| /* ==================================================================== |
| * Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| */ |
| |
| #include <openssl/opensslconf.h> |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA256) |
| |
| #include <openssl/evp.h> |
| #include <openssl/objects.h> |
| #include <openssl/aes.h> |
| #include <openssl/sha.h> |
| #include <openssl/rand.h> |
| #include "modes_lcl.h" |
| |
| #ifndef EVP_CIPH_FLAG_AEAD_CIPHER |
| #define EVP_CIPH_FLAG_AEAD_CIPHER 0x200000 |
| #define EVP_CTRL_AEAD_TLS1_AAD 0x16 |
| #define EVP_CTRL_AEAD_SET_MAC_KEY 0x17 |
| #endif |
| |
| #if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1) |
| #define EVP_CIPH_FLAG_DEFAULT_ASN1 0 |
| #endif |
| |
| #if !defined(EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK) |
| #define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0 |
| #endif |
| |
| #define TLS1_1_VERSION 0x0302 |
| |
| typedef struct |
| { |
| AES_KEY ks; |
| SHA256_CTX head,tail,md; |
| size_t payload_length; /* AAD length in decrypt case */ |
| union { |
| unsigned int tls_ver; |
| unsigned char tls_aad[16]; /* 13 used */ |
| } aux; |
| } EVP_AES_HMAC_SHA256; |
| |
| #define NO_PAYLOAD_LENGTH ((size_t)-1) |
| |
| #if defined(AES_ASM) && ( \ |
| defined(__x86_64) || defined(__x86_64__) || \ |
| defined(_M_AMD64) || defined(_M_X64) || \ |
| defined(__INTEL__) ) |
| |
| extern unsigned int OPENSSL_ia32cap_P[3]; |
| #define AESNI_CAPABLE (1<<(57-32)) |
| |
| int aesni_set_encrypt_key(const unsigned char *userKey, int bits, |
| AES_KEY *key); |
| int aesni_set_decrypt_key(const unsigned char *userKey, int bits, |
| AES_KEY *key); |
| |
| void aesni_cbc_encrypt(const unsigned char *in, |
| unsigned char *out, |
| size_t length, |
| const AES_KEY *key, |
| unsigned char *ivec, int enc); |
| |
| int aesni_cbc_sha256_enc (const void *inp, void *out, size_t blocks, |
| const AES_KEY *key, unsigned char iv[16], |
| SHA256_CTX *ctx,const void *in0); |
| |
| #define data(ctx) ((EVP_AES_HMAC_SHA256 *)(ctx)->cipher_data) |
| |
| static int aesni_cbc_hmac_sha256_init_key(EVP_CIPHER_CTX *ctx, |
| const unsigned char *inkey, |
| const unsigned char *iv, int enc) |
| { |
| EVP_AES_HMAC_SHA256 *key = data(ctx); |
| int ret; |
| |
| if (enc) |
| memset(&key->ks,0,sizeof(key->ks.rd_key)), |
| ret=aesni_set_encrypt_key(inkey,ctx->key_len*8,&key->ks); |
| else |
| ret=aesni_set_decrypt_key(inkey,ctx->key_len*8,&key->ks); |
| |
| SHA256_Init(&key->head); /* handy when benchmarking */ |
| key->tail = key->head; |
| key->md = key->head; |
| |
| key->payload_length = NO_PAYLOAD_LENGTH; |
| |
| return ret<0?0:1; |
| } |
| |
| #define STITCHED_CALL |
| |
| #if !defined(STITCHED_CALL) |
| #define aes_off 0 |
| #endif |
| |
| void sha256_block_data_order (void *c,const void *p,size_t len); |
| |
| static void sha256_update(SHA256_CTX *c,const void *data,size_t len) |
| { const unsigned char *ptr = data; |
| size_t res; |
| |
| if ((res = c->num)) { |
| res = SHA256_CBLOCK-res; |
| if (len<res) res=len; |
| SHA256_Update (c,ptr,res); |
| ptr += res; |
| len -= res; |
| } |
| |
| res = len % SHA256_CBLOCK; |
| len -= res; |
| |
| if (len) { |
| sha256_block_data_order(c,ptr,len/SHA256_CBLOCK); |
| |
| ptr += len; |
| c->Nh += len>>29; |
| c->Nl += len<<=3; |
| if (c->Nl<(unsigned int)len) c->Nh++; |
| } |
| |
| if (res) |
| SHA256_Update(c,ptr,res); |
| } |
| |
| #ifdef SHA256_Update |
| #undef SHA256_Update |
| #endif |
| #define SHA256_Update sha256_update |
| |
| #if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK |
| |
| typedef struct { unsigned int A[8],B[8],C[8],D[8],E[8],F[8],G[8],H[8]; } SHA256_MB_CTX; |
| typedef struct { const unsigned char *ptr; int blocks; } HASH_DESC; |
| |
| void sha256_multi_block(SHA256_MB_CTX *,const HASH_DESC *,int); |
| |
| typedef struct { const unsigned char *inp; unsigned char *out; |
| int blocks; u64 iv[2]; } CIPH_DESC; |
| |
| void aesni_multi_cbc_encrypt(CIPH_DESC *,void *,int); |
| |
| static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA256 *key, |
| unsigned char *out, const unsigned char *inp, size_t inp_len, |
| int n4x) /* n4x is 1 or 2 */ |
| { |
| HASH_DESC hash_d[8], edges[8]; |
| CIPH_DESC ciph_d[8]; |
| unsigned char storage[sizeof(SHA256_MB_CTX)+32]; |
| union { u64 q[16]; |
| u32 d[32]; |
| u8 c[128]; } blocks[8]; |
| SHA256_MB_CTX *ctx; |
| unsigned int frag, last, packlen, i, x4=4*n4x, minblocks, processed=0; |
| size_t ret = 0; |
| u8 *IVs; |
| #if defined(BSWAP8) |
| u64 seqnum; |
| #endif |
| |
| if (RAND_bytes((IVs=blocks[0].c),16*x4)<=0) /* ask for IVs in bulk */ |
| return 0; |
| |
| ctx = (SHA256_MB_CTX *)(storage+32-((size_t)storage%32)); /* align */ |
| |
| frag = (unsigned int)inp_len>>(1+n4x); |
| last = (unsigned int)inp_len+frag-(frag<<(1+n4x)); |
| if (last>frag && ((last+13+9)%64)<(x4-1)) { |
| frag++; |
| last -= x4-1; |
| } |
| |
| packlen = 5+16+((frag+32+16)&-16); |
| |
| /* populate descriptors with pointers and IVs */ |
| hash_d[0].ptr = inp; |
| ciph_d[0].inp = inp; |
| ciph_d[0].out = out+5+16; /* 5+16 is place for header and explicit IV */ |
| memcpy(ciph_d[0].out-16,IVs,16); |
| memcpy(ciph_d[0].iv,IVs,16); IVs += 16; |
| |
| for (i=1;i<x4;i++) { |
| ciph_d[i].inp = hash_d[i].ptr = hash_d[i-1].ptr+frag; |
| ciph_d[i].out = ciph_d[i-1].out+packlen; |
| memcpy(ciph_d[i].out-16,IVs,16); |
| memcpy(ciph_d[i].iv,IVs,16); IVs+=16; |
| } |
| |
| #if defined(BSWAP8) |
| memcpy(blocks[0].c,key->md.data,8); |
| seqnum = BSWAP8(blocks[0].q[0]); |
| #endif |
| for (i=0;i<x4;i++) { |
| unsigned int len = (i==(x4-1)?last:frag); |
| #if !defined(BSWAP8) |
| unsigned int carry, j; |
| #endif |
| |
| ctx->A[i] = key->md.h[0]; |
| ctx->B[i] = key->md.h[1]; |
| ctx->C[i] = key->md.h[2]; |
| ctx->D[i] = key->md.h[3]; |
| ctx->E[i] = key->md.h[4]; |
| ctx->F[i] = key->md.h[5]; |
| ctx->G[i] = key->md.h[6]; |
| ctx->H[i] = key->md.h[7]; |
| |
| /* fix seqnum */ |
| #if defined(BSWAP8) |
| blocks[i].q[0] = BSWAP8(seqnum+i); |
| #else |
| for (carry=i,j=8;j--;) { |
| blocks[i].c[j] = ((u8*)key->md.data)[j]+carry; |
| carry = (blocks[i].c[j]-carry)>>(sizeof(carry)*8-1); |
| } |
| #endif |
| blocks[i].c[8] = ((u8*)key->md.data)[8]; |
| blocks[i].c[9] = ((u8*)key->md.data)[9]; |
| blocks[i].c[10] = ((u8*)key->md.data)[10]; |
| /* fix length */ |
| blocks[i].c[11] = (u8)(len>>8); |
| blocks[i].c[12] = (u8)(len); |
| |
| memcpy(blocks[i].c+13,hash_d[i].ptr,64-13); |
| hash_d[i].ptr += 64-13; |
| hash_d[i].blocks = (len-(64-13))/64; |
| |
| edges[i].ptr = blocks[i].c; |
| edges[i].blocks = 1; |
| } |
| |
| /* hash 13-byte headers and first 64-13 bytes of inputs */ |
| sha256_multi_block(ctx,edges,n4x); |
| /* hash bulk inputs */ |
| #define MAXCHUNKSIZE 2048 |
| #if MAXCHUNKSIZE%64 |
| #error "MAXCHUNKSIZE is not divisible by 64" |
| #elif MAXCHUNKSIZE |
| /* goal is to minimize pressure on L1 cache by moving |
| * in shorter steps, so that hashed data is still in |
| * the cache by the time we encrypt it */ |
| minblocks = ((frag<=last ? frag : last)-(64-13))/64; |
| if (minblocks>MAXCHUNKSIZE/64) { |
| for (i=0;i<x4;i++) { |
| edges[i].ptr = hash_d[i].ptr; |
| edges[i].blocks = MAXCHUNKSIZE/64; |
| ciph_d[i].blocks = MAXCHUNKSIZE/16; |
| } |
| do { |
| sha256_multi_block(ctx,edges,n4x); |
| aesni_multi_cbc_encrypt(ciph_d,&key->ks,n4x); |
| |
| for (i=0;i<x4;i++) { |
| edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE; |
| hash_d[i].blocks -= MAXCHUNKSIZE/64; |
| edges[i].blocks = MAXCHUNKSIZE/64; |
| ciph_d[i].inp += MAXCHUNKSIZE; |
| ciph_d[i].out += MAXCHUNKSIZE; |
| ciph_d[i].blocks = MAXCHUNKSIZE/16; |
| memcpy(ciph_d[i].iv,ciph_d[i].out-16,16); |
| } |
| processed += MAXCHUNKSIZE; |
| minblocks -= MAXCHUNKSIZE/64; |
| } while (minblocks>MAXCHUNKSIZE/64); |
| } |
| #endif |
| #undef MAXCHUNKSIZE |
| sha256_multi_block(ctx,hash_d,n4x); |
| |
| memset(blocks,0,sizeof(blocks)); |
| for (i=0;i<x4;i++) { |
| unsigned int len = (i==(x4-1)?last:frag), |
| off = hash_d[i].blocks*64; |
| const unsigned char *ptr = hash_d[i].ptr+off; |
| |
| off = (len-processed)-(64-13)-off; /* remainder actually */ |
| memcpy(blocks[i].c,ptr,off); |
| blocks[i].c[off]=0x80; |
| len += 64+13; /* 64 is HMAC header */ |
| len *= 8; /* convert to bits */ |
| if (off<(64-8)) { |
| #ifdef BSWAP4 |
| blocks[i].d[15] = BSWAP4(len); |
| #else |
| PUTU32(blocks[i].c+60,len); |
| #endif |
| edges[i].blocks = 1; |
| } else { |
| #ifdef BSWAP4 |
| blocks[i].d[31] = BSWAP4(len); |
| #else |
| PUTU32(blocks[i].c+124,len); |
| #endif |
| edges[i].blocks = 2; |
| } |
| edges[i].ptr = blocks[i].c; |
| } |
| |
| /* hash input tails and finalize */ |
| sha256_multi_block(ctx,edges,n4x); |
| |
| memset(blocks,0,sizeof(blocks)); |
| for (i=0;i<x4;i++) { |
| #ifdef BSWAP4 |
| blocks[i].d[0] = BSWAP4(ctx->A[i]); ctx->A[i] = key->tail.h[0]; |
| blocks[i].d[1] = BSWAP4(ctx->B[i]); ctx->B[i] = key->tail.h[1]; |
| blocks[i].d[2] = BSWAP4(ctx->C[i]); ctx->C[i] = key->tail.h[2]; |
| blocks[i].d[3] = BSWAP4(ctx->D[i]); ctx->D[i] = key->tail.h[3]; |
| blocks[i].d[4] = BSWAP4(ctx->E[i]); ctx->E[i] = key->tail.h[4]; |
| blocks[i].d[5] = BSWAP4(ctx->F[i]); ctx->F[i] = key->tail.h[5]; |
| blocks[i].d[6] = BSWAP4(ctx->G[i]); ctx->G[i] = key->tail.h[6]; |
| blocks[i].d[7] = BSWAP4(ctx->H[i]); ctx->H[i] = key->tail.h[7]; |
| blocks[i].c[32] = 0x80; |
| blocks[i].d[15] = BSWAP4((64+32)*8); |
| #else |
| PUTU32(blocks[i].c+0,ctx->A[i]); ctx->A[i] = key->tail.h[0]; |
| PUTU32(blocks[i].c+4,ctx->B[i]); ctx->B[i] = key->tail.h[1]; |
| PUTU32(blocks[i].c+8,ctx->C[i]); ctx->C[i] = key->tail.h[2]; |
| PUTU32(blocks[i].c+12,ctx->D[i]); ctx->D[i] = key->tail.h[3]; |
| PUTU32(blocks[i].c+16,ctx->E[i]); ctx->E[i] = key->tail.h[4]; |
| PUTU32(blocks[i].c+20,ctx->F[i]); ctx->F[i] = key->tail.h[5]; |
| PUTU32(blocks[i].c+24,ctx->G[i]); ctx->G[i] = key->tail.h[6]; |
| PUTU32(blocks[i].c+28,ctx->H[i]); ctx->H[i] = key->tail.h[7]; |
| blocks[i].c[32] = 0x80; |
| PUTU32(blocks[i].c+60,(64+32)*8); |
| #endif |
| edges[i].ptr = blocks[i].c; |
| edges[i].blocks = 1; |
| } |
| |
| /* finalize MACs */ |
| sha256_multi_block(ctx,edges,n4x); |
| |
| for (i=0;i<x4;i++) { |
| unsigned int len = (i==(x4-1)?last:frag), pad, j; |
| unsigned char *out0 = out; |
| |
| memcpy(ciph_d[i].out,ciph_d[i].inp,len-processed); |
| ciph_d[i].inp = ciph_d[i].out; |
| |
| out += 5+16+len; |
| |
| /* write MAC */ |
| PUTU32(out+0,ctx->A[i]); |
| PUTU32(out+4,ctx->B[i]); |
| PUTU32(out+8,ctx->C[i]); |
| PUTU32(out+12,ctx->D[i]); |
| PUTU32(out+16,ctx->E[i]); |
| PUTU32(out+20,ctx->F[i]); |
| PUTU32(out+24,ctx->G[i]); |
| PUTU32(out+28,ctx->H[i]); |
| out += 32; |
| len += 32; |
| |
| /* pad */ |
| pad = 15-len%16; |
| for (j=0;j<=pad;j++) *(out++) = pad; |
| len += pad+1; |
| |
| ciph_d[i].blocks = (len-processed)/16; |
| len += 16; /* account for explicit iv */ |
| |
| /* arrange header */ |
| out0[0] = ((u8*)key->md.data)[8]; |
| out0[1] = ((u8*)key->md.data)[9]; |
| out0[2] = ((u8*)key->md.data)[10]; |
| out0[3] = (u8)(len>>8); |
| out0[4] = (u8)(len); |
| |
| ret += len+5; |
| inp += frag; |
| } |
| |
| aesni_multi_cbc_encrypt(ciph_d,&key->ks,n4x); |
| |
| OPENSSL_cleanse(blocks,sizeof(blocks)); |
| OPENSSL_cleanse(ctx,sizeof(*ctx)); |
| |
| return ret; |
| } |
| #endif |
| |
| static int aesni_cbc_hmac_sha256_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| const unsigned char *in, size_t len) |
| { |
| EVP_AES_HMAC_SHA256 *key = data(ctx); |
| unsigned int l; |
| size_t plen = key->payload_length, |
| iv = 0, /* explicit IV in TLS 1.1 and later */ |
| sha_off = 0; |
| #if defined(STITCHED_CALL) |
| size_t aes_off = 0, |
| blocks; |
| |
| sha_off = SHA256_CBLOCK-key->md.num; |
| #endif |
| |
| key->payload_length = NO_PAYLOAD_LENGTH; |
| |
| if (len%AES_BLOCK_SIZE) return 0; |
| |
| if (ctx->encrypt) { |
| if (plen==NO_PAYLOAD_LENGTH) |
| plen = len; |
| else if (len!=((plen+SHA256_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE)) |
| return 0; |
| else if (key->aux.tls_ver >= TLS1_1_VERSION) |
| iv = AES_BLOCK_SIZE; |
| |
| #if defined(STITCHED_CALL) |
| if (OPENSSL_ia32cap_P[1]&(1<<(60-32)) && /* AVX? */ |
| plen>(sha_off+iv) && |
| (blocks=(plen-(sha_off+iv))/SHA256_CBLOCK)) { |
| SHA256_Update(&key->md,in+iv,sha_off); |
| |
| (void)aesni_cbc_sha256_enc(in,out,blocks,&key->ks, |
| ctx->iv,&key->md,in+iv+sha_off); |
| blocks *= SHA256_CBLOCK; |
| aes_off += blocks; |
| sha_off += blocks; |
| key->md.Nh += blocks>>29; |
| key->md.Nl += blocks<<=3; |
| if (key->md.Nl<(unsigned int)blocks) key->md.Nh++; |
| } else { |
| sha_off = 0; |
| } |
| #endif |
| sha_off += iv; |
| SHA256_Update(&key->md,in+sha_off,plen-sha_off); |
| |
| if (plen!=len) { /* "TLS" mode of operation */ |
| if (in!=out) |
| memcpy(out+aes_off,in+aes_off,plen-aes_off); |
| |
| /* calculate HMAC and append it to payload */ |
| SHA256_Final(out+plen,&key->md); |
| key->md = key->tail; |
| SHA256_Update(&key->md,out+plen,SHA256_DIGEST_LENGTH); |
| SHA256_Final(out+plen,&key->md); |
| |
| /* pad the payload|hmac */ |
| plen += SHA256_DIGEST_LENGTH; |
| for (l=len-plen-1;plen<len;plen++) out[plen]=l; |
| /* encrypt HMAC|padding at once */ |
| aesni_cbc_encrypt(out+aes_off,out+aes_off,len-aes_off, |
| &key->ks,ctx->iv,1); |
| } else { |
| aesni_cbc_encrypt(in+aes_off,out+aes_off,len-aes_off, |
| &key->ks,ctx->iv,1); |
| } |
| } else { |
| union { unsigned int u[SHA256_DIGEST_LENGTH/sizeof(unsigned int)]; |
| unsigned char c[64+SHA256_DIGEST_LENGTH]; } mac, *pmac; |
| |
| /* arrange cache line alignment */ |
| pmac = (void *)(((size_t)mac.c+63)&((size_t)0-64)); |
| |
| /* decrypt HMAC|padding at once */ |
| aesni_cbc_encrypt(in,out,len, |
| &key->ks,ctx->iv,0); |
| |
| if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */ |
| size_t inp_len, mask, j, i; |
| unsigned int res, maxpad, pad, bitlen; |
| int ret = 1; |
| union { unsigned int u[SHA_LBLOCK]; |
| unsigned char c[SHA256_CBLOCK]; } |
| *data = (void *)key->md.data; |
| |
| if ((key->aux.tls_aad[plen-4]<<8|key->aux.tls_aad[plen-3]) |
| >= TLS1_1_VERSION) |
| iv = AES_BLOCK_SIZE; |
| |
| if (len<(iv+SHA256_DIGEST_LENGTH+1)) |
| return 0; |
| |
| /* omit explicit iv */ |
| out += iv; |
| len -= iv; |
| |
| /* figure out payload length */ |
| pad = out[len-1]; |
| maxpad = len-(SHA256_DIGEST_LENGTH+1); |
| maxpad |= (255-maxpad)>>(sizeof(maxpad)*8-8); |
| maxpad &= 255; |
| |
| inp_len = len - (SHA256_DIGEST_LENGTH+pad+1); |
| mask = (0-((inp_len-len)>>(sizeof(inp_len)*8-1))); |
| inp_len &= mask; |
| ret &= (int)mask; |
| |
| key->aux.tls_aad[plen-2] = inp_len>>8; |
| key->aux.tls_aad[plen-1] = inp_len; |
| |
| /* calculate HMAC */ |
| key->md = key->head; |
| SHA256_Update(&key->md,key->aux.tls_aad,plen); |
| |
| #if 1 |
| len -= SHA256_DIGEST_LENGTH; /* amend mac */ |
| if (len>=(256+SHA256_CBLOCK)) { |
| j = (len-(256+SHA256_CBLOCK))&(0-SHA256_CBLOCK); |
| j += SHA256_CBLOCK-key->md.num; |
| SHA256_Update(&key->md,out,j); |
| out += j; |
| len -= j; |
| inp_len -= j; |
| } |
| |
| /* but pretend as if we hashed padded payload */ |
| bitlen = key->md.Nl+(inp_len<<3); /* at most 18 bits */ |
| #ifdef BSWAP4 |
| bitlen = BSWAP4(bitlen); |
| #else |
| mac.c[0] = 0; |
| mac.c[1] = (unsigned char)(bitlen>>16); |
| mac.c[2] = (unsigned char)(bitlen>>8); |
| mac.c[3] = (unsigned char)bitlen; |
| bitlen = mac.u[0]; |
| #endif |
| |
| pmac->u[0]=0; |
| pmac->u[1]=0; |
| pmac->u[2]=0; |
| pmac->u[3]=0; |
| pmac->u[4]=0; |
| pmac->u[5]=0; |
| pmac->u[6]=0; |
| pmac->u[7]=0; |
| |
| for (res=key->md.num, j=0;j<len;j++) { |
| size_t c = out[j]; |
| mask = (j-inp_len)>>(sizeof(j)*8-8); |
| c &= mask; |
| c |= 0x80&~mask&~((inp_len-j)>>(sizeof(j)*8-8)); |
| data->c[res++]=(unsigned char)c; |
| |
| if (res!=SHA256_CBLOCK) continue; |
| |
| /* j is not incremented yet */ |
| mask = 0-((inp_len+7-j)>>(sizeof(j)*8-1)); |
| data->u[SHA_LBLOCK-1] |= bitlen&mask; |
| sha256_block_data_order(&key->md,data,1); |
| mask &= 0-((j-inp_len-72)>>(sizeof(j)*8-1)); |
| pmac->u[0] |= key->md.h[0] & mask; |
| pmac->u[1] |= key->md.h[1] & mask; |
| pmac->u[2] |= key->md.h[2] & mask; |
| pmac->u[3] |= key->md.h[3] & mask; |
| pmac->u[4] |= key->md.h[4] & mask; |
| pmac->u[5] |= key->md.h[5] & mask; |
| pmac->u[6] |= key->md.h[6] & mask; |
| pmac->u[7] |= key->md.h[7] & mask; |
| res=0; |
| } |
| |
| for(i=res;i<SHA256_CBLOCK;i++,j++) data->c[i]=0; |
| |
| if (res>SHA256_CBLOCK-8) { |
| mask = 0-((inp_len+8-j)>>(sizeof(j)*8-1)); |
| data->u[SHA_LBLOCK-1] |= bitlen&mask; |
| sha256_block_data_order(&key->md,data,1); |
| mask &= 0-((j-inp_len-73)>>(sizeof(j)*8-1)); |
| pmac->u[0] |= key->md.h[0] & mask; |
| pmac->u[1] |= key->md.h[1] & mask; |
| pmac->u[2] |= key->md.h[2] & mask; |
| pmac->u[3] |= key->md.h[3] & mask; |
| pmac->u[4] |= key->md.h[4] & mask; |
| pmac->u[5] |= key->md.h[5] & mask; |
| pmac->u[6] |= key->md.h[6] & mask; |
| pmac->u[7] |= key->md.h[7] & mask; |
| |
| memset(data,0,SHA256_CBLOCK); |
| j+=64; |
| } |
| data->u[SHA_LBLOCK-1] = bitlen; |
| sha256_block_data_order(&key->md,data,1); |
| mask = 0-((j-inp_len-73)>>(sizeof(j)*8-1)); |
| pmac->u[0] |= key->md.h[0] & mask; |
| pmac->u[1] |= key->md.h[1] & mask; |
| pmac->u[2] |= key->md.h[2] & mask; |
| pmac->u[3] |= key->md.h[3] & mask; |
| pmac->u[4] |= key->md.h[4] & mask; |
| pmac->u[5] |= key->md.h[5] & mask; |
| pmac->u[6] |= key->md.h[6] & mask; |
| pmac->u[7] |= key->md.h[7] & mask; |
| |
| #ifdef BSWAP4 |
| pmac->u[0] = BSWAP4(pmac->u[0]); |
| pmac->u[1] = BSWAP4(pmac->u[1]); |
| pmac->u[2] = BSWAP4(pmac->u[2]); |
| pmac->u[3] = BSWAP4(pmac->u[3]); |
| pmac->u[4] = BSWAP4(pmac->u[4]); |
| pmac->u[5] = BSWAP4(pmac->u[5]); |
| pmac->u[6] = BSWAP4(pmac->u[6]); |
| pmac->u[7] = BSWAP4(pmac->u[7]); |
| #else |
| for (i=0;i<8;i++) { |
| res = pmac->u[i]; |
| pmac->c[4*i+0]=(unsigned char)(res>>24); |
| pmac->c[4*i+1]=(unsigned char)(res>>16); |
| pmac->c[4*i+2]=(unsigned char)(res>>8); |
| pmac->c[4*i+3]=(unsigned char)res; |
| } |
| #endif |
| len += SHA256_DIGEST_LENGTH; |
| #else |
| SHA256_Update(&key->md,out,inp_len); |
| res = key->md.num; |
| SHA256_Final(pmac->c,&key->md); |
| |
| { |
| unsigned int inp_blocks, pad_blocks; |
| |
| /* but pretend as if we hashed padded payload */ |
| inp_blocks = 1+((SHA256_CBLOCK-9-res)>>(sizeof(res)*8-1)); |
| res += (unsigned int)(len-inp_len); |
| pad_blocks = res / SHA256_CBLOCK; |
| res %= SHA256_CBLOCK; |
| pad_blocks += 1+((SHA256_CBLOCK-9-res)>>(sizeof(res)*8-1)); |
| for (;inp_blocks<pad_blocks;inp_blocks++) |
| sha1_block_data_order(&key->md,data,1); |
| } |
| #endif |
| key->md = key->tail; |
| SHA256_Update(&key->md,pmac->c,SHA256_DIGEST_LENGTH); |
| SHA256_Final(pmac->c,&key->md); |
| |
| /* verify HMAC */ |
| out += inp_len; |
| len -= inp_len; |
| #if 1 |
| { |
| unsigned char *p = out+len-1-maxpad-SHA256_DIGEST_LENGTH; |
| size_t off = out-p; |
| unsigned int c, cmask; |
| |
| maxpad += SHA256_DIGEST_LENGTH; |
| for (res=0,i=0,j=0;j<maxpad;j++) { |
| c = p[j]; |
| cmask = ((int)(j-off-SHA256_DIGEST_LENGTH))>>(sizeof(int)*8-1); |
| res |= (c^pad)&~cmask; /* ... and padding */ |
| cmask &= ((int)(off-1-j))>>(sizeof(int)*8-1); |
| res |= (c^pmac->c[i])&cmask; |
| i += 1&cmask; |
| } |
| maxpad -= SHA256_DIGEST_LENGTH; |
| |
| res = 0-((0-res)>>(sizeof(res)*8-1)); |
| ret &= (int)~res; |
| } |
| #else |
| for (res=0,i=0;i<SHA256_DIGEST_LENGTH;i++) |
| res |= out[i]^pmac->c[i]; |
| res = 0-((0-res)>>(sizeof(res)*8-1)); |
| ret &= (int)~res; |
| |
| /* verify padding */ |
| pad = (pad&~res) | (maxpad&res); |
| out = out+len-1-pad; |
| for (res=0,i=0;i<pad;i++) |
| res |= out[i]^pad; |
| |
| res = (0-res)>>(sizeof(res)*8-1); |
| ret &= (int)~res; |
| #endif |
| return ret; |
| } else { |
| SHA256_Update(&key->md,out,len); |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int aesni_cbc_hmac_sha256_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) |
| { |
| EVP_AES_HMAC_SHA256 *key = data(ctx); |
| unsigned int u_arg = (unsigned int)arg; |
| |
| switch (type) |
| { |
| case EVP_CTRL_AEAD_SET_MAC_KEY: |
| { |
| unsigned int i; |
| unsigned char hmac_key[64]; |
| |
| memset (hmac_key,0,sizeof(hmac_key)); |
| |
| if (arg < 0) |
| return -1; |
| |
| if (u_arg > sizeof(hmac_key)) { |
| SHA256_Init(&key->head); |
| SHA256_Update(&key->head,ptr,arg); |
| SHA256_Final(hmac_key,&key->head); |
| } else { |
| memcpy(hmac_key,ptr,arg); |
| } |
| |
| for (i=0;i<sizeof(hmac_key);i++) |
| hmac_key[i] ^= 0x36; /* ipad */ |
| SHA256_Init(&key->head); |
| SHA256_Update(&key->head,hmac_key,sizeof(hmac_key)); |
| |
| for (i=0;i<sizeof(hmac_key);i++) |
| hmac_key[i] ^= 0x36^0x5c; /* opad */ |
| SHA256_Init(&key->tail); |
| SHA256_Update(&key->tail,hmac_key,sizeof(hmac_key)); |
| |
| OPENSSL_cleanse(hmac_key,sizeof(hmac_key)); |
| |
| return 1; |
| } |
| case EVP_CTRL_AEAD_TLS1_AAD: |
| { |
| unsigned char *p=ptr; |
| unsigned int len=p[arg-2]<<8|p[arg-1]; |
| |
| if (ctx->encrypt) |
| { |
| key->payload_length = len; |
| if ((key->aux.tls_ver=p[arg-4]<<8|p[arg-3]) >= TLS1_1_VERSION) { |
| len -= AES_BLOCK_SIZE; |
| p[arg-2] = len>>8; |
| p[arg-1] = len; |
| } |
| key->md = key->head; |
| SHA256_Update(&key->md,p,arg); |
| |
| return (int)(((len+SHA256_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOCK_SIZE) |
| - len); |
| } |
| else |
| { |
| if (arg>13) arg = 13; |
| memcpy(key->aux.tls_aad,ptr,arg); |
| key->payload_length = arg; |
| |
| return SHA256_DIGEST_LENGTH; |
| } |
| } |
| #if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK |
| case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE: |
| return (int)(5+16+((arg+32+16)&-16)); |
| case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD: |
| { |
| EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param = |
| (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *)ptr; |
| unsigned int n4x=1, x4; |
| unsigned int frag, last, packlen, inp_len; |
| |
| if (arg < 0) |
| return -1; |
| |
| if (u_arg < sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM)) return -1; |
| |
| inp_len = param->inp[11]<<8|param->inp[12]; |
| |
| if (ctx->encrypt) |
| { |
| if ((param->inp[9]<<8|param->inp[10]) < TLS1_1_VERSION) |
| return -1; |
| |
| if (inp_len) |
| { |
| if (inp_len<4096) return 0; /* too short */ |
| |
| if (inp_len>=8192 && OPENSSL_ia32cap_P[2]&(1<<5)) |
| n4x=2; /* AVX2 */ |
| } |
| else if ((n4x=param->interleave/4) && n4x<=2) |
| inp_len = param->len; |
| else |
| return -1; |
| |
| key->md = key->head; |
| SHA256_Update(&key->md,param->inp,13); |
| |
| x4 = 4*n4x; n4x += 1; |
| |
| frag = inp_len>>n4x; |
| last = inp_len+frag-(frag<<n4x); |
| if (last>frag && ((last+13+9)%64<(x4-1))) { |
| frag++; |
| last -= x4-1; |
| } |
| |
| packlen = 5+16+((frag+32+16)&-16); |
| packlen = (packlen<<n4x)-packlen; |
| packlen += 5+16+((last+32+16)&-16); |
| |
| param->interleave = x4; |
| |
| return (int)packlen; |
| } |
| else |
| return -1; /* not yet */ |
| } |
| case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT: |
| { |
| EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param = |
| (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *)ptr; |
| |
| return (int)tls1_1_multi_block_encrypt(key,param->out,param->inp, |
| param->len,param->interleave/4); |
| } |
| case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT: |
| #endif |
| default: |
| return -1; |
| } |
| } |
| |
| static EVP_CIPHER aesni_128_cbc_hmac_sha256_cipher = |
| { |
| #ifdef NID_aes_128_cbc_hmac_sha256 |
| NID_aes_128_cbc_hmac_sha256, |
| #else |
| NID_undef, |
| #endif |
| 16,16,16, |
| EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1| |
| EVP_CIPH_FLAG_AEAD_CIPHER|EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK, |
| aesni_cbc_hmac_sha256_init_key, |
| aesni_cbc_hmac_sha256_cipher, |
| NULL, |
| sizeof(EVP_AES_HMAC_SHA256), |
| EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv, |
| EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv, |
| aesni_cbc_hmac_sha256_ctrl, |
| NULL |
| }; |
| |
| static EVP_CIPHER aesni_256_cbc_hmac_sha256_cipher = |
| { |
| #ifdef NID_aes_256_cbc_hmac_sha256 |
| NID_aes_256_cbc_hmac_sha256, |
| #else |
| NID_undef, |
| #endif |
| 16,32,16, |
| EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1| |
| EVP_CIPH_FLAG_AEAD_CIPHER|EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK, |
| aesni_cbc_hmac_sha256_init_key, |
| aesni_cbc_hmac_sha256_cipher, |
| NULL, |
| sizeof(EVP_AES_HMAC_SHA256), |
| EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv, |
| EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv, |
| aesni_cbc_hmac_sha256_ctrl, |
| NULL |
| }; |
| |
| const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void) |
| { |
| return((OPENSSL_ia32cap_P[1]&AESNI_CAPABLE) && |
| aesni_cbc_sha256_enc(NULL,NULL,0,NULL,NULL,NULL,NULL) ? |
| &aesni_128_cbc_hmac_sha256_cipher:NULL); |
| } |
| |
| const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void) |
| { |
| return((OPENSSL_ia32cap_P[1]&AESNI_CAPABLE) && |
| aesni_cbc_sha256_enc(NULL,NULL,0,NULL,NULL,NULL,NULL)? |
| &aesni_256_cbc_hmac_sha256_cipher:NULL); |
| } |
| #else |
| const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void) |
| { |
| return NULL; |
| } |
| const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void) |
| { |
| return NULL; |
| } |
| #endif |
| #endif |