|  | /* | 
|  | * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Copyright 2004-2014, Akamai Technologies. All Rights Reserved. | 
|  | * This file is distributed under the terms of the OpenSSL license. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file is in two halves. The first half implements the public API | 
|  | * to be used by external consumers, and to be used by OpenSSL to store | 
|  | * data in a "secure arena." The second half implements the secure arena. | 
|  | * For details on that implementation, see below (look for uppercase | 
|  | * "SECURE HEAP IMPLEMENTATION"). | 
|  | */ | 
|  | #include <openssl/crypto.h> | 
|  | #include <e_os.h> | 
|  |  | 
|  | #include <string.h> | 
|  |  | 
|  | #if defined(OPENSSL_SYS_LINUX) || defined(OPENSSL_SYS_UNIX) | 
|  | # define IMPLEMENTED | 
|  | # include <stdlib.h> | 
|  | # include <assert.h> | 
|  | # include <unistd.h> | 
|  | # include <sys/types.h> | 
|  | # include <sys/mman.h> | 
|  | # include <sys/param.h> | 
|  | # include <sys/stat.h> | 
|  | # include <fcntl.h> | 
|  | #endif | 
|  |  | 
|  | #define CLEAR(p, s) OPENSSL_cleanse(p, s) | 
|  | #ifndef PAGE_SIZE | 
|  | # define PAGE_SIZE    4096 | 
|  | #endif | 
|  |  | 
|  | #ifdef IMPLEMENTED | 
|  | static size_t secure_mem_used; | 
|  |  | 
|  | static int secure_mem_initialized; | 
|  |  | 
|  | static CRYPTO_RWLOCK *sec_malloc_lock = NULL; | 
|  |  | 
|  | /* | 
|  | * These are the functions that must be implemented by a secure heap (sh). | 
|  | */ | 
|  | static int sh_init(size_t size, int minsize); | 
|  | static char *sh_malloc(size_t size); | 
|  | static void sh_free(char *ptr); | 
|  | static void sh_done(void); | 
|  | static size_t sh_actual_size(char *ptr); | 
|  | static int sh_allocated(const char *ptr); | 
|  | #endif | 
|  |  | 
|  | int CRYPTO_secure_malloc_init(size_t size, int minsize) | 
|  | { | 
|  | #ifdef IMPLEMENTED | 
|  | int ret = 0; | 
|  |  | 
|  | if (!secure_mem_initialized) { | 
|  | sec_malloc_lock = CRYPTO_THREAD_lock_new(); | 
|  | if (sec_malloc_lock == NULL) | 
|  | return 0; | 
|  | ret = sh_init(size, minsize); | 
|  | secure_mem_initialized = 1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | #else | 
|  | return 0; | 
|  | #endif /* IMPLEMENTED */ | 
|  | } | 
|  |  | 
|  | int CRYPTO_secure_malloc_done() | 
|  | { | 
|  | #ifdef IMPLEMENTED | 
|  | if (secure_mem_used == 0) { | 
|  | sh_done(); | 
|  | secure_mem_initialized = 0; | 
|  | CRYPTO_THREAD_lock_free(sec_malloc_lock); | 
|  | return 1; | 
|  | } | 
|  | #endif /* IMPLEMENTED */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int CRYPTO_secure_malloc_initialized() | 
|  | { | 
|  | #ifdef IMPLEMENTED | 
|  | return secure_mem_initialized; | 
|  | #else | 
|  | return 0; | 
|  | #endif /* IMPLEMENTED */ | 
|  | } | 
|  |  | 
|  | void *CRYPTO_secure_malloc(size_t num, const char *file, int line) | 
|  | { | 
|  | #ifdef IMPLEMENTED | 
|  | void *ret; | 
|  | size_t actual_size; | 
|  |  | 
|  | if (!secure_mem_initialized) { | 
|  | return CRYPTO_malloc(num, file, line); | 
|  | } | 
|  | CRYPTO_THREAD_write_lock(sec_malloc_lock); | 
|  | ret = sh_malloc(num); | 
|  | actual_size = ret ? sh_actual_size(ret) : 0; | 
|  | secure_mem_used += actual_size; | 
|  | CRYPTO_THREAD_unlock(sec_malloc_lock); | 
|  | return ret; | 
|  | #else | 
|  | return CRYPTO_malloc(num, file, line); | 
|  | #endif /* IMPLEMENTED */ | 
|  | } | 
|  |  | 
|  | void *CRYPTO_secure_zalloc(size_t num, const char *file, int line) | 
|  | { | 
|  | void *ret = CRYPTO_secure_malloc(num, file, line); | 
|  |  | 
|  | if (ret != NULL) | 
|  | memset(ret, 0, num); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void CRYPTO_secure_free(void *ptr, const char *file, int line) | 
|  | { | 
|  | #ifdef IMPLEMENTED | 
|  | size_t actual_size; | 
|  |  | 
|  | if (ptr == NULL) | 
|  | return; | 
|  | if (!CRYPTO_secure_allocated(ptr)) { | 
|  | CRYPTO_free(ptr, file, line); | 
|  | return; | 
|  | } | 
|  | CRYPTO_THREAD_write_lock(sec_malloc_lock); | 
|  | actual_size = sh_actual_size(ptr); | 
|  | CLEAR(ptr, actual_size); | 
|  | secure_mem_used -= actual_size; | 
|  | sh_free(ptr); | 
|  | CRYPTO_THREAD_unlock(sec_malloc_lock); | 
|  | #else | 
|  | CRYPTO_free(ptr, file, line); | 
|  | #endif /* IMPLEMENTED */ | 
|  | } | 
|  |  | 
|  | int CRYPTO_secure_allocated(const void *ptr) | 
|  | { | 
|  | #ifdef IMPLEMENTED | 
|  | int ret; | 
|  |  | 
|  | if (!secure_mem_initialized) | 
|  | return 0; | 
|  | CRYPTO_THREAD_write_lock(sec_malloc_lock); | 
|  | ret = sh_allocated(ptr); | 
|  | CRYPTO_THREAD_unlock(sec_malloc_lock); | 
|  | return ret; | 
|  | #else | 
|  | return 0; | 
|  | #endif /* IMPLEMENTED */ | 
|  | } | 
|  |  | 
|  | size_t CRYPTO_secure_used() | 
|  | { | 
|  | #ifdef IMPLEMENTED | 
|  | return secure_mem_used; | 
|  | #else | 
|  | return 0; | 
|  | #endif /* IMPLEMENTED */ | 
|  | } | 
|  |  | 
|  | size_t CRYPTO_secure_actual_size(void *ptr) | 
|  | { | 
|  | #ifdef IMPLEMENTED | 
|  | size_t actual_size; | 
|  |  | 
|  | CRYPTO_THREAD_write_lock(sec_malloc_lock); | 
|  | actual_size = sh_actual_size(ptr); | 
|  | CRYPTO_THREAD_unlock(sec_malloc_lock); | 
|  | return actual_size; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  | /* END OF PAGE ... | 
|  |  | 
|  | ... START OF PAGE */ | 
|  |  | 
|  | /* | 
|  | * SECURE HEAP IMPLEMENTATION | 
|  | */ | 
|  | #ifdef IMPLEMENTED | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The implementation provided here uses a fixed-sized mmap() heap, | 
|  | * which is locked into memory, not written to core files, and protected | 
|  | * on either side by an unmapped page, which will catch pointer overruns | 
|  | * (or underruns) and an attempt to read data out of the secure heap. | 
|  | * Free'd memory is zero'd or otherwise cleansed. | 
|  | * | 
|  | * This is a pretty standard buddy allocator.  We keep areas in a multiple | 
|  | * of "sh.minsize" units.  The freelist and bitmaps are kept separately, | 
|  | * so all (and only) data is kept in the mmap'd heap. | 
|  | * | 
|  | * This code assumes eight-bit bytes.  The numbers 3 and 7 are all over the | 
|  | * place. | 
|  | */ | 
|  |  | 
|  | #define ONE ((size_t)1) | 
|  |  | 
|  | # define TESTBIT(t, b)  (t[(b) >> 3] &  (ONE << ((b) & 7))) | 
|  | # define SETBIT(t, b)   (t[(b) >> 3] |= (ONE << ((b) & 7))) | 
|  | # define CLEARBIT(t, b) (t[(b) >> 3] &= (0xFF & ~(ONE << ((b) & 7)))) | 
|  |  | 
|  | #define WITHIN_ARENA(p) \ | 
|  | ((char*)(p) >= sh.arena && (char*)(p) < &sh.arena[sh.arena_size]) | 
|  | #define WITHIN_FREELIST(p) \ | 
|  | ((char*)(p) >= (char*)sh.freelist && (char*)(p) < (char*)&sh.freelist[sh.freelist_size]) | 
|  |  | 
|  |  | 
|  | typedef struct sh_list_st | 
|  | { | 
|  | struct sh_list_st *next; | 
|  | struct sh_list_st **p_next; | 
|  | } SH_LIST; | 
|  |  | 
|  | typedef struct sh_st | 
|  | { | 
|  | char* map_result; | 
|  | size_t map_size; | 
|  | char *arena; | 
|  | size_t arena_size; | 
|  | char **freelist; | 
|  | ossl_ssize_t freelist_size; | 
|  | size_t minsize; | 
|  | unsigned char *bittable; | 
|  | unsigned char *bitmalloc; | 
|  | size_t bittable_size; /* size in bits */ | 
|  | } SH; | 
|  |  | 
|  | static SH sh; | 
|  |  | 
|  | static size_t sh_getlist(char *ptr) | 
|  | { | 
|  | ossl_ssize_t list = sh.freelist_size - 1; | 
|  | size_t bit = (sh.arena_size + ptr - sh.arena) / sh.minsize; | 
|  |  | 
|  | for (; bit; bit >>= 1, list--) { | 
|  | if (TESTBIT(sh.bittable, bit)) | 
|  | break; | 
|  | OPENSSL_assert((bit & 1) == 0); | 
|  | } | 
|  |  | 
|  | return list; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int sh_testbit(char *ptr, int list, unsigned char *table) | 
|  | { | 
|  | size_t bit; | 
|  |  | 
|  | OPENSSL_assert(list >= 0 && list < sh.freelist_size); | 
|  | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); | 
|  | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); | 
|  | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); | 
|  | return TESTBIT(table, bit); | 
|  | } | 
|  |  | 
|  | static void sh_clearbit(char *ptr, int list, unsigned char *table) | 
|  | { | 
|  | size_t bit; | 
|  |  | 
|  | OPENSSL_assert(list >= 0 && list < sh.freelist_size); | 
|  | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); | 
|  | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); | 
|  | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); | 
|  | OPENSSL_assert(TESTBIT(table, bit)); | 
|  | CLEARBIT(table, bit); | 
|  | } | 
|  |  | 
|  | static void sh_setbit(char *ptr, int list, unsigned char *table) | 
|  | { | 
|  | size_t bit; | 
|  |  | 
|  | OPENSSL_assert(list >= 0 && list < sh.freelist_size); | 
|  | OPENSSL_assert(((ptr - sh.arena) & ((sh.arena_size >> list) - 1)) == 0); | 
|  | bit = (ONE << list) + ((ptr - sh.arena) / (sh.arena_size >> list)); | 
|  | OPENSSL_assert(bit > 0 && bit < sh.bittable_size); | 
|  | OPENSSL_assert(!TESTBIT(table, bit)); | 
|  | SETBIT(table, bit); | 
|  | } | 
|  |  | 
|  | static void sh_add_to_list(char **list, char *ptr) | 
|  | { | 
|  | SH_LIST *temp; | 
|  |  | 
|  | OPENSSL_assert(WITHIN_FREELIST(list)); | 
|  | OPENSSL_assert(WITHIN_ARENA(ptr)); | 
|  |  | 
|  | temp = (SH_LIST *)ptr; | 
|  | temp->next = *(SH_LIST **)list; | 
|  | OPENSSL_assert(temp->next == NULL || WITHIN_ARENA(temp->next)); | 
|  | temp->p_next = (SH_LIST **)list; | 
|  |  | 
|  | if (temp->next != NULL) { | 
|  | OPENSSL_assert((char **)temp->next->p_next == list); | 
|  | temp->next->p_next = &(temp->next); | 
|  | } | 
|  |  | 
|  | *list = ptr; | 
|  | } | 
|  |  | 
|  | static void sh_remove_from_list(char *ptr) | 
|  | { | 
|  | SH_LIST *temp, *temp2; | 
|  |  | 
|  | temp = (SH_LIST *)ptr; | 
|  | if (temp->next != NULL) | 
|  | temp->next->p_next = temp->p_next; | 
|  | *temp->p_next = temp->next; | 
|  | if (temp->next == NULL) | 
|  | return; | 
|  |  | 
|  | temp2 = temp->next; | 
|  | OPENSSL_assert(WITHIN_FREELIST(temp2->p_next) || WITHIN_ARENA(temp2->p_next)); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int sh_init(size_t size, int minsize) | 
|  | { | 
|  | int i, ret; | 
|  | size_t pgsize; | 
|  | size_t aligned; | 
|  |  | 
|  | memset(&sh, 0, sizeof sh); | 
|  |  | 
|  | /* make sure size and minsize are powers of 2 */ | 
|  | OPENSSL_assert(size > 0); | 
|  | OPENSSL_assert((size & (size - 1)) == 0); | 
|  | OPENSSL_assert(minsize > 0); | 
|  | OPENSSL_assert((minsize & (minsize - 1)) == 0); | 
|  | if (size <= 0 || (size & (size - 1)) != 0) | 
|  | goto err; | 
|  | if (minsize <= 0 || (minsize & (minsize - 1)) != 0) | 
|  | goto err; | 
|  |  | 
|  | sh.arena_size = size; | 
|  | sh.minsize = minsize; | 
|  | sh.bittable_size = (sh.arena_size / sh.minsize) * 2; | 
|  |  | 
|  | sh.freelist_size = -1; | 
|  | for (i = sh.bittable_size; i; i >>= 1) | 
|  | sh.freelist_size++; | 
|  |  | 
|  | sh.freelist = OPENSSL_zalloc(sh.freelist_size * sizeof (char *)); | 
|  | OPENSSL_assert(sh.freelist != NULL); | 
|  | if (sh.freelist == NULL) | 
|  | goto err; | 
|  |  | 
|  | sh.bittable = OPENSSL_zalloc(sh.bittable_size >> 3); | 
|  | OPENSSL_assert(sh.bittable != NULL); | 
|  | if (sh.bittable == NULL) | 
|  | goto err; | 
|  |  | 
|  | sh.bitmalloc = OPENSSL_zalloc(sh.bittable_size >> 3); | 
|  | OPENSSL_assert(sh.bitmalloc != NULL); | 
|  | if (sh.bitmalloc == NULL) | 
|  | goto err; | 
|  |  | 
|  | /* Allocate space for heap, and two extra pages as guards */ | 
|  | #if defined(_SC_PAGE_SIZE) || defined (_SC_PAGESIZE) | 
|  | { | 
|  | # if defined(_SC_PAGE_SIZE) | 
|  | long tmppgsize = sysconf(_SC_PAGE_SIZE); | 
|  | # else | 
|  | long tmppgsize = sysconf(_SC_PAGESIZE); | 
|  | # endif | 
|  | if (tmppgsize < 1) | 
|  | pgsize = PAGE_SIZE; | 
|  | else | 
|  | pgsize = (size_t)tmppgsize; | 
|  | } | 
|  | #else | 
|  | pgsize = PAGE_SIZE; | 
|  | #endif | 
|  | sh.map_size = pgsize + sh.arena_size + pgsize; | 
|  | if (1) { | 
|  | #ifdef MAP_ANON | 
|  | sh.map_result = mmap(NULL, sh.map_size, | 
|  | PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0); | 
|  | } else { | 
|  | #endif | 
|  | int fd; | 
|  |  | 
|  | sh.map_result = MAP_FAILED; | 
|  | if ((fd = open("/dev/zero", O_RDWR)) >= 0) { | 
|  | sh.map_result = mmap(NULL, sh.map_size, | 
|  | PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); | 
|  | close(fd); | 
|  | } | 
|  | } | 
|  | OPENSSL_assert(sh.map_result != MAP_FAILED); | 
|  | if (sh.map_result == MAP_FAILED) | 
|  | goto err; | 
|  | sh.arena = (char *)(sh.map_result + pgsize); | 
|  | sh_setbit(sh.arena, 0, sh.bittable); | 
|  | sh_add_to_list(&sh.freelist[0], sh.arena); | 
|  |  | 
|  | /* Now try to add guard pages and lock into memory. */ | 
|  | ret = 1; | 
|  |  | 
|  | /* Starting guard is already aligned from mmap. */ | 
|  | if (mprotect(sh.map_result, pgsize, PROT_NONE) < 0) | 
|  | ret = 2; | 
|  |  | 
|  | /* Ending guard page - need to round up to page boundary */ | 
|  | aligned = (pgsize + sh.arena_size + (pgsize - 1)) & ~(pgsize - 1); | 
|  | if (mprotect(sh.map_result + aligned, pgsize, PROT_NONE) < 0) | 
|  | ret = 2; | 
|  |  | 
|  | if (mlock(sh.arena, sh.arena_size) < 0) | 
|  | ret = 2; | 
|  | #ifdef MADV_DONTDUMP | 
|  | if (madvise(sh.arena, sh.arena_size, MADV_DONTDUMP) < 0) | 
|  | ret = 2; | 
|  | #endif | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | err: | 
|  | sh_done(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sh_done() | 
|  | { | 
|  | OPENSSL_free(sh.freelist); | 
|  | OPENSSL_free(sh.bittable); | 
|  | OPENSSL_free(sh.bitmalloc); | 
|  | if (sh.map_result != NULL && sh.map_size) | 
|  | munmap(sh.map_result, sh.map_size); | 
|  | memset(&sh, 0, sizeof sh); | 
|  | } | 
|  |  | 
|  | static int sh_allocated(const char *ptr) | 
|  | { | 
|  | return WITHIN_ARENA(ptr) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | static char *sh_find_my_buddy(char *ptr, int list) | 
|  | { | 
|  | size_t bit; | 
|  | char *chunk = NULL; | 
|  |  | 
|  | bit = (ONE << list) + (ptr - sh.arena) / (sh.arena_size >> list); | 
|  | bit ^= 1; | 
|  |  | 
|  | if (TESTBIT(sh.bittable, bit) && !TESTBIT(sh.bitmalloc, bit)) | 
|  | chunk = sh.arena + ((bit & ((ONE << list) - 1)) * (sh.arena_size >> list)); | 
|  |  | 
|  | return chunk; | 
|  | } | 
|  |  | 
|  | static char *sh_malloc(size_t size) | 
|  | { | 
|  | ossl_ssize_t list, slist; | 
|  | size_t i; | 
|  | char *chunk; | 
|  |  | 
|  | list = sh.freelist_size - 1; | 
|  | for (i = sh.minsize; i < size; i <<= 1) | 
|  | list--; | 
|  | if (list < 0) | 
|  | return NULL; | 
|  |  | 
|  | /* try to find a larger entry to split */ | 
|  | for (slist = list; slist >= 0; slist--) | 
|  | if (sh.freelist[slist] != NULL) | 
|  | break; | 
|  | if (slist < 0) | 
|  | return NULL; | 
|  |  | 
|  | /* split larger entry */ | 
|  | while (slist != list) { | 
|  | char *temp = sh.freelist[slist]; | 
|  |  | 
|  | /* remove from bigger list */ | 
|  | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); | 
|  | sh_clearbit(temp, slist, sh.bittable); | 
|  | sh_remove_from_list(temp); | 
|  | OPENSSL_assert(temp != sh.freelist[slist]); | 
|  |  | 
|  | /* done with bigger list */ | 
|  | slist++; | 
|  |  | 
|  | /* add to smaller list */ | 
|  | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); | 
|  | sh_setbit(temp, slist, sh.bittable); | 
|  | sh_add_to_list(&sh.freelist[slist], temp); | 
|  | OPENSSL_assert(sh.freelist[slist] == temp); | 
|  |  | 
|  | /* split in 2 */ | 
|  | temp += sh.arena_size >> slist; | 
|  | OPENSSL_assert(!sh_testbit(temp, slist, sh.bitmalloc)); | 
|  | sh_setbit(temp, slist, sh.bittable); | 
|  | sh_add_to_list(&sh.freelist[slist], temp); | 
|  | OPENSSL_assert(sh.freelist[slist] == temp); | 
|  |  | 
|  | OPENSSL_assert(temp-(sh.arena_size >> slist) == sh_find_my_buddy(temp, slist)); | 
|  | } | 
|  |  | 
|  | /* peel off memory to hand back */ | 
|  | chunk = sh.freelist[list]; | 
|  | OPENSSL_assert(sh_testbit(chunk, list, sh.bittable)); | 
|  | sh_setbit(chunk, list, sh.bitmalloc); | 
|  | sh_remove_from_list(chunk); | 
|  |  | 
|  | OPENSSL_assert(WITHIN_ARENA(chunk)); | 
|  |  | 
|  | return chunk; | 
|  | } | 
|  |  | 
|  | static void sh_free(char *ptr) | 
|  | { | 
|  | size_t list; | 
|  | char *buddy; | 
|  |  | 
|  | if (ptr == NULL) | 
|  | return; | 
|  | OPENSSL_assert(WITHIN_ARENA(ptr)); | 
|  | if (!WITHIN_ARENA(ptr)) | 
|  | return; | 
|  |  | 
|  | list = sh_getlist(ptr); | 
|  | OPENSSL_assert(sh_testbit(ptr, list, sh.bittable)); | 
|  | sh_clearbit(ptr, list, sh.bitmalloc); | 
|  | sh_add_to_list(&sh.freelist[list], ptr); | 
|  |  | 
|  | /* Try to coalesce two adjacent free areas. */ | 
|  | while ((buddy = sh_find_my_buddy(ptr, list)) != NULL) { | 
|  | OPENSSL_assert(ptr == sh_find_my_buddy(buddy, list)); | 
|  | OPENSSL_assert(ptr != NULL); | 
|  | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); | 
|  | sh_clearbit(ptr, list, sh.bittable); | 
|  | sh_remove_from_list(ptr); | 
|  | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); | 
|  | sh_clearbit(buddy, list, sh.bittable); | 
|  | sh_remove_from_list(buddy); | 
|  |  | 
|  | list--; | 
|  |  | 
|  | if (ptr > buddy) | 
|  | ptr = buddy; | 
|  |  | 
|  | OPENSSL_assert(!sh_testbit(ptr, list, sh.bitmalloc)); | 
|  | sh_setbit(ptr, list, sh.bittable); | 
|  | sh_add_to_list(&sh.freelist[list], ptr); | 
|  | OPENSSL_assert(sh.freelist[list] == ptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static size_t sh_actual_size(char *ptr) | 
|  | { | 
|  | int list; | 
|  |  | 
|  | OPENSSL_assert(WITHIN_ARENA(ptr)); | 
|  | if (!WITHIN_ARENA(ptr)) | 
|  | return 0; | 
|  | list = sh_getlist(ptr); | 
|  | OPENSSL_assert(sh_testbit(ptr, list, sh.bittable)); | 
|  | return sh.arena_size / (ONE << list); | 
|  | } | 
|  | #endif /* IMPLEMENTED */ |