|  | /* | 
|  | * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | #include <string.h> | 
|  | #include <openssl/crypto.h> | 
|  | #include "modes_lcl.h" | 
|  |  | 
|  | #ifndef OPENSSL_NO_OCB | 
|  |  | 
|  | /* | 
|  | * Calculate the number of binary trailing zero's in any given number | 
|  | */ | 
|  | static u32 ocb_ntz(u64 n) | 
|  | { | 
|  | u32 cnt = 0; | 
|  |  | 
|  | /* | 
|  | * We do a right-to-left simple sequential search. This is surprisingly | 
|  | * efficient as the distribution of trailing zeros is not uniform, | 
|  | * e.g. the number of possible inputs with no trailing zeros is equal to | 
|  | * the number with 1 or more; the number with exactly 1 is equal to the | 
|  | * number with 2 or more, etc. Checking the last two bits covers 75% of | 
|  | * all numbers. Checking the last three covers 87.5% | 
|  | */ | 
|  | while (!(n & 1)) { | 
|  | n >>= 1; | 
|  | cnt++; | 
|  | } | 
|  | return cnt; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shift a block of 16 bytes left by shift bits | 
|  | */ | 
|  | static void ocb_block_lshift(const unsigned char *in, size_t shift, | 
|  | unsigned char *out) | 
|  | { | 
|  | unsigned char shift_mask; | 
|  | int i; | 
|  | unsigned char mask[15]; | 
|  |  | 
|  | shift_mask = 0xff; | 
|  | shift_mask <<= (8 - shift); | 
|  | for (i = 15; i >= 0; i--) { | 
|  | if (i > 0) { | 
|  | mask[i - 1] = in[i] & shift_mask; | 
|  | mask[i - 1] >>= 8 - shift; | 
|  | } | 
|  | out[i] = in[i] << shift; | 
|  |  | 
|  | if (i != 15) { | 
|  | out[i] ^= mask[i]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform a "double" operation as per OCB spec | 
|  | */ | 
|  | static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out) | 
|  | { | 
|  | unsigned char mask; | 
|  |  | 
|  | /* | 
|  | * Calculate the mask based on the most significant bit. There are more | 
|  | * efficient ways to do this - but this way is constant time | 
|  | */ | 
|  | mask = in->c[0] & 0x80; | 
|  | mask >>= 7; | 
|  | mask *= 135; | 
|  |  | 
|  | ocb_block_lshift(in->c, 1, out->c); | 
|  |  | 
|  | out->c[15] ^= mask; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform an xor on in1 and in2 - each of len bytes. Store result in out | 
|  | */ | 
|  | static void ocb_block_xor(const unsigned char *in1, | 
|  | const unsigned char *in2, size_t len, | 
|  | unsigned char *out) | 
|  | { | 
|  | size_t i; | 
|  | for (i = 0; i < len; i++) { | 
|  | out[i] = in1[i] ^ in2[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup L_index in our lookup table. If we haven't already got it we need to | 
|  | * calculate it | 
|  | */ | 
|  | static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx) | 
|  | { | 
|  | size_t l_index = ctx->l_index; | 
|  |  | 
|  | if (idx <= l_index) { | 
|  | return ctx->l + idx; | 
|  | } | 
|  |  | 
|  | /* We don't have it - so calculate it */ | 
|  | if (idx >= ctx->max_l_index) { | 
|  | void *tmp_ptr; | 
|  | /* | 
|  | * Each additional entry allows to process almost double as | 
|  | * much data, so that in linear world the table will need to | 
|  | * be expanded with smaller and smaller increments. Originally | 
|  | * it was doubling in size, which was a waste. Growing it | 
|  | * linearly is not formally optimal, but is simpler to implement. | 
|  | * We grow table by minimally required 4*n that would accommodate | 
|  | * the index. | 
|  | */ | 
|  | ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3; | 
|  | tmp_ptr = | 
|  | OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK)); | 
|  | if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */ | 
|  | return NULL; | 
|  | ctx->l = tmp_ptr; | 
|  | } | 
|  | while (l_index < idx) { | 
|  | ocb_double(ctx->l + l_index, ctx->l + l_index + 1); | 
|  | l_index++; | 
|  | } | 
|  | ctx->l_index = l_index; | 
|  |  | 
|  | return ctx->l + idx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a new OCB128_CONTEXT | 
|  | */ | 
|  | OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec, | 
|  | block128_f encrypt, block128_f decrypt, | 
|  | ocb128_f stream) | 
|  | { | 
|  | OCB128_CONTEXT *octx; | 
|  | int ret; | 
|  |  | 
|  | if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) { | 
|  | ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt, | 
|  | stream); | 
|  | if (ret) | 
|  | return octx; | 
|  | OPENSSL_free(octx); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise an existing OCB128_CONTEXT | 
|  | */ | 
|  | int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec, | 
|  | block128_f encrypt, block128_f decrypt, | 
|  | ocb128_f stream) | 
|  | { | 
|  | memset(ctx, 0, sizeof(*ctx)); | 
|  | ctx->l_index = 0; | 
|  | ctx->max_l_index = 5; | 
|  | ctx->l = OPENSSL_malloc(ctx->max_l_index * 16); | 
|  | if (ctx->l == NULL) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We set both the encryption and decryption key schedules - decryption | 
|  | * needs both. Don't really need decryption schedule if only doing | 
|  | * encryption - but it simplifies things to take it anyway | 
|  | */ | 
|  | ctx->encrypt = encrypt; | 
|  | ctx->decrypt = decrypt; | 
|  | ctx->stream = stream; | 
|  | ctx->keyenc = keyenc; | 
|  | ctx->keydec = keydec; | 
|  |  | 
|  | /* L_* = ENCIPHER(K, zeros(128)) */ | 
|  | ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc); | 
|  |  | 
|  | /* L_$ = double(L_*) */ | 
|  | ocb_double(&ctx->l_star, &ctx->l_dollar); | 
|  |  | 
|  | /* L_0 = double(L_$) */ | 
|  | ocb_double(&ctx->l_dollar, ctx->l); | 
|  |  | 
|  | /* L_{i} = double(L_{i-1}) */ | 
|  | ocb_double(ctx->l, ctx->l+1); | 
|  | ocb_double(ctx->l+1, ctx->l+2); | 
|  | ocb_double(ctx->l+2, ctx->l+3); | 
|  | ocb_double(ctx->l+3, ctx->l+4); | 
|  | ctx->l_index = 4;   /* enough to process up to 496 bytes */ | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy an OCB128_CONTEXT object | 
|  | */ | 
|  | int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src, | 
|  | void *keyenc, void *keydec) | 
|  | { | 
|  | memcpy(dest, src, sizeof(OCB128_CONTEXT)); | 
|  | if (keyenc) | 
|  | dest->keyenc = keyenc; | 
|  | if (keydec) | 
|  | dest->keydec = keydec; | 
|  | if (src->l) { | 
|  | dest->l = OPENSSL_malloc(src->max_l_index * 16); | 
|  | if (dest->l == NULL) | 
|  | return 0; | 
|  | memcpy(dest->l, src->l, (src->l_index + 1) * 16); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the IV to be used for this operation. Must be 1 - 15 bytes. | 
|  | */ | 
|  | int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv, | 
|  | size_t len, size_t taglen) | 
|  | { | 
|  | unsigned char ktop[16], tmp[16], mask; | 
|  | unsigned char stretch[24], nonce[16]; | 
|  | size_t bottom, shift; | 
|  |  | 
|  | /* | 
|  | * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths. | 
|  | * We don't support this at this stage | 
|  | */ | 
|  | if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */ | 
|  | nonce[0] = ((taglen * 8) % 128) << 1; | 
|  | memset(nonce + 1, 0, 15); | 
|  | memcpy(nonce + 16 - len, iv, len); | 
|  | nonce[15 - len] |= 1; | 
|  |  | 
|  | /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */ | 
|  | memcpy(tmp, nonce, 16); | 
|  | tmp[15] &= 0xc0; | 
|  | ctx->encrypt(tmp, ktop, ctx->keyenc); | 
|  |  | 
|  | /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */ | 
|  | memcpy(stretch, ktop, 16); | 
|  | ocb_block_xor(ktop, ktop + 1, 8, stretch + 16); | 
|  |  | 
|  | /* bottom = str2num(Nonce[123..128]) */ | 
|  | bottom = nonce[15] & 0x3f; | 
|  |  | 
|  | /* Offset_0 = Stretch[1+bottom..128+bottom] */ | 
|  | shift = bottom % 8; | 
|  | ocb_block_lshift(stretch + (bottom / 8), shift, ctx->offset.c); | 
|  | mask = 0xff; | 
|  | mask <<= 8 - shift; | 
|  | ctx->offset.c[15] |= | 
|  | (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Provide any AAD. This can be called multiple times. Only the final time can | 
|  | * have a partial block | 
|  | */ | 
|  | int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad, | 
|  | size_t len) | 
|  | { | 
|  | u64 i, all_num_blocks; | 
|  | size_t num_blocks, last_len; | 
|  | OCB_BLOCK tmp1; | 
|  | OCB_BLOCK tmp2; | 
|  |  | 
|  | /* Calculate the number of blocks of AAD provided now, and so far */ | 
|  | num_blocks = len / 16; | 
|  | all_num_blocks = num_blocks + ctx->blocks_hashed; | 
|  |  | 
|  | /* Loop through all full blocks of AAD */ | 
|  | for (i = ctx->blocks_hashed + 1; i <= all_num_blocks; i++) { | 
|  | OCB_BLOCK *lookup; | 
|  | OCB_BLOCK *aad_block; | 
|  |  | 
|  | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ | 
|  | lookup = ocb_lookup_l(ctx, ocb_ntz(i)); | 
|  | if (lookup == NULL) | 
|  | return 0; | 
|  | ocb_block16_xor(&ctx->offset_aad, lookup, &ctx->offset_aad); | 
|  |  | 
|  | /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */ | 
|  | aad_block = (OCB_BLOCK *)(aad + ((i - ctx->blocks_hashed - 1) * 16)); | 
|  | ocb_block16_xor(&ctx->offset_aad, aad_block, &tmp1); | 
|  | ctx->encrypt(tmp1.c, tmp2.c, ctx->keyenc); | 
|  | ocb_block16_xor(&ctx->sum, &tmp2, &ctx->sum); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we have any partial blocks left over. This is only valid in the | 
|  | * last call to this function | 
|  | */ | 
|  | last_len = len % 16; | 
|  |  | 
|  | if (last_len > 0) { | 
|  | /* Offset_* = Offset_m xor L_* */ | 
|  | ocb_block16_xor(&ctx->offset_aad, &ctx->l_star, &ctx->offset_aad); | 
|  |  | 
|  | /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */ | 
|  | memset(&tmp1, 0, 16); | 
|  | memcpy(&tmp1, aad + (num_blocks * 16), last_len); | 
|  | ((unsigned char *)&tmp1)[last_len] = 0x80; | 
|  | ocb_block16_xor(&ctx->offset_aad, &tmp1, &tmp2); | 
|  |  | 
|  | /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */ | 
|  | ctx->encrypt(tmp2.c, tmp1.c, ctx->keyenc); | 
|  | ocb_block16_xor(&ctx->sum, &tmp1, &ctx->sum); | 
|  | } | 
|  |  | 
|  | ctx->blocks_hashed = all_num_blocks; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Provide any data to be encrypted. This can be called multiple times. Only | 
|  | * the final time can have a partial block | 
|  | */ | 
|  | int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx, | 
|  | const unsigned char *in, unsigned char *out, | 
|  | size_t len) | 
|  | { | 
|  | u64 i, all_num_blocks; | 
|  | size_t num_blocks, last_len; | 
|  | OCB_BLOCK tmp1; | 
|  | OCB_BLOCK tmp2; | 
|  | OCB_BLOCK pad; | 
|  |  | 
|  | /* | 
|  | * Calculate the number of blocks of data to be encrypted provided now, and | 
|  | * so far | 
|  | */ | 
|  | num_blocks = len / 16; | 
|  | all_num_blocks = num_blocks + ctx->blocks_processed; | 
|  |  | 
|  | if (num_blocks && all_num_blocks == (size_t)all_num_blocks | 
|  | && ctx->stream != NULL) { | 
|  | size_t max_idx = 0, top = (size_t)all_num_blocks; | 
|  |  | 
|  | /* | 
|  | * See how many L_{i} entries we need to process data at hand | 
|  | * and pre-compute missing entries in the table [if any]... | 
|  | */ | 
|  | while (top >>= 1) | 
|  | max_idx++; | 
|  | if (ocb_lookup_l(ctx, max_idx) == NULL) | 
|  | return 0; | 
|  |  | 
|  | ctx->stream(in, out, num_blocks, ctx->keyenc, | 
|  | (size_t)ctx->blocks_processed + 1, ctx->offset.c, | 
|  | (const unsigned char (*)[16])ctx->l, ctx->checksum.c); | 
|  | } else { | 
|  | /* Loop through all full blocks to be encrypted */ | 
|  | for (i = ctx->blocks_processed + 1; i <= all_num_blocks; i++) { | 
|  | OCB_BLOCK *lookup; | 
|  | OCB_BLOCK *inblock; | 
|  | OCB_BLOCK *outblock; | 
|  |  | 
|  | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ | 
|  | lookup = ocb_lookup_l(ctx, ocb_ntz(i)); | 
|  | if (lookup == NULL) | 
|  | return 0; | 
|  | ocb_block16_xor(&ctx->offset, lookup, &ctx->offset); | 
|  |  | 
|  | /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */ | 
|  | inblock = | 
|  | (OCB_BLOCK *)(in + ((i - ctx->blocks_processed - 1) * 16)); | 
|  | ocb_block16_xor_misaligned(&ctx->offset, inblock, &tmp1); | 
|  | /* Checksum_i = Checksum_{i-1} xor P_i */ | 
|  | ocb_block16_xor_misaligned(&ctx->checksum, inblock, &ctx->checksum); | 
|  | ctx->encrypt(tmp1.c, tmp2.c, ctx->keyenc); | 
|  | outblock = | 
|  | (OCB_BLOCK *)(out + ((i - ctx->blocks_processed - 1) * 16)); | 
|  | ocb_block16_xor_misaligned(&ctx->offset, &tmp2, outblock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we have any partial blocks left over. This is only valid in the | 
|  | * last call to this function | 
|  | */ | 
|  | last_len = len % 16; | 
|  |  | 
|  | if (last_len > 0) { | 
|  | /* Offset_* = Offset_m xor L_* */ | 
|  | ocb_block16_xor(&ctx->offset, &ctx->l_star, &ctx->offset); | 
|  |  | 
|  | /* Pad = ENCIPHER(K, Offset_*) */ | 
|  | ctx->encrypt(ctx->offset.c, pad.c, ctx->keyenc); | 
|  |  | 
|  | /* C_* = P_* xor Pad[1..bitlen(P_*)] */ | 
|  | ocb_block_xor(in + (len / 16) * 16, (unsigned char *)&pad, last_len, | 
|  | out + (num_blocks * 16)); | 
|  |  | 
|  | /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ | 
|  | memset(&tmp1, 0, 16); | 
|  | memcpy(&tmp1, in + (len / 16) * 16, last_len); | 
|  | ((unsigned char *)(&tmp1))[last_len] = 0x80; | 
|  | ocb_block16_xor(&ctx->checksum, &tmp1, &ctx->checksum); | 
|  | } | 
|  |  | 
|  | ctx->blocks_processed = all_num_blocks; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Provide any data to be decrypted. This can be called multiple times. Only | 
|  | * the final time can have a partial block | 
|  | */ | 
|  | int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx, | 
|  | const unsigned char *in, unsigned char *out, | 
|  | size_t len) | 
|  | { | 
|  | u64 i, all_num_blocks; | 
|  | size_t num_blocks, last_len; | 
|  | OCB_BLOCK tmp1; | 
|  | OCB_BLOCK tmp2; | 
|  | OCB_BLOCK pad; | 
|  |  | 
|  | /* | 
|  | * Calculate the number of blocks of data to be decrypted provided now, and | 
|  | * so far | 
|  | */ | 
|  | num_blocks = len / 16; | 
|  | all_num_blocks = num_blocks + ctx->blocks_processed; | 
|  |  | 
|  | if (num_blocks && all_num_blocks == (size_t)all_num_blocks | 
|  | && ctx->stream != NULL) { | 
|  | size_t max_idx = 0, top = (size_t)all_num_blocks; | 
|  |  | 
|  | /* | 
|  | * See how many L_{i} entries we need to process data at hand | 
|  | * and pre-compute missing entries in the table [if any]... | 
|  | */ | 
|  | while (top >>= 1) | 
|  | max_idx++; | 
|  | if (ocb_lookup_l(ctx, max_idx) == NULL) | 
|  | return 0; | 
|  |  | 
|  | ctx->stream(in, out, num_blocks, ctx->keydec, | 
|  | (size_t)ctx->blocks_processed + 1, ctx->offset.c, | 
|  | (const unsigned char (*)[16])ctx->l, ctx->checksum.c); | 
|  | } else { | 
|  | /* Loop through all full blocks to be decrypted */ | 
|  | for (i = ctx->blocks_processed + 1; i <= all_num_blocks; i++) { | 
|  | OCB_BLOCK *inblock; | 
|  | OCB_BLOCK *outblock; | 
|  |  | 
|  | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ | 
|  | OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i)); | 
|  | if (lookup == NULL) | 
|  | return 0; | 
|  | ocb_block16_xor(&ctx->offset, lookup, &ctx->offset); | 
|  |  | 
|  | /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */ | 
|  | inblock = | 
|  | (OCB_BLOCK *)(in + ((i - ctx->blocks_processed - 1) * 16)); | 
|  | ocb_block16_xor_misaligned(&ctx->offset, inblock, &tmp1); | 
|  | ctx->decrypt(tmp1.c, tmp2.c, ctx->keydec); | 
|  | outblock = | 
|  | (OCB_BLOCK *)(out + ((i - ctx->blocks_processed - 1) * 16)); | 
|  | ocb_block16_xor_misaligned(&ctx->offset, &tmp2, outblock); | 
|  |  | 
|  | /* Checksum_i = Checksum_{i-1} xor P_i */ | 
|  | ocb_block16_xor_misaligned(&ctx->checksum, outblock, &ctx->checksum); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we have any partial blocks left over. This is only valid in the | 
|  | * last call to this function | 
|  | */ | 
|  | last_len = len % 16; | 
|  |  | 
|  | if (last_len > 0) { | 
|  | /* Offset_* = Offset_m xor L_* */ | 
|  | ocb_block16_xor(&ctx->offset, &ctx->l_star, &ctx->offset); | 
|  |  | 
|  | /* Pad = ENCIPHER(K, Offset_*) */ | 
|  | ctx->encrypt(ctx->offset.c, pad.c, ctx->keyenc); | 
|  |  | 
|  | /* P_* = C_* xor Pad[1..bitlen(C_*)] */ | 
|  | ocb_block_xor(in + (len / 16) * 16, (unsigned char *)&pad, last_len, | 
|  | out + (num_blocks * 16)); | 
|  |  | 
|  | /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ | 
|  | memset(&tmp1, 0, 16); | 
|  | memcpy(&tmp1, out + (len / 16) * 16, last_len); | 
|  | ((unsigned char *)(&tmp1))[last_len] = 0x80; | 
|  | ocb_block16_xor(&ctx->checksum, &tmp1, &ctx->checksum); | 
|  | } | 
|  |  | 
|  | ctx->blocks_processed = all_num_blocks; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the tag and verify it against the supplied tag | 
|  | */ | 
|  | int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag, | 
|  | size_t len) | 
|  | { | 
|  | OCB_BLOCK tmp1, tmp2; | 
|  |  | 
|  | /* | 
|  | * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A) | 
|  | */ | 
|  | ocb_block16_xor(&ctx->checksum, &ctx->offset, &tmp1); | 
|  | ocb_block16_xor(&tmp1, &ctx->l_dollar, &tmp2); | 
|  | ctx->encrypt(tmp2.c, tmp1.c, ctx->keyenc); | 
|  | ocb_block16_xor(&tmp1, &ctx->sum, &ctx->tag); | 
|  |  | 
|  | if (len > 16 || len < 1) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Compare the tag if we've been given one */ | 
|  | if (tag) | 
|  | return CRYPTO_memcmp(&ctx->tag, tag, len); | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrieve the calculated tag | 
|  | */ | 
|  | int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len) | 
|  | { | 
|  | if (len > 16 || len < 1) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Calculate the tag */ | 
|  | CRYPTO_ocb128_finish(ctx, NULL, 0); | 
|  |  | 
|  | /* Copy the tag into the supplied buffer */ | 
|  | memcpy(tag, &ctx->tag, len); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release all resources | 
|  | */ | 
|  | void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx) | 
|  | { | 
|  | if (ctx) { | 
|  | OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16); | 
|  | OPENSSL_cleanse(ctx, sizeof(*ctx)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif                          /* OPENSSL_NO_OCB */ |