| /* | 
 |  * Copyright 2002-2017 The OpenSSL Project Authors. All Rights Reserved. | 
 |  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved | 
 |  * | 
 |  * Licensed under the OpenSSL license (the "License").  You may not use | 
 |  * this file except in compliance with the License.  You can obtain a copy | 
 |  * in the file LICENSE in the source distribution or at | 
 |  * https://www.openssl.org/source/license.html | 
 |  */ | 
 |  | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 | #include <stdio.h> | 
 | #include "internal/cryptlib.h" | 
 | #include "bn_lcl.h" | 
 |  | 
 | #ifndef OPENSSL_NO_EC2M | 
 |  | 
 | /* | 
 |  * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should | 
 |  * fail. | 
 |  */ | 
 | # define MAX_ITERATIONS 50 | 
 |  | 
 | static const BN_ULONG SQR_tb[16] = { 0, 1, 4, 5, 16, 17, 20, 21, | 
 |     64, 65, 68, 69, 80, 81, 84, 85 | 
 | }; | 
 |  | 
 | /* Platform-specific macros to accelerate squaring. */ | 
 | # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) | 
 | #  define SQR1(w) \ | 
 |     SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \ | 
 |     SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \ | 
 |     SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \ | 
 |     SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF] | 
 | #  define SQR0(w) \ | 
 |     SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \ | 
 |     SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \ | 
 |     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \ | 
 |     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF] | 
 | # endif | 
 | # ifdef THIRTY_TWO_BIT | 
 | #  define SQR1(w) \ | 
 |     SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \ | 
 |     SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF] | 
 | #  define SQR0(w) \ | 
 |     SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \ | 
 |     SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF] | 
 | # endif | 
 |  | 
 | # if !defined(OPENSSL_BN_ASM_GF2m) | 
 | /* | 
 |  * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is | 
 |  * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that | 
 |  * the variables have the right amount of space allocated. | 
 |  */ | 
 | #  ifdef THIRTY_TWO_BIT | 
 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, | 
 |                             const BN_ULONG b) | 
 | { | 
 |     register BN_ULONG h, l, s; | 
 |     BN_ULONG tab[8], top2b = a >> 30; | 
 |     register BN_ULONG a1, a2, a4; | 
 |  | 
 |     a1 = a & (0x3FFFFFFF); | 
 |     a2 = a1 << 1; | 
 |     a4 = a2 << 1; | 
 |  | 
 |     tab[0] = 0; | 
 |     tab[1] = a1; | 
 |     tab[2] = a2; | 
 |     tab[3] = a1 ^ a2; | 
 |     tab[4] = a4; | 
 |     tab[5] = a1 ^ a4; | 
 |     tab[6] = a2 ^ a4; | 
 |     tab[7] = a1 ^ a2 ^ a4; | 
 |  | 
 |     s = tab[b & 0x7]; | 
 |     l = s; | 
 |     s = tab[b >> 3 & 0x7]; | 
 |     l ^= s << 3; | 
 |     h = s >> 29; | 
 |     s = tab[b >> 6 & 0x7]; | 
 |     l ^= s << 6; | 
 |     h ^= s >> 26; | 
 |     s = tab[b >> 9 & 0x7]; | 
 |     l ^= s << 9; | 
 |     h ^= s >> 23; | 
 |     s = tab[b >> 12 & 0x7]; | 
 |     l ^= s << 12; | 
 |     h ^= s >> 20; | 
 |     s = tab[b >> 15 & 0x7]; | 
 |     l ^= s << 15; | 
 |     h ^= s >> 17; | 
 |     s = tab[b >> 18 & 0x7]; | 
 |     l ^= s << 18; | 
 |     h ^= s >> 14; | 
 |     s = tab[b >> 21 & 0x7]; | 
 |     l ^= s << 21; | 
 |     h ^= s >> 11; | 
 |     s = tab[b >> 24 & 0x7]; | 
 |     l ^= s << 24; | 
 |     h ^= s >> 8; | 
 |     s = tab[b >> 27 & 0x7]; | 
 |     l ^= s << 27; | 
 |     h ^= s >> 5; | 
 |     s = tab[b >> 30]; | 
 |     l ^= s << 30; | 
 |     h ^= s >> 2; | 
 |  | 
 |     /* compensate for the top two bits of a */ | 
 |  | 
 |     if (top2b & 01) { | 
 |         l ^= b << 30; | 
 |         h ^= b >> 2; | 
 |     } | 
 |     if (top2b & 02) { | 
 |         l ^= b << 31; | 
 |         h ^= b >> 1; | 
 |     } | 
 |  | 
 |     *r1 = h; | 
 |     *r0 = l; | 
 | } | 
 | #  endif | 
 | #  if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) | 
 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, | 
 |                             const BN_ULONG b) | 
 | { | 
 |     register BN_ULONG h, l, s; | 
 |     BN_ULONG tab[16], top3b = a >> 61; | 
 |     register BN_ULONG a1, a2, a4, a8; | 
 |  | 
 |     a1 = a & (0x1FFFFFFFFFFFFFFFULL); | 
 |     a2 = a1 << 1; | 
 |     a4 = a2 << 1; | 
 |     a8 = a4 << 1; | 
 |  | 
 |     tab[0] = 0; | 
 |     tab[1] = a1; | 
 |     tab[2] = a2; | 
 |     tab[3] = a1 ^ a2; | 
 |     tab[4] = a4; | 
 |     tab[5] = a1 ^ a4; | 
 |     tab[6] = a2 ^ a4; | 
 |     tab[7] = a1 ^ a2 ^ a4; | 
 |     tab[8] = a8; | 
 |     tab[9] = a1 ^ a8; | 
 |     tab[10] = a2 ^ a8; | 
 |     tab[11] = a1 ^ a2 ^ a8; | 
 |     tab[12] = a4 ^ a8; | 
 |     tab[13] = a1 ^ a4 ^ a8; | 
 |     tab[14] = a2 ^ a4 ^ a8; | 
 |     tab[15] = a1 ^ a2 ^ a4 ^ a8; | 
 |  | 
 |     s = tab[b & 0xF]; | 
 |     l = s; | 
 |     s = tab[b >> 4 & 0xF]; | 
 |     l ^= s << 4; | 
 |     h = s >> 60; | 
 |     s = tab[b >> 8 & 0xF]; | 
 |     l ^= s << 8; | 
 |     h ^= s >> 56; | 
 |     s = tab[b >> 12 & 0xF]; | 
 |     l ^= s << 12; | 
 |     h ^= s >> 52; | 
 |     s = tab[b >> 16 & 0xF]; | 
 |     l ^= s << 16; | 
 |     h ^= s >> 48; | 
 |     s = tab[b >> 20 & 0xF]; | 
 |     l ^= s << 20; | 
 |     h ^= s >> 44; | 
 |     s = tab[b >> 24 & 0xF]; | 
 |     l ^= s << 24; | 
 |     h ^= s >> 40; | 
 |     s = tab[b >> 28 & 0xF]; | 
 |     l ^= s << 28; | 
 |     h ^= s >> 36; | 
 |     s = tab[b >> 32 & 0xF]; | 
 |     l ^= s << 32; | 
 |     h ^= s >> 32; | 
 |     s = tab[b >> 36 & 0xF]; | 
 |     l ^= s << 36; | 
 |     h ^= s >> 28; | 
 |     s = tab[b >> 40 & 0xF]; | 
 |     l ^= s << 40; | 
 |     h ^= s >> 24; | 
 |     s = tab[b >> 44 & 0xF]; | 
 |     l ^= s << 44; | 
 |     h ^= s >> 20; | 
 |     s = tab[b >> 48 & 0xF]; | 
 |     l ^= s << 48; | 
 |     h ^= s >> 16; | 
 |     s = tab[b >> 52 & 0xF]; | 
 |     l ^= s << 52; | 
 |     h ^= s >> 12; | 
 |     s = tab[b >> 56 & 0xF]; | 
 |     l ^= s << 56; | 
 |     h ^= s >> 8; | 
 |     s = tab[b >> 60]; | 
 |     l ^= s << 60; | 
 |     h ^= s >> 4; | 
 |  | 
 |     /* compensate for the top three bits of a */ | 
 |  | 
 |     if (top3b & 01) { | 
 |         l ^= b << 61; | 
 |         h ^= b >> 3; | 
 |     } | 
 |     if (top3b & 02) { | 
 |         l ^= b << 62; | 
 |         h ^= b >> 2; | 
 |     } | 
 |     if (top3b & 04) { | 
 |         l ^= b << 63; | 
 |         h ^= b >> 1; | 
 |     } | 
 |  | 
 |     *r1 = h; | 
 |     *r0 = l; | 
 | } | 
 | #  endif | 
 |  | 
 | /* | 
 |  * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, | 
 |  * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST | 
 |  * ensure that the variables have the right amount of space allocated. | 
 |  */ | 
 | static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, | 
 |                             const BN_ULONG b1, const BN_ULONG b0) | 
 | { | 
 |     BN_ULONG m1, m0; | 
 |     /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ | 
 |     bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1); | 
 |     bn_GF2m_mul_1x1(r + 1, r, a0, b0); | 
 |     bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); | 
 |     /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ | 
 |     r[2] ^= m1 ^ r[1] ^ r[3];   /* h0 ^= m1 ^ l1 ^ h1; */ | 
 |     r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ | 
 | } | 
 | # else | 
 | void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, | 
 |                      BN_ULONG b0); | 
 | # endif | 
 |  | 
 | /* | 
 |  * Add polynomials a and b and store result in r; r could be a or b, a and b | 
 |  * could be equal; r is the bitwise XOR of a and b. | 
 |  */ | 
 | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | 
 | { | 
 |     int i; | 
 |     const BIGNUM *at, *bt; | 
 |  | 
 |     bn_check_top(a); | 
 |     bn_check_top(b); | 
 |  | 
 |     if (a->top < b->top) { | 
 |         at = b; | 
 |         bt = a; | 
 |     } else { | 
 |         at = a; | 
 |         bt = b; | 
 |     } | 
 |  | 
 |     if (bn_wexpand(r, at->top) == NULL) | 
 |         return 0; | 
 |  | 
 |     for (i = 0; i < bt->top; i++) { | 
 |         r->d[i] = at->d[i] ^ bt->d[i]; | 
 |     } | 
 |     for (; i < at->top; i++) { | 
 |         r->d[i] = at->d[i]; | 
 |     } | 
 |  | 
 |     r->top = at->top; | 
 |     bn_correct_top(r); | 
 |  | 
 |     return 1; | 
 | } | 
 |  | 
 | /*- | 
 |  * Some functions allow for representation of the irreducible polynomials | 
 |  * as an int[], say p.  The irreducible f(t) is then of the form: | 
 |  *     t^p[0] + t^p[1] + ... + t^p[k] | 
 |  * where m = p[0] > p[1] > ... > p[k] = 0. | 
 |  */ | 
 |  | 
 | /* Performs modular reduction of a and store result in r.  r could be a. */ | 
 | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) | 
 | { | 
 |     int j, k; | 
 |     int n, dN, d0, d1; | 
 |     BN_ULONG zz, *z; | 
 |  | 
 |     bn_check_top(a); | 
 |  | 
 |     if (!p[0]) { | 
 |         /* reduction mod 1 => return 0 */ | 
 |         BN_zero(r); | 
 |         return 1; | 
 |     } | 
 |  | 
 |     /* | 
 |      * Since the algorithm does reduction in the r value, if a != r, copy the | 
 |      * contents of a into r so we can do reduction in r. | 
 |      */ | 
 |     if (a != r) { | 
 |         if (!bn_wexpand(r, a->top)) | 
 |             return 0; | 
 |         for (j = 0; j < a->top; j++) { | 
 |             r->d[j] = a->d[j]; | 
 |         } | 
 |         r->top = a->top; | 
 |     } | 
 |     z = r->d; | 
 |  | 
 |     /* start reduction */ | 
 |     dN = p[0] / BN_BITS2; | 
 |     for (j = r->top - 1; j > dN;) { | 
 |         zz = z[j]; | 
 |         if (z[j] == 0) { | 
 |             j--; | 
 |             continue; | 
 |         } | 
 |         z[j] = 0; | 
 |  | 
 |         for (k = 1; p[k] != 0; k++) { | 
 |             /* reducing component t^p[k] */ | 
 |             n = p[0] - p[k]; | 
 |             d0 = n % BN_BITS2; | 
 |             d1 = BN_BITS2 - d0; | 
 |             n /= BN_BITS2; | 
 |             z[j - n] ^= (zz >> d0); | 
 |             if (d0) | 
 |                 z[j - n - 1] ^= (zz << d1); | 
 |         } | 
 |  | 
 |         /* reducing component t^0 */ | 
 |         n = dN; | 
 |         d0 = p[0] % BN_BITS2; | 
 |         d1 = BN_BITS2 - d0; | 
 |         z[j - n] ^= (zz >> d0); | 
 |         if (d0) | 
 |             z[j - n - 1] ^= (zz << d1); | 
 |     } | 
 |  | 
 |     /* final round of reduction */ | 
 |     while (j == dN) { | 
 |  | 
 |         d0 = p[0] % BN_BITS2; | 
 |         zz = z[dN] >> d0; | 
 |         if (zz == 0) | 
 |             break; | 
 |         d1 = BN_BITS2 - d0; | 
 |  | 
 |         /* clear up the top d1 bits */ | 
 |         if (d0) | 
 |             z[dN] = (z[dN] << d1) >> d1; | 
 |         else | 
 |             z[dN] = 0; | 
 |         z[0] ^= zz;             /* reduction t^0 component */ | 
 |  | 
 |         for (k = 1; p[k] != 0; k++) { | 
 |             BN_ULONG tmp_ulong; | 
 |  | 
 |             /* reducing component t^p[k] */ | 
 |             n = p[k] / BN_BITS2; | 
 |             d0 = p[k] % BN_BITS2; | 
 |             d1 = BN_BITS2 - d0; | 
 |             z[n] ^= (zz << d0); | 
 |             if (d0 && (tmp_ulong = zz >> d1)) | 
 |                 z[n + 1] ^= tmp_ulong; | 
 |         } | 
 |  | 
 |     } | 
 |  | 
 |     bn_correct_top(r); | 
 |     return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Performs modular reduction of a by p and store result in r.  r could be a. | 
 |  * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper | 
 |  * function is only provided for convenience; for best performance, use the | 
 |  * BN_GF2m_mod_arr function. | 
 |  */ | 
 | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) | 
 | { | 
 |     int ret = 0; | 
 |     int arr[6]; | 
 |     bn_check_top(a); | 
 |     bn_check_top(p); | 
 |     ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr)); | 
 |     if (!ret || ret > (int)OSSL_NELEM(arr)) { | 
 |         BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH); | 
 |         return 0; | 
 |     } | 
 |     ret = BN_GF2m_mod_arr(r, a, arr); | 
 |     bn_check_top(r); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Compute the product of two polynomials a and b, reduce modulo p, and store | 
 |  * the result in r.  r could be a or b; a could be b. | 
 |  */ | 
 | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                         const int p[], BN_CTX *ctx) | 
 | { | 
 |     int zlen, i, j, k, ret = 0; | 
 |     BIGNUM *s; | 
 |     BN_ULONG x1, x0, y1, y0, zz[4]; | 
 |  | 
 |     bn_check_top(a); | 
 |     bn_check_top(b); | 
 |  | 
 |     if (a == b) { | 
 |         return BN_GF2m_mod_sqr_arr(r, a, p, ctx); | 
 |     } | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |     if ((s = BN_CTX_get(ctx)) == NULL) | 
 |         goto err; | 
 |  | 
 |     zlen = a->top + b->top + 4; | 
 |     if (!bn_wexpand(s, zlen)) | 
 |         goto err; | 
 |     s->top = zlen; | 
 |  | 
 |     for (i = 0; i < zlen; i++) | 
 |         s->d[i] = 0; | 
 |  | 
 |     for (j = 0; j < b->top; j += 2) { | 
 |         y0 = b->d[j]; | 
 |         y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1]; | 
 |         for (i = 0; i < a->top; i += 2) { | 
 |             x0 = a->d[i]; | 
 |             x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1]; | 
 |             bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); | 
 |             for (k = 0; k < 4; k++) | 
 |                 s->d[i + j + k] ^= zz[k]; | 
 |         } | 
 |     } | 
 |  | 
 |     bn_correct_top(s); | 
 |     if (BN_GF2m_mod_arr(r, s, p)) | 
 |         ret = 1; | 
 |     bn_check_top(r); | 
 |  | 
 |  err: | 
 |     BN_CTX_end(ctx); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Compute the product of two polynomials a and b, reduce modulo p, and store | 
 |  * the result in r.  r could be a or b; a could equal b. This function calls | 
 |  * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is | 
 |  * only provided for convenience; for best performance, use the | 
 |  * BN_GF2m_mod_mul_arr function. | 
 |  */ | 
 | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                     const BIGNUM *p, BN_CTX *ctx) | 
 | { | 
 |     int ret = 0; | 
 |     const int max = BN_num_bits(p) + 1; | 
 |     int *arr = NULL; | 
 |     bn_check_top(a); | 
 |     bn_check_top(b); | 
 |     bn_check_top(p); | 
 |     if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) | 
 |         goto err; | 
 |     ret = BN_GF2m_poly2arr(p, arr, max); | 
 |     if (!ret || ret > max) { | 
 |         BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH); | 
 |         goto err; | 
 |     } | 
 |     ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); | 
 |     bn_check_top(r); | 
 |  err: | 
 |     OPENSSL_free(arr); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* Square a, reduce the result mod p, and store it in a.  r could be a. */ | 
 | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], | 
 |                         BN_CTX *ctx) | 
 | { | 
 |     int i, ret = 0; | 
 |     BIGNUM *s; | 
 |  | 
 |     bn_check_top(a); | 
 |     BN_CTX_start(ctx); | 
 |     if ((s = BN_CTX_get(ctx)) == NULL) | 
 |         goto err; | 
 |     if (!bn_wexpand(s, 2 * a->top)) | 
 |         goto err; | 
 |  | 
 |     for (i = a->top - 1; i >= 0; i--) { | 
 |         s->d[2 * i + 1] = SQR1(a->d[i]); | 
 |         s->d[2 * i] = SQR0(a->d[i]); | 
 |     } | 
 |  | 
 |     s->top = 2 * a->top; | 
 |     bn_correct_top(s); | 
 |     if (!BN_GF2m_mod_arr(r, s, p)) | 
 |         goto err; | 
 |     bn_check_top(r); | 
 |     ret = 1; | 
 |  err: | 
 |     BN_CTX_end(ctx); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Square a, reduce the result mod p, and store it in a.  r could be a. This | 
 |  * function calls down to the BN_GF2m_mod_sqr_arr implementation; this | 
 |  * wrapper function is only provided for convenience; for best performance, | 
 |  * use the BN_GF2m_mod_sqr_arr function. | 
 |  */ | 
 | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | 
 | { | 
 |     int ret = 0; | 
 |     const int max = BN_num_bits(p) + 1; | 
 |     int *arr = NULL; | 
 |  | 
 |     bn_check_top(a); | 
 |     bn_check_top(p); | 
 |     if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) | 
 |         goto err; | 
 |     ret = BN_GF2m_poly2arr(p, arr, max); | 
 |     if (!ret || ret > max) { | 
 |         BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH); | 
 |         goto err; | 
 |     } | 
 |     ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); | 
 |     bn_check_top(r); | 
 |  err: | 
 |     OPENSSL_free(arr); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Invert a, reduce modulo p, and store the result in r. r could be a. Uses | 
 |  * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D., | 
 |  * Hernandez, J.L., and Menezes, A.  "Software Implementation of Elliptic | 
 |  * Curve Cryptography Over Binary Fields". | 
 |  */ | 
 | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | 
 | { | 
 |     BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; | 
 |     int ret = 0; | 
 |  | 
 |     bn_check_top(a); | 
 |     bn_check_top(p); | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |  | 
 |     b = BN_CTX_get(ctx); | 
 |     c = BN_CTX_get(ctx); | 
 |     u = BN_CTX_get(ctx); | 
 |     v = BN_CTX_get(ctx); | 
 |     if (v == NULL) | 
 |         goto err; | 
 |  | 
 |     if (!BN_GF2m_mod(u, a, p)) | 
 |         goto err; | 
 |     if (BN_is_zero(u)) | 
 |         goto err; | 
 |  | 
 |     if (!BN_copy(v, p)) | 
 |         goto err; | 
 | # if 0 | 
 |     if (!BN_one(b)) | 
 |         goto err; | 
 |  | 
 |     while (1) { | 
 |         while (!BN_is_odd(u)) { | 
 |             if (BN_is_zero(u)) | 
 |                 goto err; | 
 |             if (!BN_rshift1(u, u)) | 
 |                 goto err; | 
 |             if (BN_is_odd(b)) { | 
 |                 if (!BN_GF2m_add(b, b, p)) | 
 |                     goto err; | 
 |             } | 
 |             if (!BN_rshift1(b, b)) | 
 |                 goto err; | 
 |         } | 
 |  | 
 |         if (BN_abs_is_word(u, 1)) | 
 |             break; | 
 |  | 
 |         if (BN_num_bits(u) < BN_num_bits(v)) { | 
 |             tmp = u; | 
 |             u = v; | 
 |             v = tmp; | 
 |             tmp = b; | 
 |             b = c; | 
 |             c = tmp; | 
 |         } | 
 |  | 
 |         if (!BN_GF2m_add(u, u, v)) | 
 |             goto err; | 
 |         if (!BN_GF2m_add(b, b, c)) | 
 |             goto err; | 
 |     } | 
 | # else | 
 |     { | 
 |         int i; | 
 |         int ubits = BN_num_bits(u); | 
 |         int vbits = BN_num_bits(v); /* v is copy of p */ | 
 |         int top = p->top; | 
 |         BN_ULONG *udp, *bdp, *vdp, *cdp; | 
 |  | 
 |         if (!bn_wexpand(u, top)) | 
 |             goto err; | 
 |         udp = u->d; | 
 |         for (i = u->top; i < top; i++) | 
 |             udp[i] = 0; | 
 |         u->top = top; | 
 |         if (!bn_wexpand(b, top)) | 
 |           goto err; | 
 |         bdp = b->d; | 
 |         bdp[0] = 1; | 
 |         for (i = 1; i < top; i++) | 
 |             bdp[i] = 0; | 
 |         b->top = top; | 
 |         if (!bn_wexpand(c, top)) | 
 |           goto err; | 
 |         cdp = c->d; | 
 |         for (i = 0; i < top; i++) | 
 |             cdp[i] = 0; | 
 |         c->top = top; | 
 |         vdp = v->d;             /* It pays off to "cache" *->d pointers, | 
 |                                  * because it allows optimizer to be more | 
 |                                  * aggressive. But we don't have to "cache" | 
 |                                  * p->d, because *p is declared 'const'... */ | 
 |         while (1) { | 
 |             while (ubits && !(udp[0] & 1)) { | 
 |                 BN_ULONG u0, u1, b0, b1, mask; | 
 |  | 
 |                 u0 = udp[0]; | 
 |                 b0 = bdp[0]; | 
 |                 mask = (BN_ULONG)0 - (b0 & 1); | 
 |                 b0 ^= p->d[0] & mask; | 
 |                 for (i = 0; i < top - 1; i++) { | 
 |                     u1 = udp[i + 1]; | 
 |                     udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2; | 
 |                     u0 = u1; | 
 |                     b1 = bdp[i + 1] ^ (p->d[i + 1] & mask); | 
 |                     bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2; | 
 |                     b0 = b1; | 
 |                 } | 
 |                 udp[i] = u0 >> 1; | 
 |                 bdp[i] = b0 >> 1; | 
 |                 ubits--; | 
 |             } | 
 |  | 
 |             if (ubits <= BN_BITS2) { | 
 |                 if (udp[0] == 0) /* poly was reducible */ | 
 |                     goto err; | 
 |                 if (udp[0] == 1) | 
 |                     break; | 
 |             } | 
 |  | 
 |             if (ubits < vbits) { | 
 |                 i = ubits; | 
 |                 ubits = vbits; | 
 |                 vbits = i; | 
 |                 tmp = u; | 
 |                 u = v; | 
 |                 v = tmp; | 
 |                 tmp = b; | 
 |                 b = c; | 
 |                 c = tmp; | 
 |                 udp = vdp; | 
 |                 vdp = v->d; | 
 |                 bdp = cdp; | 
 |                 cdp = c->d; | 
 |             } | 
 |             for (i = 0; i < top; i++) { | 
 |                 udp[i] ^= vdp[i]; | 
 |                 bdp[i] ^= cdp[i]; | 
 |             } | 
 |             if (ubits == vbits) { | 
 |                 BN_ULONG ul; | 
 |                 int utop = (ubits - 1) / BN_BITS2; | 
 |  | 
 |                 while ((ul = udp[utop]) == 0 && utop) | 
 |                     utop--; | 
 |                 ubits = utop * BN_BITS2 + BN_num_bits_word(ul); | 
 |             } | 
 |         } | 
 |         bn_correct_top(b); | 
 |     } | 
 | # endif | 
 |  | 
 |     if (!BN_copy(r, b)) | 
 |         goto err; | 
 |     bn_check_top(r); | 
 |     ret = 1; | 
 |  | 
 |  err: | 
 | # ifdef BN_DEBUG                /* BN_CTX_end would complain about the | 
 |                                  * expanded form */ | 
 |     bn_correct_top(c); | 
 |     bn_correct_top(u); | 
 |     bn_correct_top(v); | 
 | # endif | 
 |     BN_CTX_end(ctx); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Invert xx, reduce modulo p, and store the result in r. r could be xx. | 
 |  * This function calls down to the BN_GF2m_mod_inv implementation; this | 
 |  * wrapper function is only provided for convenience; for best performance, | 
 |  * use the BN_GF2m_mod_inv function. | 
 |  */ | 
 | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], | 
 |                         BN_CTX *ctx) | 
 | { | 
 |     BIGNUM *field; | 
 |     int ret = 0; | 
 |  | 
 |     bn_check_top(xx); | 
 |     BN_CTX_start(ctx); | 
 |     if ((field = BN_CTX_get(ctx)) == NULL) | 
 |         goto err; | 
 |     if (!BN_GF2m_arr2poly(p, field)) | 
 |         goto err; | 
 |  | 
 |     ret = BN_GF2m_mod_inv(r, xx, field, ctx); | 
 |     bn_check_top(r); | 
 |  | 
 |  err: | 
 |     BN_CTX_end(ctx); | 
 |     return ret; | 
 | } | 
 |  | 
 | # ifndef OPENSSL_SUN_GF2M_DIV | 
 | /* | 
 |  * Divide y by x, reduce modulo p, and store the result in r. r could be x | 
 |  * or y, x could equal y. | 
 |  */ | 
 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, | 
 |                     const BIGNUM *p, BN_CTX *ctx) | 
 | { | 
 |     BIGNUM *xinv = NULL; | 
 |     int ret = 0; | 
 |  | 
 |     bn_check_top(y); | 
 |     bn_check_top(x); | 
 |     bn_check_top(p); | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |     xinv = BN_CTX_get(ctx); | 
 |     if (xinv == NULL) | 
 |         goto err; | 
 |  | 
 |     if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) | 
 |         goto err; | 
 |     if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) | 
 |         goto err; | 
 |     bn_check_top(r); | 
 |     ret = 1; | 
 |  | 
 |  err: | 
 |     BN_CTX_end(ctx); | 
 |     return ret; | 
 | } | 
 | # else | 
 | /* | 
 |  * Divide y by x, reduce modulo p, and store the result in r. r could be x | 
 |  * or y, x could equal y. Uses algorithm Modular_Division_GF(2^m) from | 
 |  * Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to the | 
 |  * Great Divide". | 
 |  */ | 
 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, | 
 |                     const BIGNUM *p, BN_CTX *ctx) | 
 | { | 
 |     BIGNUM *a, *b, *u, *v; | 
 |     int ret = 0; | 
 |  | 
 |     bn_check_top(y); | 
 |     bn_check_top(x); | 
 |     bn_check_top(p); | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |  | 
 |     a = BN_CTX_get(ctx); | 
 |     b = BN_CTX_get(ctx); | 
 |     u = BN_CTX_get(ctx); | 
 |     v = BN_CTX_get(ctx); | 
 |     if (v == NULL) | 
 |         goto err; | 
 |  | 
 |     /* reduce x and y mod p */ | 
 |     if (!BN_GF2m_mod(u, y, p)) | 
 |         goto err; | 
 |     if (!BN_GF2m_mod(a, x, p)) | 
 |         goto err; | 
 |     if (!BN_copy(b, p)) | 
 |         goto err; | 
 |  | 
 |     while (!BN_is_odd(a)) { | 
 |         if (!BN_rshift1(a, a)) | 
 |             goto err; | 
 |         if (BN_is_odd(u)) | 
 |             if (!BN_GF2m_add(u, u, p)) | 
 |                 goto err; | 
 |         if (!BN_rshift1(u, u)) | 
 |             goto err; | 
 |     } | 
 |  | 
 |     do { | 
 |         if (BN_GF2m_cmp(b, a) > 0) { | 
 |             if (!BN_GF2m_add(b, b, a)) | 
 |                 goto err; | 
 |             if (!BN_GF2m_add(v, v, u)) | 
 |                 goto err; | 
 |             do { | 
 |                 if (!BN_rshift1(b, b)) | 
 |                     goto err; | 
 |                 if (BN_is_odd(v)) | 
 |                     if (!BN_GF2m_add(v, v, p)) | 
 |                         goto err; | 
 |                 if (!BN_rshift1(v, v)) | 
 |                     goto err; | 
 |             } while (!BN_is_odd(b)); | 
 |         } else if (BN_abs_is_word(a, 1)) | 
 |             break; | 
 |         else { | 
 |             if (!BN_GF2m_add(a, a, b)) | 
 |                 goto err; | 
 |             if (!BN_GF2m_add(u, u, v)) | 
 |                 goto err; | 
 |             do { | 
 |                 if (!BN_rshift1(a, a)) | 
 |                     goto err; | 
 |                 if (BN_is_odd(u)) | 
 |                     if (!BN_GF2m_add(u, u, p)) | 
 |                         goto err; | 
 |                 if (!BN_rshift1(u, u)) | 
 |                     goto err; | 
 |             } while (!BN_is_odd(a)); | 
 |         } | 
 |     } while (1); | 
 |  | 
 |     if (!BN_copy(r, u)) | 
 |         goto err; | 
 |     bn_check_top(r); | 
 |     ret = 1; | 
 |  | 
 |  err: | 
 |     BN_CTX_end(ctx); | 
 |     return ret; | 
 | } | 
 | # endif | 
 |  | 
 | /* | 
 |  * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx | 
 |  * * or yy, xx could equal yy. This function calls down to the | 
 |  * BN_GF2m_mod_div implementation; this wrapper function is only provided for | 
 |  * convenience; for best performance, use the BN_GF2m_mod_div function. | 
 |  */ | 
 | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, | 
 |                         const int p[], BN_CTX *ctx) | 
 | { | 
 |     BIGNUM *field; | 
 |     int ret = 0; | 
 |  | 
 |     bn_check_top(yy); | 
 |     bn_check_top(xx); | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |     if ((field = BN_CTX_get(ctx)) == NULL) | 
 |         goto err; | 
 |     if (!BN_GF2m_arr2poly(p, field)) | 
 |         goto err; | 
 |  | 
 |     ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); | 
 |     bn_check_top(r); | 
 |  | 
 |  err: | 
 |     BN_CTX_end(ctx); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Compute the bth power of a, reduce modulo p, and store the result in r.  r | 
 |  * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE | 
 |  * P1363. | 
 |  */ | 
 | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                         const int p[], BN_CTX *ctx) | 
 | { | 
 |     int ret = 0, i, n; | 
 |     BIGNUM *u; | 
 |  | 
 |     bn_check_top(a); | 
 |     bn_check_top(b); | 
 |  | 
 |     if (BN_is_zero(b)) | 
 |         return BN_one(r); | 
 |  | 
 |     if (BN_abs_is_word(b, 1)) | 
 |         return (BN_copy(r, a) != NULL); | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |     if ((u = BN_CTX_get(ctx)) == NULL) | 
 |         goto err; | 
 |  | 
 |     if (!BN_GF2m_mod_arr(u, a, p)) | 
 |         goto err; | 
 |  | 
 |     n = BN_num_bits(b) - 1; | 
 |     for (i = n - 1; i >= 0; i--) { | 
 |         if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) | 
 |             goto err; | 
 |         if (BN_is_bit_set(b, i)) { | 
 |             if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) | 
 |                 goto err; | 
 |         } | 
 |     } | 
 |     if (!BN_copy(r, u)) | 
 |         goto err; | 
 |     bn_check_top(r); | 
 |     ret = 1; | 
 |  err: | 
 |     BN_CTX_end(ctx); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Compute the bth power of a, reduce modulo p, and store the result in r.  r | 
 |  * could be a. This function calls down to the BN_GF2m_mod_exp_arr | 
 |  * implementation; this wrapper function is only provided for convenience; | 
 |  * for best performance, use the BN_GF2m_mod_exp_arr function. | 
 |  */ | 
 | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                     const BIGNUM *p, BN_CTX *ctx) | 
 | { | 
 |     int ret = 0; | 
 |     const int max = BN_num_bits(p) + 1; | 
 |     int *arr = NULL; | 
 |     bn_check_top(a); | 
 |     bn_check_top(b); | 
 |     bn_check_top(p); | 
 |     if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) | 
 |         goto err; | 
 |     ret = BN_GF2m_poly2arr(p, arr, max); | 
 |     if (!ret || ret > max) { | 
 |         BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH); | 
 |         goto err; | 
 |     } | 
 |     ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); | 
 |     bn_check_top(r); | 
 |  err: | 
 |     OPENSSL_free(arr); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Compute the square root of a, reduce modulo p, and store the result in r. | 
 |  * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363. | 
 |  */ | 
 | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], | 
 |                          BN_CTX *ctx) | 
 | { | 
 |     int ret = 0; | 
 |     BIGNUM *u; | 
 |  | 
 |     bn_check_top(a); | 
 |  | 
 |     if (!p[0]) { | 
 |         /* reduction mod 1 => return 0 */ | 
 |         BN_zero(r); | 
 |         return 1; | 
 |     } | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |     if ((u = BN_CTX_get(ctx)) == NULL) | 
 |         goto err; | 
 |  | 
 |     if (!BN_set_bit(u, p[0] - 1)) | 
 |         goto err; | 
 |     ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); | 
 |     bn_check_top(r); | 
 |  | 
 |  err: | 
 |     BN_CTX_end(ctx); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Compute the square root of a, reduce modulo p, and store the result in r. | 
 |  * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr | 
 |  * implementation; this wrapper function is only provided for convenience; | 
 |  * for best performance, use the BN_GF2m_mod_sqrt_arr function. | 
 |  */ | 
 | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | 
 | { | 
 |     int ret = 0; | 
 |     const int max = BN_num_bits(p) + 1; | 
 |     int *arr = NULL; | 
 |     bn_check_top(a); | 
 |     bn_check_top(p); | 
 |     if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) | 
 |         goto err; | 
 |     ret = BN_GF2m_poly2arr(p, arr, max); | 
 |     if (!ret || ret > max) { | 
 |         BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH); | 
 |         goto err; | 
 |     } | 
 |     ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); | 
 |     bn_check_top(r); | 
 |  err: | 
 |     OPENSSL_free(arr); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns | 
 |  * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363. | 
 |  */ | 
 | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], | 
 |                                BN_CTX *ctx) | 
 | { | 
 |     int ret = 0, count = 0, j; | 
 |     BIGNUM *a, *z, *rho, *w, *w2, *tmp; | 
 |  | 
 |     bn_check_top(a_); | 
 |  | 
 |     if (!p[0]) { | 
 |         /* reduction mod 1 => return 0 */ | 
 |         BN_zero(r); | 
 |         return 1; | 
 |     } | 
 |  | 
 |     BN_CTX_start(ctx); | 
 |     a = BN_CTX_get(ctx); | 
 |     z = BN_CTX_get(ctx); | 
 |     w = BN_CTX_get(ctx); | 
 |     if (w == NULL) | 
 |         goto err; | 
 |  | 
 |     if (!BN_GF2m_mod_arr(a, a_, p)) | 
 |         goto err; | 
 |  | 
 |     if (BN_is_zero(a)) { | 
 |         BN_zero(r); | 
 |         ret = 1; | 
 |         goto err; | 
 |     } | 
 |  | 
 |     if (p[0] & 0x1) {           /* m is odd */ | 
 |         /* compute half-trace of a */ | 
 |         if (!BN_copy(z, a)) | 
 |             goto err; | 
 |         for (j = 1; j <= (p[0] - 1) / 2; j++) { | 
 |             if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) | 
 |                 goto err; | 
 |             if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) | 
 |                 goto err; | 
 |             if (!BN_GF2m_add(z, z, a)) | 
 |                 goto err; | 
 |         } | 
 |  | 
 |     } else {                    /* m is even */ | 
 |  | 
 |         rho = BN_CTX_get(ctx); | 
 |         w2 = BN_CTX_get(ctx); | 
 |         tmp = BN_CTX_get(ctx); | 
 |         if (tmp == NULL) | 
 |             goto err; | 
 |         do { | 
 |             if (!BN_priv_rand(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) | 
 |                 goto err; | 
 |             if (!BN_GF2m_mod_arr(rho, rho, p)) | 
 |                 goto err; | 
 |             BN_zero(z); | 
 |             if (!BN_copy(w, rho)) | 
 |                 goto err; | 
 |             for (j = 1; j <= p[0] - 1; j++) { | 
 |                 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) | 
 |                     goto err; | 
 |                 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) | 
 |                     goto err; | 
 |                 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) | 
 |                     goto err; | 
 |                 if (!BN_GF2m_add(z, z, tmp)) | 
 |                     goto err; | 
 |                 if (!BN_GF2m_add(w, w2, rho)) | 
 |                     goto err; | 
 |             } | 
 |             count++; | 
 |         } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); | 
 |         if (BN_is_zero(w)) { | 
 |             BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS); | 
 |             goto err; | 
 |         } | 
 |     } | 
 |  | 
 |     if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) | 
 |         goto err; | 
 |     if (!BN_GF2m_add(w, z, w)) | 
 |         goto err; | 
 |     if (BN_GF2m_cmp(w, a)) { | 
 |         BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION); | 
 |         goto err; | 
 |     } | 
 |  | 
 |     if (!BN_copy(r, z)) | 
 |         goto err; | 
 |     bn_check_top(r); | 
 |  | 
 |     ret = 1; | 
 |  | 
 |  err: | 
 |     BN_CTX_end(ctx); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns | 
 |  * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr | 
 |  * implementation; this wrapper function is only provided for convenience; | 
 |  * for best performance, use the BN_GF2m_mod_solve_quad_arr function. | 
 |  */ | 
 | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | 
 |                            BN_CTX *ctx) | 
 | { | 
 |     int ret = 0; | 
 |     const int max = BN_num_bits(p) + 1; | 
 |     int *arr = NULL; | 
 |     bn_check_top(a); | 
 |     bn_check_top(p); | 
 |     if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) | 
 |         goto err; | 
 |     ret = BN_GF2m_poly2arr(p, arr, max); | 
 |     if (!ret || ret > max) { | 
 |         BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH); | 
 |         goto err; | 
 |     } | 
 |     ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); | 
 |     bn_check_top(r); | 
 |  err: | 
 |     OPENSSL_free(arr); | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i * | 
 |  * x^i) into an array of integers corresponding to the bits with non-zero | 
 |  * coefficient.  Array is terminated with -1. Up to max elements of the array | 
 |  * will be filled.  Return value is total number of array elements that would | 
 |  * be filled if array was large enough. | 
 |  */ | 
 | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) | 
 | { | 
 |     int i, j, k = 0; | 
 |     BN_ULONG mask; | 
 |  | 
 |     if (BN_is_zero(a)) | 
 |         return 0; | 
 |  | 
 |     for (i = a->top - 1; i >= 0; i--) { | 
 |         if (!a->d[i]) | 
 |             /* skip word if a->d[i] == 0 */ | 
 |             continue; | 
 |         mask = BN_TBIT; | 
 |         for (j = BN_BITS2 - 1; j >= 0; j--) { | 
 |             if (a->d[i] & mask) { | 
 |                 if (k < max) | 
 |                     p[k] = BN_BITS2 * i + j; | 
 |                 k++; | 
 |             } | 
 |             mask >>= 1; | 
 |         } | 
 |     } | 
 |  | 
 |     if (k < max) { | 
 |         p[k] = -1; | 
 |         k++; | 
 |     } | 
 |  | 
 |     return k; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert the coefficient array representation of a polynomial to a | 
 |  * bit-string.  The array must be terminated by -1. | 
 |  */ | 
 | int BN_GF2m_arr2poly(const int p[], BIGNUM *a) | 
 | { | 
 |     int i; | 
 |  | 
 |     bn_check_top(a); | 
 |     BN_zero(a); | 
 |     for (i = 0; p[i] != -1; i++) { | 
 |         if (BN_set_bit(a, p[i]) == 0) | 
 |             return 0; | 
 |     } | 
 |     bn_check_top(a); | 
 |  | 
 |     return 1; | 
 | } | 
 |  | 
 | #endif |