 
|  | crypto_lock_rand = 1; | 
|  | } | 
|  |  | 
|  | if (!initialized) { | 
|  | RAND_poll(); | 
|  | initialized = 1; | 
|  | } | 
|  |  | 
|  | ret = entropy >= ENTROPY_NEEDED; | 
|  |  | 
|  | if (!do_not_lock) { | 
|  | /* before unlocking, we must clear 'crypto_lock_rand' */ | 
|  | crypto_lock_rand = 0; | 
|  |  | 
|  | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rand_hw_seed: get seed data from any available hardware RNG. only | 
|  | * currently supports rdrand. | 
|  | */ | 
|  |  | 
|  | /* Adapted from eng_rdrand.c */ | 
|  |  | 
|  | #if (defined(__i386)   || defined(__i386__)   || defined(_M_IX86) || \ | 
|  | defined(__x86_64) || defined(__x86_64__) || \ | 
|  | defined(_M_AMD64) || defined (_M_X64)) && defined(OPENSSL_CPUID_OBJ) | 
|  |  | 
|  | # define RDRAND_CALLS    4 | 
|  |  | 
|  | size_t OPENSSL_ia32_rdrand(void); | 
|  | extern unsigned int OPENSSL_ia32cap_P[]; | 
|  |  | 
|  | static void rand_hw_seed(EVP_MD_CTX *ctx) | 
|  | { | 
|  | int i; | 
|  | if (!(OPENSSL_ia32cap_P[1] & (1 << (62 - 32)))) | 
|  | return; | 
|  | for (i = 0; i < RDRAND_CALLS; i++) { | 
|  | size_t rnd; | 
|  | rnd = OPENSSL_ia32_rdrand(); | 
|  | if (rnd == 0) | 
|  | return; | 
|  | MD_Update(ctx, (unsigned char *)&rnd, sizeof(size_t)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* XOR an existing buffer with random data */ | 
|  |  | 
|  | void rand_hw_xor(unsigned char *buf, size_t num) | 
|  | { | 
|  | size_t rnd; | 
|  | if (!(OPENSSL_ia32cap_P[1] & (1 << (62 - 32)))) | 
|  | return; | 
|  | while (num >= sizeof(size_t)) { | 
|  | rnd = OPENSSL_ia32_rdrand(); | 
|  | if (rnd == 0) | 
|  | return; | 
|  | *((size_t *)buf) ^= rnd; | 
|  | buf += sizeof(size_t); | 
|  | num -= sizeof(size_t); | 
|  | } | 
|  | if (num) { | 
|  | rnd = OPENSSL_ia32_rdrand(); | 
|  | if (rnd == 0) | 
|  | return; | 
|  | while (num) { | 
|  | *buf ^= rnd & 0xff; | 
|  | rnd >>= 8; | 
|  | buf++; | 
|  | num--; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static void rand_hw_seed(EVP_MD_CTX *ctx) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | void rand_hw_xor(unsigned char *buf, size_t num) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | #endif |