|  | /* ==================================================================== | 
|  | * Copyright (c) 2000 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Nuron, a leader in hardware encryption technology, generously | 
|  | * sponsored the development of this demo by Ben Laurie. | 
|  | * | 
|  | * See http://www.nuron.com/. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * the aim of this demo is to provide a fully working state-machine | 
|  | * style SSL implementation, i.e. one where the main loop acquires | 
|  | * some data, then converts it from or to SSL by feeding it into the | 
|  | * SSL state machine. It then does any I/O required by the state machine | 
|  | * and loops. | 
|  | * | 
|  | * In order to keep things as simple as possible, this implementation | 
|  | * listens on a TCP socket, which it expects to get an SSL connection | 
|  | * on (for example, from s_client) and from then on writes decrypted | 
|  | * data to stdout and encrypts anything arriving on stdin. Verbose | 
|  | * commentary is written to stderr. | 
|  | * | 
|  | * This implementation acts as a server, but it can also be done for a client.  */ | 
|  |  | 
|  | #include <openssl/ssl.h> | 
|  | #include <assert.h> | 
|  | #include <unistd.h> | 
|  | #include <string.h> | 
|  | #include <openssl/err.h> | 
|  | #include <sys/types.h> | 
|  | #include <sys/socket.h> | 
|  | #include <netinet/in.h> | 
|  |  | 
|  | /* die_unless is intended to work like assert, except that it happens | 
|  | always, even if NDEBUG is defined. Use assert as a stopgap. */ | 
|  |  | 
|  | #define die_unless(x)	assert(x) | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | SSL_CTX *pCtx; | 
|  | BIO *pbioRead; | 
|  | BIO *pbioWrite; | 
|  | SSL *pSSL; | 
|  | } SSLStateMachine; | 
|  |  | 
|  | void SSLStateMachine_print_error(SSLStateMachine *pMachine,const char *szErr) | 
|  | { | 
|  | unsigned long l; | 
|  |  | 
|  | fprintf(stderr,"%s\n",szErr); | 
|  | while((l=ERR_get_error())) | 
|  | { | 
|  | char buf[1024]; | 
|  |  | 
|  | ERR_error_string_n(l,buf,sizeof buf); | 
|  | fprintf(stderr,"Error %lx: %s\n",l,buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | SSLStateMachine *SSLStateMachine_new(const char *szCertificateFile, | 
|  | const char *szKeyFile) | 
|  | { | 
|  | SSLStateMachine *pMachine=malloc(sizeof *pMachine); | 
|  | int n; | 
|  |  | 
|  | die_unless(pMachine); | 
|  |  | 
|  | pMachine->pCtx=SSL_CTX_new(SSLv23_server_method()); | 
|  | die_unless(pMachine->pCtx); | 
|  |  | 
|  | n=SSL_CTX_use_certificate_file(pMachine->pCtx,szCertificateFile, | 
|  | SSL_FILETYPE_PEM); | 
|  | die_unless(n > 0); | 
|  |  | 
|  | n=SSL_CTX_use_PrivateKey_file(pMachine->pCtx,szKeyFile,SSL_FILETYPE_PEM); | 
|  | die_unless(n > 0); | 
|  |  | 
|  | pMachine->pSSL=SSL_new(pMachine->pCtx); | 
|  | die_unless(pMachine->pSSL); | 
|  |  | 
|  | pMachine->pbioRead=BIO_new(BIO_s_mem()); | 
|  |  | 
|  | pMachine->pbioWrite=BIO_new(BIO_s_mem()); | 
|  |  | 
|  | SSL_set_bio(pMachine->pSSL,pMachine->pbioRead,pMachine->pbioWrite); | 
|  |  | 
|  | SSL_set_accept_state(pMachine->pSSL); | 
|  |  | 
|  | return pMachine; | 
|  | } | 
|  |  | 
|  | void SSLStateMachine_read_inject(SSLStateMachine *pMachine, | 
|  | const unsigned char *aucBuf,int nBuf) | 
|  | { | 
|  | int n=BIO_write(pMachine->pbioRead,aucBuf,nBuf); | 
|  | /* If it turns out this assert fails, then buffer the data here | 
|  | * and just feed it in in churn instead. Seems to me that it | 
|  | * should be guaranteed to succeed, though. | 
|  | */ | 
|  | assert(n == nBuf); | 
|  | fprintf(stderr,"%d bytes of encrypted data fed to state machine\n",n); | 
|  | } | 
|  |  | 
|  | int SSLStateMachine_read_extract(SSLStateMachine *pMachine, | 
|  | unsigned char *aucBuf,int nBuf) | 
|  | { | 
|  | int n; | 
|  |  | 
|  | if(!SSL_is_init_finished(pMachine->pSSL)) | 
|  | { | 
|  | fprintf(stderr,"Doing SSL_accept\n"); | 
|  | n=SSL_accept(pMachine->pSSL); | 
|  | if(n == 0) | 
|  | fprintf(stderr,"SSL_accept returned zero\n"); | 
|  | if(n < 0) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if((err=SSL_get_error(pMachine->pSSL,n)) == SSL_ERROR_WANT_READ) | 
|  | { | 
|  | fprintf(stderr,"SSL_accept wants more data\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SSLStateMachine_print_error(pMachine,"SSL_accept error"); | 
|  | exit(7); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | n=SSL_read(pMachine->pSSL,aucBuf,nBuf); | 
|  | if(n < 0) | 
|  | { | 
|  | int err=SSL_get_error(pMachine->pSSL,n); | 
|  |  | 
|  | if(err == SSL_ERROR_WANT_READ) | 
|  | { | 
|  | fprintf(stderr,"SSL_read wants more data\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SSLStateMachine_print_error(pMachine,"SSL_read error"); | 
|  | exit(8); | 
|  | } | 
|  |  | 
|  | fprintf(stderr,"%d bytes of decrypted data read from state machine\n",n); | 
|  | return n; | 
|  | } | 
|  |  | 
|  | int SSLStateMachine_write_can_extract(SSLStateMachine *pMachine) | 
|  | { | 
|  | int n=BIO_pending(pMachine->pbioWrite); | 
|  | if(n) | 
|  | fprintf(stderr,"There is encrypted data available to write\n"); | 
|  | else | 
|  | fprintf(stderr,"There is no encrypted data available to write\n"); | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | int SSLStateMachine_write_extract(SSLStateMachine *pMachine, | 
|  | unsigned char *aucBuf,int nBuf) | 
|  | { | 
|  | int n; | 
|  |  | 
|  | n=BIO_read(pMachine->pbioWrite,aucBuf,nBuf); | 
|  | fprintf(stderr,"%d bytes of encrypted data read from state machine\n",n); | 
|  | return n; | 
|  | } | 
|  |  | 
|  | void SSLStateMachine_write_inject(SSLStateMachine *pMachine, | 
|  | const unsigned char *aucBuf,int nBuf) | 
|  | { | 
|  | int n=SSL_write(pMachine->pSSL,aucBuf,nBuf); | 
|  | /* If it turns out this assert fails, then buffer the data here | 
|  | * and just feed it in in churn instead. Seems to me that it | 
|  | * should be guaranteed to succeed, though. | 
|  | */ | 
|  | assert(n == nBuf); | 
|  | fprintf(stderr,"%d bytes of unencrypted data fed to state machine\n",n); | 
|  | } | 
|  |  | 
|  | int OpenSocket(int nPort) | 
|  | { | 
|  | int nSocket; | 
|  | struct sockaddr_in saServer; | 
|  | struct sockaddr_in saClient; | 
|  | int one=1; | 
|  | int nSize; | 
|  | int nFD; | 
|  | int nLen; | 
|  |  | 
|  | nSocket=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP); | 
|  | if(nSocket < 0) | 
|  | { | 
|  | perror("socket"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | if(setsockopt(nSocket,SOL_SOCKET,SO_REUSEADDR,(char *)&one,sizeof one) < 0) | 
|  | { | 
|  | perror("setsockopt"); | 
|  | exit(2); | 
|  | } | 
|  |  | 
|  | memset(&saServer,0,sizeof saServer); | 
|  | saServer.sin_family=AF_INET; | 
|  | saServer.sin_port=htons(nPort); | 
|  | nSize=sizeof saServer; | 
|  | if(bind(nSocket,(struct sockaddr *)&saServer,nSize) < 0) | 
|  | { | 
|  | perror("bind"); | 
|  | exit(3); | 
|  | } | 
|  |  | 
|  | if(listen(nSocket,512) < 0) | 
|  | { | 
|  | perror("listen"); | 
|  | exit(4); | 
|  | } | 
|  |  | 
|  | nLen=sizeof saClient; | 
|  | nFD=accept(nSocket,(struct sockaddr *)&saClient,&nLen); | 
|  | if(nFD < 0) | 
|  | { | 
|  | perror("accept"); | 
|  | exit(5); | 
|  | } | 
|  |  | 
|  | fprintf(stderr,"Incoming accepted on port %d\n",nPort); | 
|  |  | 
|  | return nFD; | 
|  | } | 
|  |  | 
|  | int main(int argc,char **argv) | 
|  | { | 
|  | SSLStateMachine *pMachine; | 
|  | int nPort; | 
|  | int nFD; | 
|  | const char *szCertificateFile; | 
|  | const char *szKeyFile; | 
|  | char rbuf[1]; | 
|  | int nrbuf=0; | 
|  |  | 
|  | if(argc != 4) | 
|  | { | 
|  | fprintf(stderr,"%s <port> <certificate file> <key file>\n",argv[0]); | 
|  | exit(6); | 
|  | } | 
|  |  | 
|  | nPort=atoi(argv[1]); | 
|  | szCertificateFile=argv[2]; | 
|  | szKeyFile=argv[3]; | 
|  |  | 
|  | SSL_library_init(); | 
|  | OpenSSL_add_ssl_algorithms(); | 
|  | SSL_load_error_strings(); | 
|  | ERR_load_crypto_strings(); | 
|  |  | 
|  | nFD=OpenSocket(nPort); | 
|  |  | 
|  | pMachine=SSLStateMachine_new(szCertificateFile,szKeyFile); | 
|  |  | 
|  | for( ; ; ) | 
|  | { | 
|  | fd_set rfds,wfds; | 
|  | unsigned char buf[1024]; | 
|  | int n; | 
|  |  | 
|  | FD_ZERO(&rfds); | 
|  | FD_ZERO(&wfds); | 
|  |  | 
|  | /* Select socket for input */ | 
|  | FD_SET(nFD,&rfds); | 
|  |  | 
|  | /* check whether there's decrypted data */ | 
|  | if(!nrbuf) | 
|  | nrbuf=SSLStateMachine_read_extract(pMachine,rbuf,1); | 
|  |  | 
|  | /* if there's decrypted data, check whether we can write it */ | 
|  | if(nrbuf) | 
|  | FD_SET(1,&wfds); | 
|  |  | 
|  | /* Select socket for output */ | 
|  | if(SSLStateMachine_write_can_extract(pMachine)) | 
|  | FD_SET(nFD,&wfds); | 
|  |  | 
|  | /* Select stdin for input */ | 
|  | FD_SET(0,&rfds); | 
|  |  | 
|  | /* Wait for something to do something */ | 
|  | n=select(nFD+1,&rfds,&wfds,NULL,NULL); | 
|  | assert(n > 0); | 
|  |  | 
|  | /* Socket is ready for input */ | 
|  | if(FD_ISSET(nFD,&rfds)) | 
|  | { | 
|  | n=read(nFD,buf,sizeof buf); | 
|  | if(n == 0) | 
|  | { | 
|  | fprintf(stderr,"Got EOF on socket\n"); | 
|  | exit(0); | 
|  | } | 
|  | assert(n > 0); | 
|  |  | 
|  | SSLStateMachine_read_inject(pMachine,buf,n); | 
|  | } | 
|  |  | 
|  | /* stdout is ready for output (and hence we have some to send it) */ | 
|  | if(FD_ISSET(1,&wfds)) | 
|  | { | 
|  | assert(nrbuf == 1); | 
|  | buf[0]=rbuf[0]; | 
|  | nrbuf=0; | 
|  |  | 
|  | n=SSLStateMachine_read_extract(pMachine,buf+1,sizeof buf-1); | 
|  | if(n < 0) | 
|  | { | 
|  | SSLStateMachine_print_error(pMachine,"read extract failed"); | 
|  | break; | 
|  | } | 
|  | assert(n >= 0); | 
|  | ++n; | 
|  | if(n > 0) /* FIXME: has to be true now */ | 
|  | { | 
|  | int w; | 
|  |  | 
|  | w=write(1,buf,n); | 
|  | /* FIXME: we should push back any unwritten data */ | 
|  | assert(w == n); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Socket is ready for output (and therefore we have output to send) */ | 
|  | if(FD_ISSET(nFD,&wfds)) | 
|  | { | 
|  | int w; | 
|  |  | 
|  | n=SSLStateMachine_write_extract(pMachine,buf,sizeof buf); | 
|  | assert(n > 0); | 
|  |  | 
|  | w=write(nFD,buf,n); | 
|  | /* FIXME: we should push back any unwritten data */ | 
|  | assert(w == n); | 
|  | } | 
|  |  | 
|  | /* Stdin is ready for input */ | 
|  | if(FD_ISSET(0,&rfds)) | 
|  | { | 
|  | n=read(0,buf,sizeof buf); | 
|  | if(n == 0) | 
|  | { | 
|  | fprintf(stderr,"Got EOF on stdin\n"); | 
|  | exit(0); | 
|  | } | 
|  | assert(n > 0); | 
|  |  | 
|  | SSLStateMachine_write_inject(pMachine,buf,n); | 
|  | } | 
|  | } | 
|  | /* not reached */ | 
|  | return 0; | 
|  | } |