| /* |
| * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include "../ssl_locl.h" |
| #include "internal/constant_time_locl.h" |
| #include <openssl/rand.h> |
| #include "record_locl.h" |
| #include "internal/cryptlib.h" |
| |
| static const unsigned char ssl3_pad_1[48] = { |
| 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
| 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
| 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
| 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
| 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, |
| 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36 |
| }; |
| |
| static const unsigned char ssl3_pad_2[48] = { |
| 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
| 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
| 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
| 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
| 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, |
| 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c |
| }; |
| |
| /* |
| * Clear the contents of an SSL3_RECORD but retain any memory allocated |
| */ |
| void SSL3_RECORD_clear(SSL3_RECORD *r, size_t num_recs) |
| { |
| unsigned char *comp; |
| size_t i; |
| |
| for (i = 0; i < num_recs; i++) { |
| comp = r[i].comp; |
| |
| memset(&r[i], 0, sizeof(*r)); |
| r[i].comp = comp; |
| } |
| } |
| |
| void SSL3_RECORD_release(SSL3_RECORD *r, size_t num_recs) |
| { |
| size_t i; |
| |
| for (i = 0; i < num_recs; i++) { |
| OPENSSL_free(r[i].comp); |
| r[i].comp = NULL; |
| } |
| } |
| |
| void SSL3_RECORD_set_seq_num(SSL3_RECORD *r, const unsigned char *seq_num) |
| { |
| memcpy(r->seq_num, seq_num, SEQ_NUM_SIZE); |
| } |
| |
| /* |
| * Peeks ahead into "read_ahead" data to see if we have a whole record waiting |
| * for us in the buffer. |
| */ |
| static int ssl3_record_app_data_waiting(SSL *s) |
| { |
| SSL3_BUFFER *rbuf; |
| size_t left, len; |
| unsigned char *p; |
| |
| rbuf = RECORD_LAYER_get_rbuf(&s->rlayer); |
| |
| p = SSL3_BUFFER_get_buf(rbuf); |
| if (p == NULL) |
| return 0; |
| |
| left = SSL3_BUFFER_get_left(rbuf); |
| |
| if (left < SSL3_RT_HEADER_LENGTH) |
| return 0; |
| |
| p += SSL3_BUFFER_get_offset(rbuf); |
| |
| /* |
| * We only check the type and record length, we will sanity check version |
| * etc later |
| */ |
| if (*p != SSL3_RT_APPLICATION_DATA) |
| return 0; |
| |
| p += 3; |
| n2s(p, len); |
| |
| if (left < SSL3_RT_HEADER_LENGTH + len) |
| return 0; |
| |
| return 1; |
| } |
| |
| int early_data_count_ok(SSL *s, size_t length, size_t overhead, int send) |
| { |
| uint32_t max_early_data = s->max_early_data; |
| SSL_SESSION *sess = s->session; |
| |
| /* |
| * If we are a client then we always use the max_early_data from the |
| * session/psksession. Otherwise we go with the lowest out of the max early |
| * data set in the session and the configured max_early_data. |
| */ |
| if (!s->server && sess->ext.max_early_data == 0) { |
| if (!ossl_assert(s->psksession != NULL |
| && s->psksession->ext.max_early_data > 0)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_EARLY_DATA_COUNT_OK, |
| ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| sess = s->psksession; |
| } |
| if (!s->server |
| || (s->hit && sess->ext.max_early_data < s->max_early_data)) |
| max_early_data = sess->ext.max_early_data; |
| |
| if (max_early_data == 0) { |
| SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE, |
| SSL_F_EARLY_DATA_COUNT_OK, SSL_R_TOO_MUCH_EARLY_DATA); |
| return 0; |
| } |
| |
| /* If we are dealing with ciphertext we need to allow for the overhead */ |
| max_early_data += overhead; |
| |
| if (s->early_data_count + length > max_early_data) { |
| SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE, |
| SSL_F_EARLY_DATA_COUNT_OK, SSL_R_TOO_MUCH_EARLY_DATA); |
| return 0; |
| } |
| s->early_data_count += length; |
| |
| return 1; |
| } |
| |
| /* |
| * MAX_EMPTY_RECORDS defines the number of consecutive, empty records that |
| * will be processed per call to ssl3_get_record. Without this limit an |
| * attacker could send empty records at a faster rate than we can process and |
| * cause ssl3_get_record to loop forever. |
| */ |
| #define MAX_EMPTY_RECORDS 32 |
| |
| #define SSL2_RT_HEADER_LENGTH 2 |
| /*- |
| * Call this to get new input records. |
| * It will return <= 0 if more data is needed, normally due to an error |
| * or non-blocking IO. |
| * When it finishes, |numrpipes| records have been decoded. For each record 'i': |
| * rr[i].type - is the type of record |
| * rr[i].data, - data |
| * rr[i].length, - number of bytes |
| * Multiple records will only be returned if the record types are all |
| * SSL3_RT_APPLICATION_DATA. The number of records returned will always be <= |
| * |max_pipelines| |
| */ |
| /* used only by ssl3_read_bytes */ |
| int ssl3_get_record(SSL *s) |
| { |
| int enc_err, rret; |
| int i; |
| size_t more, n; |
| SSL3_RECORD *rr, *thisrr; |
| SSL3_BUFFER *rbuf; |
| SSL_SESSION *sess; |
| unsigned char *p; |
| unsigned char md[EVP_MAX_MD_SIZE]; |
| unsigned int version; |
| size_t mac_size; |
| int imac_size; |
| size_t num_recs = 0, max_recs, j; |
| PACKET pkt, sslv2pkt; |
| size_t first_rec_len; |
| |
| rr = RECORD_LAYER_get_rrec(&s->rlayer); |
| rbuf = RECORD_LAYER_get_rbuf(&s->rlayer); |
| max_recs = s->max_pipelines; |
| if (max_recs == 0) |
| max_recs = 1; |
| sess = s->session; |
| |
| do { |
| thisrr = &rr[num_recs]; |
| |
| /* check if we have the header */ |
| if ((RECORD_LAYER_get_rstate(&s->rlayer) != SSL_ST_READ_BODY) || |
| (RECORD_LAYER_get_packet_length(&s->rlayer) |
| < SSL3_RT_HEADER_LENGTH)) { |
| size_t sslv2len; |
| unsigned int type; |
| |
| rret = ssl3_read_n(s, SSL3_RT_HEADER_LENGTH, |
| SSL3_BUFFER_get_len(rbuf), 0, |
| num_recs == 0 ? 1 : 0, &n); |
| if (rret <= 0) |
| return rret; /* error or non-blocking */ |
| RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_BODY); |
| |
| p = RECORD_LAYER_get_packet(&s->rlayer); |
| if (!PACKET_buf_init(&pkt, RECORD_LAYER_get_packet(&s->rlayer), |
| RECORD_LAYER_get_packet_length(&s->rlayer))) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, |
| ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| sslv2pkt = pkt; |
| if (!PACKET_get_net_2_len(&sslv2pkt, &sslv2len) |
| || !PACKET_get_1(&sslv2pkt, &type)) { |
| SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
| ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| /* |
| * The first record received by the server may be a V2ClientHello. |
| */ |
| if (s->server && RECORD_LAYER_is_first_record(&s->rlayer) |
| && (sslv2len & 0x8000) != 0 |
| && (type == SSL2_MT_CLIENT_HELLO)) { |
| /* |
| * SSLv2 style record |
| * |
| * |num_recs| here will actually always be 0 because |
| * |num_recs > 0| only ever occurs when we are processing |
| * multiple app data records - which we know isn't the case here |
| * because it is an SSLv2ClientHello. We keep it using |
| * |num_recs| for the sake of consistency |
| */ |
| thisrr->type = SSL3_RT_HANDSHAKE; |
| thisrr->rec_version = SSL2_VERSION; |
| |
| thisrr->length = sslv2len & 0x7fff; |
| |
| if (thisrr->length > SSL3_BUFFER_get_len(rbuf) |
| - SSL2_RT_HEADER_LENGTH) { |
| SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
| SSL_R_PACKET_LENGTH_TOO_LONG); |
| return -1; |
| } |
| |
| if (thisrr->length < MIN_SSL2_RECORD_LEN) { |
| SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
| SSL_R_LENGTH_TOO_SHORT); |
| return -1; |
| } |
| } else { |
| /* SSLv3+ style record */ |
| if (s->msg_callback) |
| s->msg_callback(0, 0, SSL3_RT_HEADER, p, 5, s, |
| s->msg_callback_arg); |
| |
| /* Pull apart the header into the SSL3_RECORD */ |
| if (!PACKET_get_1(&pkt, &type) |
| || !PACKET_get_net_2(&pkt, &version) |
| || !PACKET_get_net_2_len(&pkt, &thisrr->length)) { |
| SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
| ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| thisrr->type = type; |
| thisrr->rec_version = version; |
| |
| /* |
| * Lets check version. In TLSv1.3 we ignore this field. For the |
| * ServerHello after an HRR we haven't actually selected TLSv1.3 |
| * yet, but we still treat it as TLSv1.3, so we must check for |
| * that explicitly |
| */ |
| if (!s->first_packet && !SSL_IS_TLS13(s) |
| && !s->hello_retry_request |
| && version != (unsigned int)s->version) { |
| if ((s->version & 0xFF00) == (version & 0xFF00) |
| && !s->enc_write_ctx && !s->write_hash) { |
| if (thisrr->type == SSL3_RT_ALERT) { |
| /* |
| * The record is using an incorrect version number, |
| * but what we've got appears to be an alert. We |
| * haven't read the body yet to check whether its a |
| * fatal or not - but chances are it is. We probably |
| * shouldn't send a fatal alert back. We'll just |
| * end. |
| */ |
| SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, |
| SSL_R_WRONG_VERSION_NUMBER); |
| return -1; |
| } |
| /* |
| * Send back error using their minor version number :-) |
| */ |
| s->version = (unsigned short)version; |
| } |
| SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_F_SSL3_GET_RECORD, |
| SSL_R_WRONG_VERSION_NUMBER); |
| return -1; |
| } |
| |
| if ((version >> 8) != SSL3_VERSION_MAJOR) { |
| if (RECORD_LAYER_is_first_record(&s->rlayer)) { |
| /* Go back to start of packet, look at the five bytes |
| * that we have. */ |
| p = RECORD_LAYER_get_packet(&s->rlayer); |
| if (strncmp((char *)p, "GET ", 4) == 0 || |
| strncmp((char *)p, "POST ", 5) == 0 || |
| strncmp((char *)p, "HEAD ", 5) == 0 || |
| strncmp((char *)p, "PUT ", 4) == 0) { |
| SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, |
| SSL_R_HTTP_REQUEST); |
| return -1; |
| } else if (strncmp((char *)p, "CONNE", 5) == 0) { |
| SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, |
| SSL_R_HTTPS_PROXY_REQUEST); |
| return -1; |
| } |
| |
| /* Doesn't look like TLS - don't send an alert */ |
| SSLfatal(s, SSL_AD_NO_ALERT, SSL_F_SSL3_GET_RECORD, |
| SSL_R_WRONG_VERSION_NUMBER); |
| return -1; |
| } else { |
| SSLfatal(s, SSL_AD_PROTOCOL_VERSION, |
| SSL_F_SSL3_GET_RECORD, |
| SSL_R_WRONG_VERSION_NUMBER); |
| return -1; |
| } |
| } |
| |
| if (SSL_IS_TLS13(s) && s->enc_read_ctx != NULL |
| && thisrr->type != SSL3_RT_APPLICATION_DATA) { |
| SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, |
| SSL_F_SSL3_GET_RECORD, SSL_R_BAD_RECORD_TYPE); |
| return -1; |
| } |
| |
| if (thisrr->length > |
| SSL3_BUFFER_get_len(rbuf) - SSL3_RT_HEADER_LENGTH) { |
| SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
| SSL_R_PACKET_LENGTH_TOO_LONG); |
| return -1; |
| } |
| } |
| |
| /* now s->rlayer.rstate == SSL_ST_READ_BODY */ |
| } |
| |
| if (SSL_IS_TLS13(s)) { |
| if (thisrr->length > SSL3_RT_MAX_TLS13_ENCRYPTED_LENGTH) { |
| SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
| SSL_R_ENCRYPTED_LENGTH_TOO_LONG); |
| return -1; |
| } |
| } else { |
| size_t len = SSL3_RT_MAX_ENCRYPTED_LENGTH; |
| |
| #ifndef OPENSSL_NO_COMP |
| /* |
| * If OPENSSL_NO_COMP is defined then SSL3_RT_MAX_ENCRYPTED_LENGTH |
| * does not include the compression overhead anyway. |
| */ |
| if (s->expand == NULL) |
| len -= SSL3_RT_MAX_COMPRESSED_OVERHEAD; |
| #endif |
| |
| if (thisrr->length > len) { |
| SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
| SSL_R_ENCRYPTED_LENGTH_TOO_LONG); |
| return -1; |
| } |
| } |
| |
| /* |
| * s->rlayer.rstate == SSL_ST_READ_BODY, get and decode the data. |
| * Calculate how much more data we need to read for the rest of the |
| * record |
| */ |
| if (thisrr->rec_version == SSL2_VERSION) { |
| more = thisrr->length + SSL2_RT_HEADER_LENGTH |
| - SSL3_RT_HEADER_LENGTH; |
| } else { |
| more = thisrr->length; |
| } |
| if (more > 0) { |
| /* now s->packet_length == SSL3_RT_HEADER_LENGTH */ |
| |
| rret = ssl3_read_n(s, more, more, 1, 0, &n); |
| if (rret <= 0) |
| return rret; /* error or non-blocking io */ |
| } |
| |
| /* set state for later operations */ |
| RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_HEADER); |
| |
| /* |
| * At this point, s->packet_length == SSL3_RT_HEADER_LENGTH |
| * + thisrr->length, or s->packet_length == SSL2_RT_HEADER_LENGTH |
| * + thisrr->length and we have that many bytes in s->packet |
| */ |
| if (thisrr->rec_version == SSL2_VERSION) { |
| thisrr->input = |
| &(RECORD_LAYER_get_packet(&s->rlayer)[SSL2_RT_HEADER_LENGTH]); |
| } else { |
| thisrr->input = |
| &(RECORD_LAYER_get_packet(&s->rlayer)[SSL3_RT_HEADER_LENGTH]); |
| } |
| |
| /* |
| * ok, we can now read from 's->packet' data into 'thisrr' thisrr->input |
| * points at thisrr->length bytes, which need to be copied into |
| * thisrr->data by either the decryption or by the decompression When |
| * the data is 'copied' into the thisrr->data buffer, thisrr->input will |
| * be pointed at the new buffer |
| */ |
| |
| /* |
| * We now have - encrypted [ MAC [ compressed [ plain ] ] ] |
| * thisrr->length bytes of encrypted compressed stuff. |
| */ |
| |
| /* decrypt in place in 'thisrr->input' */ |
| thisrr->data = thisrr->input; |
| thisrr->orig_len = thisrr->length; |
| |
| /* Mark this record as not read by upper layers yet */ |
| thisrr->read = 0; |
| |
| num_recs++; |
| |
| /* we have pulled in a full packet so zero things */ |
| RECORD_LAYER_reset_packet_length(&s->rlayer); |
| RECORD_LAYER_clear_first_record(&s->rlayer); |
| } while (num_recs < max_recs |
| && thisrr->type == SSL3_RT_APPLICATION_DATA |
| && SSL_USE_EXPLICIT_IV(s) |
| && s->enc_read_ctx != NULL |
| && (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_read_ctx)) |
| & EVP_CIPH_FLAG_PIPELINE) |
| && ssl3_record_app_data_waiting(s)); |
| |
| /* |
| * If in encrypt-then-mac mode calculate mac from encrypted record. All |
| * the details below are public so no timing details can leak. |
| */ |
| if (SSL_READ_ETM(s) && s->read_hash) { |
| unsigned char *mac; |
| /* TODO(size_t): convert this to do size_t properly */ |
| imac_size = EVP_MD_CTX_size(s->read_hash); |
| if (!ossl_assert(imac_size >= 0 && imac_size <= EVP_MAX_MD_SIZE)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, |
| ERR_LIB_EVP); |
| return -1; |
| } |
| mac_size = (size_t)imac_size; |
| for (j = 0; j < num_recs; j++) { |
| thisrr = &rr[j]; |
| |
| if (thisrr->length < mac_size) { |
| SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
| SSL_R_LENGTH_TOO_SHORT); |
| return -1; |
| } |
| thisrr->length -= mac_size; |
| mac = thisrr->data + thisrr->length; |
| i = s->method->ssl3_enc->mac(s, thisrr, md, 0 /* not send */ ); |
| if (i == 0 || CRYPTO_memcmp(md, mac, mac_size) != 0) { |
| SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD, |
| SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
| return -1; |
| } |
| } |
| } |
| |
| first_rec_len = rr[0].length; |
| |
| enc_err = s->method->ssl3_enc->enc(s, rr, num_recs, 0); |
| |
| /*- |
| * enc_err is: |
| * 0: (in non-constant time) if the record is publicly invalid. |
| * 1: if the padding is valid |
| * -1: if the padding is invalid |
| */ |
| if (enc_err == 0) { |
| if (ossl_statem_in_error(s)) { |
| /* SSLfatal() already got called */ |
| return -1; |
| } |
| if (num_recs == 1 && ossl_statem_skip_early_data(s)) { |
| /* |
| * Valid early_data that we cannot decrypt might fail here as |
| * publicly invalid. We treat it like an empty record. |
| */ |
| |
| thisrr = &rr[0]; |
| |
| if (!early_data_count_ok(s, thisrr->length, |
| EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) { |
| /* SSLfatal() already called */ |
| return -1; |
| } |
| |
| thisrr->length = 0; |
| thisrr->read = 1; |
| RECORD_LAYER_set_numrpipes(&s->rlayer, 1); |
| RECORD_LAYER_reset_read_sequence(&s->rlayer); |
| return 1; |
| } |
| SSLfatal(s, SSL_AD_DECRYPTION_FAILED, SSL_F_SSL3_GET_RECORD, |
| SSL_R_BLOCK_CIPHER_PAD_IS_WRONG); |
| return -1; |
| } |
| #ifdef SSL_DEBUG |
| printf("dec %"OSSLzu"\n", rr[0].length); |
| { |
| size_t z; |
| for (z = 0; z < rr[0].length; z++) |
| printf("%02X%c", rr[0].data[z], ((z + 1) % 16) ? ' ' : '\n'); |
| } |
| printf("\n"); |
| #endif |
| |
| /* r->length is now the compressed data plus mac */ |
| if ((sess != NULL) && |
| (s->enc_read_ctx != NULL) && |
| (!SSL_READ_ETM(s) && EVP_MD_CTX_md(s->read_hash) != NULL)) { |
| /* s->read_hash != NULL => mac_size != -1 */ |
| unsigned char *mac = NULL; |
| unsigned char mac_tmp[EVP_MAX_MD_SIZE]; |
| |
| mac_size = EVP_MD_CTX_size(s->read_hash); |
| if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, |
| ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| |
| for (j = 0; j < num_recs; j++) { |
| thisrr = &rr[j]; |
| /* |
| * orig_len is the length of the record before any padding was |
| * removed. This is public information, as is the MAC in use, |
| * therefore we can safely process the record in a different amount |
| * of time if it's too short to possibly contain a MAC. |
| */ |
| if (thisrr->orig_len < mac_size || |
| /* CBC records must have a padding length byte too. */ |
| (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
| thisrr->orig_len < mac_size + 1)) { |
| SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL3_GET_RECORD, |
| SSL_R_LENGTH_TOO_SHORT); |
| return -1; |
| } |
| |
| if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) { |
| /* |
| * We update the length so that the TLS header bytes can be |
| * constructed correctly but we need to extract the MAC in |
| * constant time from within the record, without leaking the |
| * contents of the padding bytes. |
| */ |
| mac = mac_tmp; |
| if (!ssl3_cbc_copy_mac(mac_tmp, thisrr, mac_size)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_GET_RECORD, |
| ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| thisrr->length -= mac_size; |
| } else { |
| /* |
| * In this case there's no padding, so |rec->orig_len| equals |
| * |rec->length| and we checked that there's enough bytes for |
| * |mac_size| above. |
| */ |
| thisrr->length -= mac_size; |
| mac = &thisrr->data[thisrr->length]; |
| } |
| |
| i = s->method->ssl3_enc->mac(s, thisrr, md, 0 /* not send */ ); |
| if (i == 0 || mac == NULL |
| || CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0) |
| enc_err = -1; |
| if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size) |
| enc_err = -1; |
| } |
| } |
| |
| if (enc_err < 0) { |
| if (ossl_statem_in_error(s)) { |
| /* We already called SSLfatal() */ |
| return -1; |
| } |
| if (num_recs == 1 && ossl_statem_skip_early_data(s)) { |
| /* |
| * We assume this is unreadable early_data - we treat it like an |
| * empty record |
| */ |
| |
| /* |
| * The record length may have been modified by the mac check above |
| * so we use the previously saved value |
| */ |
| if (!early_data_count_ok(s, first_rec_len, |
| EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) { |
| /* SSLfatal() already called */ |
| return -1; |
| } |
| |
| thisrr = &rr[0]; |
| thisrr->length = 0; |
| thisrr->read = 1; |
| RECORD_LAYER_set_numrpipes(&s->rlayer, 1); |
| RECORD_LAYER_reset_read_sequence(&s->rlayer); |
| return 1; |
| } |
| /* |
| * A separate 'decryption_failed' alert was introduced with TLS 1.0, |
| * SSL 3.0 only has 'bad_record_mac'. But unless a decryption |
| * failure is directly visible from the ciphertext anyway, we should |
| * not reveal which kind of error occurred -- this might become |
| * visible to an attacker (e.g. via a logfile) |
| */ |
| SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_SSL3_GET_RECORD, |
| SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
| return -1; |
| } |
| |
| for (j = 0; j < num_recs; j++) { |
| thisrr = &rr[j]; |
| |
| /* thisrr->length is now just compressed */ |
| if (s->expand != NULL) { |
| if (thisrr->length > SSL3_RT_MAX_COMPRESSED_LENGTH) { |
| SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
| SSL_R_COMPRESSED_LENGTH_TOO_LONG); |
| return -1; |
| } |
| if (!ssl3_do_uncompress(s, thisrr)) { |
| SSLfatal(s, SSL_AD_DECOMPRESSION_FAILURE, SSL_F_SSL3_GET_RECORD, |
| SSL_R_BAD_DECOMPRESSION); |
| return -1; |
| } |
| } |
| |
| if (SSL_IS_TLS13(s) && s->enc_read_ctx != NULL) { |
| size_t end; |
| |
| if (thisrr->length == 0 |
| || thisrr->type != SSL3_RT_APPLICATION_DATA) { |
| SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, |
| SSL_R_BAD_RECORD_TYPE); |
| return -1; |
| } |
| |
| /* Strip trailing padding */ |
| for (end = thisrr->length - 1; end > 0 && thisrr->data[end] == 0; |
| end--) |
| continue; |
| |
| thisrr->length = end; |
| thisrr->type = thisrr->data[end]; |
| if (thisrr->type != SSL3_RT_APPLICATION_DATA |
| && thisrr->type != SSL3_RT_ALERT |
| && thisrr->type != SSL3_RT_HANDSHAKE) { |
| SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, |
| SSL_R_BAD_RECORD_TYPE); |
| return -1; |
| } |
| if (s->msg_callback) |
| s->msg_callback(0, s->version, SSL3_RT_INNER_CONTENT_TYPE, |
| &thisrr->data[end], 1, s, s->msg_callback_arg); |
| } |
| |
| /* |
| * TLSv1.3 alert and handshake records are required to be non-zero in |
| * length. |
| */ |
| if (SSL_IS_TLS13(s) |
| && (thisrr->type == SSL3_RT_HANDSHAKE |
| || thisrr->type == SSL3_RT_ALERT) |
| && thisrr->length == 0) { |
| SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, |
| SSL_R_BAD_LENGTH); |
| return -1; |
| } |
| |
| if (thisrr->length > SSL3_RT_MAX_PLAIN_LENGTH) { |
| SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
| SSL_R_DATA_LENGTH_TOO_LONG); |
| return -1; |
| } |
| |
| /* If received packet overflows current Max Fragment Length setting */ |
| if (s->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(s->session) |
| && thisrr->length > GET_MAX_FRAGMENT_LENGTH(s->session)) { |
| SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_SSL3_GET_RECORD, |
| SSL_R_DATA_LENGTH_TOO_LONG); |
| return -1; |
| } |
| |
| thisrr->off = 0; |
| /*- |
| * So at this point the following is true |
| * thisrr->type is the type of record |
| * thisrr->length == number of bytes in record |
| * thisrr->off == offset to first valid byte |
| * thisrr->data == where to take bytes from, increment after use :-). |
| */ |
| |
| /* just read a 0 length packet */ |
| if (thisrr->length == 0) { |
| RECORD_LAYER_inc_empty_record_count(&s->rlayer); |
| if (RECORD_LAYER_get_empty_record_count(&s->rlayer) |
| > MAX_EMPTY_RECORDS) { |
| SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_F_SSL3_GET_RECORD, |
| SSL_R_RECORD_TOO_SMALL); |
| return -1; |
| } |
| } else { |
| RECORD_LAYER_reset_empty_record_count(&s->rlayer); |
| } |
| } |
| |
| if (s->early_data_state == SSL_EARLY_DATA_READING) { |
| thisrr = &rr[0]; |
| if (thisrr->type == SSL3_RT_APPLICATION_DATA |
| && !early_data_count_ok(s, thisrr->length, 0, 0)) { |
| /* SSLfatal already called */ |
| return -1; |
| } |
| } |
| |
| RECORD_LAYER_set_numrpipes(&s->rlayer, num_recs); |
| return 1; |
| } |
| |
| int ssl3_do_uncompress(SSL *ssl, SSL3_RECORD *rr) |
| { |
| #ifndef OPENSSL_NO_COMP |
| int i; |
| |
| if (rr->comp == NULL) { |
| rr->comp = (unsigned char *) |
| OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH); |
| } |
| if (rr->comp == NULL) |
| return 0; |
| |
| /* TODO(size_t): Convert this call */ |
| i = COMP_expand_block(ssl->expand, rr->comp, |
| SSL3_RT_MAX_PLAIN_LENGTH, rr->data, (int)rr->length); |
| if (i < 0) |
| return 0; |
| else |
| rr->length = i; |
| rr->data = rr->comp; |
| #endif |
| return 1; |
| } |
| |
| int ssl3_do_compress(SSL *ssl, SSL3_RECORD *wr) |
| { |
| #ifndef OPENSSL_NO_COMP |
| int i; |
| |
| /* TODO(size_t): Convert this call */ |
| i = COMP_compress_block(ssl->compress, wr->data, |
| (int)(wr->length + SSL3_RT_MAX_COMPRESSED_OVERHEAD), |
| wr->input, (int)wr->length); |
| if (i < 0) |
| return 0; |
| else |
| wr->length = i; |
| |
| wr->input = wr->data; |
| #endif |
| return 1; |
| } |
| |
| /*- |
| * ssl3_enc encrypts/decrypts |n_recs| records in |inrecs|. Will call |
| * SSLfatal() for internal errors, but not otherwise. |
| * |
| * Returns: |
| * 0: (in non-constant time) if the record is publically invalid (i.e. too |
| * short etc). |
| * 1: if the record's padding is valid / the encryption was successful. |
| * -1: if the record's padding is invalid or, if sending, an internal error |
| * occurred. |
| */ |
| int ssl3_enc(SSL *s, SSL3_RECORD *inrecs, size_t n_recs, int sending) |
| { |
| SSL3_RECORD *rec; |
| EVP_CIPHER_CTX *ds; |
| size_t l, i; |
| size_t bs, mac_size = 0; |
| int imac_size; |
| const EVP_CIPHER *enc; |
| |
| rec = inrecs; |
| /* |
| * We shouldn't ever be called with more than one record in the SSLv3 case |
| */ |
| if (n_recs != 1) |
| return 0; |
| if (sending) { |
| ds = s->enc_write_ctx; |
| if (s->enc_write_ctx == NULL) |
| enc = NULL; |
| else |
| enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); |
| } else { |
| ds = s->enc_read_ctx; |
| if (s->enc_read_ctx == NULL) |
| enc = NULL; |
| else |
| enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); |
| } |
| |
| if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { |
| memmove(rec->data, rec->input, rec->length); |
| rec->input = rec->data; |
| } else { |
| l = rec->length; |
| /* TODO(size_t): Convert this call */ |
| bs = EVP_CIPHER_CTX_block_size(ds); |
| |
| /* COMPRESS */ |
| |
| if ((bs != 1) && sending) { |
| i = bs - (l % bs); |
| |
| /* we need to add 'i-1' padding bytes */ |
| l += i; |
| /* |
| * the last of these zero bytes will be overwritten with the |
| * padding length. |
| */ |
| memset(&rec->input[rec->length], 0, i); |
| rec->length += i; |
| rec->input[l - 1] = (unsigned char)(i - 1); |
| } |
| |
| if (!sending) { |
| if (l == 0 || l % bs != 0) |
| return 0; |
| /* otherwise, rec->length >= bs */ |
| } |
| |
| /* TODO(size_t): Convert this call */ |
| if (EVP_Cipher(ds, rec->data, rec->input, (unsigned int)l) < 1) |
| return -1; |
| |
| if (EVP_MD_CTX_md(s->read_hash) != NULL) { |
| /* TODO(size_t): convert me */ |
| imac_size = EVP_MD_CTX_size(s->read_hash); |
| if (imac_size < 0) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL3_ENC, |
| ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| mac_size = (size_t)imac_size; |
| } |
| if ((bs != 1) && !sending) |
| return ssl3_cbc_remove_padding(rec, bs, mac_size); |
| } |
| return 1; |
| } |
| |
| #define MAX_PADDING 256 |
| /*- |
| * tls1_enc encrypts/decrypts |n_recs| in |recs|. Will call SSLfatal() for |
| * internal errors, but not otherwise. |
| * |
| * Returns: |
| * 0: (in non-constant time) if the record is publically invalid (i.e. too |
| * short etc). |
| * 1: if the record's padding is valid / the encryption was successful. |
| * -1: if the record's padding/AEAD-authenticator is invalid or, if sending, |
| * an internal error occurred. |
| */ |
| int tls1_enc(SSL *s, SSL3_RECORD *recs, size_t n_recs, int sending) |
| { |
| EVP_CIPHER_CTX *ds; |
| size_t reclen[SSL_MAX_PIPELINES]; |
| unsigned char buf[SSL_MAX_PIPELINES][EVP_AEAD_TLS1_AAD_LEN]; |
| int i, pad = 0, ret, tmpr; |
| size_t bs, mac_size = 0, ctr, padnum, loop; |
| unsigned char padval; |
| int imac_size; |
| const EVP_CIPHER *enc; |
| |
| if (n_recs == 0) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| if (sending) { |
| if (EVP_MD_CTX_md(s->write_hash)) { |
| int n = EVP_MD_CTX_size(s->write_hash); |
| if (!ossl_assert(n >= 0)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| } |
| ds = s->enc_write_ctx; |
| if (s->enc_write_ctx == NULL) |
| enc = NULL; |
| else { |
| int ivlen; |
| enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx); |
| /* For TLSv1.1 and later explicit IV */ |
| if (SSL_USE_EXPLICIT_IV(s) |
| && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE) |
| ivlen = EVP_CIPHER_iv_length(enc); |
| else |
| ivlen = 0; |
| if (ivlen > 1) { |
| for (ctr = 0; ctr < n_recs; ctr++) { |
| if (recs[ctr].data != recs[ctr].input) { |
| /* |
| * we can't write into the input stream: Can this ever |
| * happen?? (steve) |
| */ |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| ERR_R_INTERNAL_ERROR); |
| return -1; |
| } else if (ssl_randbytes(s, recs[ctr].input, ivlen) <= 0) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| } |
| } |
| } |
| } else { |
| if (EVP_MD_CTX_md(s->read_hash)) { |
| int n = EVP_MD_CTX_size(s->read_hash); |
| if (!ossl_assert(n >= 0)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| } |
| ds = s->enc_read_ctx; |
| if (s->enc_read_ctx == NULL) |
| enc = NULL; |
| else |
| enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx); |
| } |
| |
| if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) { |
| for (ctr = 0; ctr < n_recs; ctr++) { |
| memmove(recs[ctr].data, recs[ctr].input, recs[ctr].length); |
| recs[ctr].input = recs[ctr].data; |
| } |
| ret = 1; |
| } else { |
| bs = EVP_CIPHER_block_size(EVP_CIPHER_CTX_cipher(ds)); |
| |
| if (n_recs > 1) { |
| if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds)) |
| & EVP_CIPH_FLAG_PIPELINE)) { |
| /* |
| * We shouldn't have been called with pipeline data if the |
| * cipher doesn't support pipelining |
| */ |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| SSL_R_PIPELINE_FAILURE); |
| return -1; |
| } |
| } |
| for (ctr = 0; ctr < n_recs; ctr++) { |
| reclen[ctr] = recs[ctr].length; |
| |
| if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds)) |
| & EVP_CIPH_FLAG_AEAD_CIPHER) { |
| unsigned char *seq; |
| |
| seq = sending ? RECORD_LAYER_get_write_sequence(&s->rlayer) |
| : RECORD_LAYER_get_read_sequence(&s->rlayer); |
| |
| if (SSL_IS_DTLS(s)) { |
| /* DTLS does not support pipelining */ |
| unsigned char dtlsseq[9], *p = dtlsseq; |
| |
| s2n(sending ? DTLS_RECORD_LAYER_get_w_epoch(&s->rlayer) : |
| DTLS_RECORD_LAYER_get_r_epoch(&s->rlayer), p); |
| memcpy(p, &seq[2], 6); |
| memcpy(buf[ctr], dtlsseq, 8); |
| } else { |
| memcpy(buf[ctr], seq, 8); |
| for (i = 7; i >= 0; i--) { /* increment */ |
| ++seq[i]; |
| if (seq[i] != 0) |
| break; |
| } |
| } |
| |
| buf[ctr][8] = recs[ctr].type; |
| buf[ctr][9] = (unsigned char)(s->version >> 8); |
| buf[ctr][10] = (unsigned char)(s->version); |
| buf[ctr][11] = (unsigned char)(recs[ctr].length >> 8); |
| buf[ctr][12] = (unsigned char)(recs[ctr].length & 0xff); |
| pad = EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_AEAD_TLS1_AAD, |
| EVP_AEAD_TLS1_AAD_LEN, buf[ctr]); |
| if (pad <= 0) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| |
| if (sending) { |
| reclen[ctr] += pad; |
| recs[ctr].length += pad; |
| } |
| |
| } else if ((bs != 1) && sending) { |
| padnum = bs - (reclen[ctr] % bs); |
| |
| /* Add weird padding of upto 256 bytes */ |
| |
| if (padnum > MAX_PADDING) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| /* we need to add 'padnum' padding bytes of value padval */ |
| padval = (unsigned char)(padnum - 1); |
| for (loop = reclen[ctr]; loop < reclen[ctr] + padnum; loop++) |
| recs[ctr].input[loop] = padval; |
| reclen[ctr] += padnum; |
| recs[ctr].length += padnum; |
| } |
| |
| if (!sending) { |
| if (reclen[ctr] == 0 || reclen[ctr] % bs != 0) |
| return 0; |
| } |
| } |
| if (n_recs > 1) { |
| unsigned char *data[SSL_MAX_PIPELINES]; |
| |
| /* Set the output buffers */ |
| for (ctr = 0; ctr < n_recs; ctr++) { |
| data[ctr] = recs[ctr].data; |
| } |
| if (EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS, |
| (int)n_recs, data) <= 0) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| SSL_R_PIPELINE_FAILURE); |
| return -1; |
| } |
| /* Set the input buffers */ |
| for (ctr = 0; ctr < n_recs; ctr++) { |
| data[ctr] = recs[ctr].input; |
| } |
| if (EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_INPUT_BUFS, |
| (int)n_recs, data) <= 0 |
| || EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_SET_PIPELINE_INPUT_LENS, |
| (int)n_recs, reclen) <= 0) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| SSL_R_PIPELINE_FAILURE); |
| return -1; |
| } |
| } |
| |
| /* TODO(size_t): Convert this call */ |
| tmpr = EVP_Cipher(ds, recs[0].data, recs[0].input, |
| (unsigned int)reclen[0]); |
| if ((EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ds)) |
| & EVP_CIPH_FLAG_CUSTOM_CIPHER) |
| ? (tmpr < 0) |
| : (tmpr == 0)) |
| return -1; /* AEAD can fail to verify MAC */ |
| |
| if (sending == 0) { |
| if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE) { |
| for (ctr = 0; ctr < n_recs; ctr++) { |
| recs[ctr].data += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| recs[ctr].input += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| recs[ctr].length -= EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| } |
| } else if (EVP_CIPHER_mode(enc) == EVP_CIPH_CCM_MODE) { |
| for (ctr = 0; ctr < n_recs; ctr++) { |
| recs[ctr].data += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| recs[ctr].input += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| recs[ctr].length -= EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| } |
| } |
| } |
| |
| ret = 1; |
| if (!SSL_READ_ETM(s) && EVP_MD_CTX_md(s->read_hash) != NULL) { |
| imac_size = EVP_MD_CTX_size(s->read_hash); |
| if (imac_size < 0) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS1_ENC, |
| ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| mac_size = (size_t)imac_size; |
| } |
| if ((bs != 1) && !sending) { |
| int tmpret; |
| for (ctr = 0; ctr < n_recs; ctr++) { |
| tmpret = tls1_cbc_remove_padding(s, &recs[ctr], bs, mac_size); |
| /* |
| * If tmpret == 0 then this means publicly invalid so we can |
| * short circuit things here. Otherwise we must respect constant |
| * time behaviour. |
| */ |
| if (tmpret == 0) |
| return 0; |
| ret = constant_time_select_int(constant_time_eq_int(tmpret, 1), |
| ret, -1); |
| } |
| } |
| if (pad && !sending) { |
| for (ctr = 0; ctr < n_recs; ctr++) { |
| recs[ctr].length -= pad; |
| } |
| } |
| } |
| return ret; |
| } |
| |
| int n_ssl3_mac(SSL *ssl, SSL3_RECORD *rec, unsigned char *md, int sending) |
| { |
| unsigned char *mac_sec, *seq; |
| const EVP_MD_CTX *hash; |
| unsigned char *p, rec_char; |
| size_t md_size; |
| size_t npad; |
| int t; |
| |
| if (sending) { |
| mac_sec = &(ssl->s3->write_mac_secret[0]); |
| seq = RECORD_LAYER_get_write_sequence(&ssl->rlayer); |
| hash = ssl->write_hash; |
| } else { |
| mac_sec = &(ssl->s3->read_mac_secret[0]); |
| seq = RECORD_LAYER_get_read_sequence(&ssl->rlayer); |
| hash = ssl->read_hash; |
| } |
| |
| t = EVP_MD_CTX_size(hash); |
| if (t < 0) |
| return 0; |
| md_size = t; |
| npad = (48 / md_size) * md_size; |
| |
| if (!sending && |
| EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
| ssl3_cbc_record_digest_supported(hash)) { |
| /* |
| * This is a CBC-encrypted record. We must avoid leaking any |
| * timing-side channel information about how many blocks of data we |
| * are hashing because that gives an attacker a timing-oracle. |
| */ |
| |
| /*- |
| * npad is, at most, 48 bytes and that's with MD5: |
| * 16 + 48 + 8 (sequence bytes) + 1 + 2 = 75. |
| * |
| * With SHA-1 (the largest hash speced for SSLv3) the hash size |
| * goes up 4, but npad goes down by 8, resulting in a smaller |
| * total size. |
| */ |
| unsigned char header[75]; |
| size_t j = 0; |
| memcpy(header + j, mac_sec, md_size); |
| j += md_size; |
| memcpy(header + j, ssl3_pad_1, npad); |
| j += npad; |
| memcpy(header + j, seq, 8); |
| j += 8; |
| header[j++] = rec->type; |
| header[j++] = (unsigned char)(rec->length >> 8); |
| header[j++] = (unsigned char)(rec->length & 0xff); |
| |
| /* Final param == is SSLv3 */ |
| if (ssl3_cbc_digest_record(hash, |
| md, &md_size, |
| header, rec->input, |
| rec->length + md_size, rec->orig_len, |
| mac_sec, md_size, 1) <= 0) |
| return 0; |
| } else { |
| unsigned int md_size_u; |
| /* Chop the digest off the end :-) */ |
| EVP_MD_CTX *md_ctx = EVP_MD_CTX_new(); |
| |
| if (md_ctx == NULL) |
| return 0; |
| |
| rec_char = rec->type; |
| p = md; |
| s2n(rec->length, p); |
| if (EVP_MD_CTX_copy_ex(md_ctx, hash) <= 0 |
| || EVP_DigestUpdate(md_ctx, mac_sec, md_size) <= 0 |
| || EVP_DigestUpdate(md_ctx, ssl3_pad_1, npad) <= 0 |
| || EVP_DigestUpdate(md_ctx, seq, 8) <= 0 |
| || EVP_DigestUpdate(md_ctx, &rec_char, 1) <= 0 |
| || EVP_DigestUpdate(md_ctx, md, 2) <= 0 |
| || EVP_DigestUpdate(md_ctx, rec->input, rec->length) <= 0 |
| || EVP_DigestFinal_ex(md_ctx, md, NULL) <= 0 |
| || EVP_MD_CTX_copy_ex(md_ctx, hash) <= 0 |
| || EVP_DigestUpdate(md_ctx, mac_sec, md_size) <= 0 |
| || EVP_DigestUpdate(md_ctx, ssl3_pad_2, npad) <= 0 |
| || EVP_DigestUpdate(md_ctx, md, md_size) <= 0 |
| || EVP_DigestFinal_ex(md_ctx, md, &md_size_u) <= 0) { |
| EVP_MD_CTX_reset(md_ctx); |
| return 0; |
| } |
| |
| EVP_MD_CTX_free(md_ctx); |
| } |
| |
| ssl3_record_sequence_update(seq); |
| return 1; |
| } |
| |
| int tls1_mac(SSL *ssl, SSL3_RECORD *rec, unsigned char *md, int sending) |
| { |
| unsigned char *seq; |
| EVP_MD_CTX *hash; |
| size_t md_size; |
| int i; |
| EVP_MD_CTX *hmac = NULL, *mac_ctx; |
| unsigned char header[13]; |
| int stream_mac = (sending ? (ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) |
| : (ssl->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM)); |
| int t; |
| |
| if (sending) { |
| seq = RECORD_LAYER_get_write_sequence(&ssl->rlayer); |
| hash = ssl->write_hash; |
| } else { |
| seq = RECORD_LAYER_get_read_sequence(&ssl->rlayer); |
| hash = ssl->read_hash; |
| } |
| |
| t = EVP_MD_CTX_size(hash); |
| if (!ossl_assert(t >= 0)) |
| return 0; |
| md_size = t; |
| |
| /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */ |
| if (stream_mac) { |
| mac_ctx = hash; |
| } else { |
| hmac = EVP_MD_CTX_new(); |
| if (hmac == NULL || !EVP_MD_CTX_copy(hmac, hash)) |
| return 0; |
| mac_ctx = hmac; |
| } |
| |
| if (SSL_IS_DTLS(ssl)) { |
| unsigned char dtlsseq[8], *p = dtlsseq; |
| |
| s2n(sending ? DTLS_RECORD_LAYER_get_w_epoch(&ssl->rlayer) : |
| DTLS_RECORD_LAYER_get_r_epoch(&ssl->rlayer), p); |
| memcpy(p, &seq[2], 6); |
| |
| memcpy(header, dtlsseq, 8); |
| } else |
| memcpy(header, seq, 8); |
| |
| header[8] = rec->type; |
| header[9] = (unsigned char)(ssl->version >> 8); |
| header[10] = (unsigned char)(ssl->version); |
| header[11] = (unsigned char)(rec->length >> 8); |
| header[12] = (unsigned char)(rec->length & 0xff); |
| |
| if (!sending && !SSL_READ_ETM(ssl) && |
| EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
| ssl3_cbc_record_digest_supported(mac_ctx)) { |
| /* |
| * This is a CBC-encrypted record. We must avoid leaking any |
| * timing-side channel information about how many blocks of data we |
| * are hashing because that gives an attacker a timing-oracle. |
| */ |
| /* Final param == not SSLv3 */ |
| if (ssl3_cbc_digest_record(mac_ctx, |
| md, &md_size, |
| header, rec->input, |
| rec->length + md_size, rec->orig_len, |
| ssl->s3->read_mac_secret, |
| ssl->s3->read_mac_secret_size, 0) <= 0) { |
| EVP_MD_CTX_free(hmac); |
| return 0; |
| } |
| } else { |
| /* TODO(size_t): Convert these calls */ |
| if (EVP_DigestSignUpdate(mac_ctx, header, sizeof(header)) <= 0 |
| || EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length) <= 0 |
| || EVP_DigestSignFinal(mac_ctx, md, &md_size) <= 0) { |
| EVP_MD_CTX_free(hmac); |
| return 0; |
| } |
| } |
| |
| EVP_MD_CTX_free(hmac); |
| |
| #ifdef SSL_DEBUG |
| fprintf(stderr, "seq="); |
| { |
| int z; |
| for (z = 0; z < 8; z++) |
| fprintf(stderr, "%02X ", seq[z]); |
| fprintf(stderr, "\n"); |
| } |
| fprintf(stderr, "rec="); |
| { |
| size_t z; |
| for (z = 0; z < rec->length; z++) |
| fprintf(stderr, "%02X ", rec->data[z]); |
| fprintf(stderr, "\n"); |
| } |
| #endif |
| |
| if (!SSL_IS_DTLS(ssl)) { |
| for (i = 7; i >= 0; i--) { |
| ++seq[i]; |
| if (seq[i] != 0) |
| break; |
| } |
| } |
| #ifdef SSL_DEBUG |
| { |
| unsigned int z; |
| for (z = 0; z < md_size; z++) |
| fprintf(stderr, "%02X ", md[z]); |
| fprintf(stderr, "\n"); |
| } |
| #endif |
| return 1; |
| } |
| |
| /*- |
| * ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC |
| * record in |rec| by updating |rec->length| in constant time. |
| * |
| * block_size: the block size of the cipher used to encrypt the record. |
| * returns: |
| * 0: (in non-constant time) if the record is publicly invalid. |
| * 1: if the padding was valid |
| * -1: otherwise. |
| */ |
| int ssl3_cbc_remove_padding(SSL3_RECORD *rec, |
| size_t block_size, size_t mac_size) |
| { |
| size_t padding_length; |
| size_t good; |
| const size_t overhead = 1 /* padding length byte */ + mac_size; |
| |
| /* |
| * These lengths are all public so we can test them in non-constant time. |
| */ |
| if (overhead > rec->length) |
| return 0; |
| |
| padding_length = rec->data[rec->length - 1]; |
| good = constant_time_ge_s(rec->length, padding_length + overhead); |
| /* SSLv3 requires that the padding is minimal. */ |
| good &= constant_time_ge_s(block_size, padding_length + 1); |
| rec->length -= good & (padding_length + 1); |
| return constant_time_select_int_s(good, 1, -1); |
| } |
| |
| /*- |
| * tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC |
| * record in |rec| in constant time and returns 1 if the padding is valid and |
| * -1 otherwise. It also removes any explicit IV from the start of the record |
| * without leaking any timing about whether there was enough space after the |
| * padding was removed. |
| * |
| * block_size: the block size of the cipher used to encrypt the record. |
| * returns: |
| * 0: (in non-constant time) if the record is publicly invalid. |
| * 1: if the padding was valid |
| * -1: otherwise. |
| */ |
| int tls1_cbc_remove_padding(const SSL *s, |
| SSL3_RECORD *rec, |
| size_t block_size, size_t mac_size) |
| { |
| size_t good; |
| size_t padding_length, to_check, i; |
| const size_t overhead = 1 /* padding length byte */ + mac_size; |
| /* Check if version requires explicit IV */ |
| if (SSL_USE_EXPLICIT_IV(s)) { |
| /* |
| * These lengths are all public so we can test them in non-constant |
| * time. |
| */ |
| if (overhead + block_size > rec->length) |
| return 0; |
| /* We can now safely skip explicit IV */ |
| rec->data += block_size; |
| rec->input += block_size; |
| rec->length -= block_size; |
| rec->orig_len -= block_size; |
| } else if (overhead > rec->length) |
| return 0; |
| |
| padding_length = rec->data[rec->length - 1]; |
| |
| if (EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(s->enc_read_ctx)) & |
| EVP_CIPH_FLAG_AEAD_CIPHER) { |
| /* padding is already verified */ |
| rec->length -= padding_length + 1; |
| return 1; |
| } |
| |
| good = constant_time_ge_s(rec->length, overhead + padding_length); |
| /* |
| * The padding consists of a length byte at the end of the record and |
| * then that many bytes of padding, all with the same value as the length |
| * byte. Thus, with the length byte included, there are i+1 bytes of |
| * padding. We can't check just |padding_length+1| bytes because that |
| * leaks decrypted information. Therefore we always have to check the |
| * maximum amount of padding possible. (Again, the length of the record |
| * is public information so we can use it.) |
| */ |
| to_check = 256; /* maximum amount of padding, inc length byte. */ |
| if (to_check > rec->length) |
| to_check = rec->length; |
| |
| for (i = 0; i < to_check; i++) { |
| unsigned char mask = constant_time_ge_8_s(padding_length, i); |
| unsigned char b = rec->data[rec->length - 1 - i]; |
| /* |
| * The final |padding_length+1| bytes should all have the value |
| * |padding_length|. Therefore the XOR should be zero. |
| */ |
| good &= ~(mask & (padding_length ^ b)); |
| } |
| |
| /* |
| * If any of the final |padding_length+1| bytes had the wrong value, one |
| * or more of the lower eight bits of |good| will be cleared. |
| */ |
| good = constant_time_eq_s(0xff, good & 0xff); |
| rec->length -= good & (padding_length + 1); |
| |
| return constant_time_select_int_s(good, 1, -1); |
| } |
| |
| /*- |
| * ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in |
| * constant time (independent of the concrete value of rec->length, which may |
| * vary within a 256-byte window). |
| * |
| * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to |
| * this function. |
| * |
| * On entry: |
| * rec->orig_len >= md_size |
| * md_size <= EVP_MAX_MD_SIZE |
| * |
| * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with |
| * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into |
| * a single or pair of cache-lines, then the variable memory accesses don't |
| * actually affect the timing. CPUs with smaller cache-lines [if any] are |
| * not multi-core and are not considered vulnerable to cache-timing attacks. |
| */ |
| #define CBC_MAC_ROTATE_IN_PLACE |
| |
| int ssl3_cbc_copy_mac(unsigned char *out, |
| const SSL3_RECORD *rec, size_t md_size) |
| { |
| #if defined(CBC_MAC_ROTATE_IN_PLACE) |
| unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE]; |
| unsigned char *rotated_mac; |
| #else |
| unsigned char rotated_mac[EVP_MAX_MD_SIZE]; |
| #endif |
| |
| /* |
| * mac_end is the index of |rec->data| just after the end of the MAC. |
| */ |
| size_t mac_end = rec->length; |
| size_t mac_start = mac_end - md_size; |
| size_t in_mac; |
| /* |
| * scan_start contains the number of bytes that we can ignore because the |
| * MAC's position can only vary by 255 bytes. |
| */ |
| size_t scan_start = 0; |
| size_t i, j; |
| size_t rotate_offset; |
| |
| if (!ossl_assert(rec->orig_len >= md_size |
| && md_size <= EVP_MAX_MD_SIZE)) |
| return 0; |
| |
| #if defined(CBC_MAC_ROTATE_IN_PLACE) |
| rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63); |
| #endif |
| |
| /* This information is public so it's safe to branch based on it. */ |
| if (rec->orig_len > md_size + 255 + 1) |
| scan_start = rec->orig_len - (md_size + 255 + 1); |
| |
| in_mac = 0; |
| rotate_offset = 0; |
| memset(rotated_mac, 0, md_size); |
| for (i = scan_start, j = 0; i < rec->orig_len; i++) { |
| size_t mac_started = constant_time_eq_s(i, mac_start); |
| size_t mac_ended = constant_time_lt_s(i, mac_end); |
| unsigned char b = rec->data[i]; |
| |
| in_mac |= mac_started; |
| in_mac &= mac_ended; |
| rotate_offset |= j & mac_started; |
| rotated_mac[j++] |= b & in_mac; |
| j &= constant_time_lt_s(j, md_size); |
| } |
| |
| /* Now rotate the MAC */ |
| #if defined(CBC_MAC_ROTATE_IN_PLACE) |
| j = 0; |
| for (i = 0; i < md_size; i++) { |
| /* in case cache-line is 32 bytes, touch second line */ |
| ((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32]; |
| out[j++] = rotated_mac[rotate_offset++]; |
| rotate_offset &= constant_time_lt_s(rotate_offset, md_size); |
| } |
| #else |
| memset(out, 0, md_size); |
| rotate_offset = md_size - rotate_offset; |
| rotate_offset &= constant_time_lt_s(rotate_offset, md_size); |
| for (i = 0; i < md_size; i++) { |
| for (j = 0; j < md_size; j++) |
| out[j] |= rotated_mac[i] & constant_time_eq_8_s(j, rotate_offset); |
| rotate_offset++; |
| rotate_offset &= constant_time_lt_s(rotate_offset, md_size); |
| } |
| #endif |
| |
| return 1; |
| } |
| |
| int dtls1_process_record(SSL *s, DTLS1_BITMAP *bitmap) |
| { |
| int i; |
| int enc_err; |
| SSL_SESSION *sess; |
| SSL3_RECORD *rr; |
| int imac_size; |
| size_t mac_size; |
| unsigned char md[EVP_MAX_MD_SIZE]; |
| |
| rr = RECORD_LAYER_get_rrec(&s->rlayer); |
| sess = s->session; |
| |
| /* |
| * At this point, s->packet_length == SSL3_RT_HEADER_LNGTH + rr->length, |
| * and we have that many bytes in s->packet |
| */ |
| rr->input = &(RECORD_LAYER_get_packet(&s->rlayer)[DTLS1_RT_HEADER_LENGTH]); |
| |
| /* |
| * ok, we can now read from 's->packet' data into 'rr' rr->input points |
| * at rr->length bytes, which need to be copied into rr->data by either |
| * the decryption or by the decompression When the data is 'copied' into |
| * the rr->data buffer, rr->input will be pointed at the new buffer |
| */ |
| |
| /* |
| * We now have - encrypted [ MAC [ compressed [ plain ] ] ] rr->length |
| * bytes of encrypted compressed stuff. |
| */ |
| |
| /* check is not needed I believe */ |
| if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) { |
| SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD, |
| SSL_R_ENCRYPTED_LENGTH_TOO_LONG); |
| return 0; |
| } |
| |
| /* decrypt in place in 'rr->input' */ |
| rr->data = rr->input; |
| rr->orig_len = rr->length; |
| |
| if (SSL_READ_ETM(s) && s->read_hash) { |
| unsigned char *mac; |
| mac_size = EVP_MD_CTX_size(s->read_hash); |
| if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
| ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| if (rr->orig_len < mac_size) { |
| SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
| SSL_R_LENGTH_TOO_SHORT); |
| return 0; |
| } |
| rr->length -= mac_size; |
| mac = rr->data + rr->length; |
| i = s->method->ssl3_enc->mac(s, rr, md, 0 /* not send */ ); |
| if (i == 0 || CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0) { |
| SSLfatal(s, SSL_AD_BAD_RECORD_MAC, SSL_F_DTLS1_PROCESS_RECORD, |
| SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); |
| return 0; |
| } |
| } |
| |
| enc_err = s->method->ssl3_enc->enc(s, rr, 1, 0); |
| /*- |
| * enc_err is: |
| * 0: (in non-constant time) if the record is publically invalid. |
| * 1: if the padding is valid |
| * -1: if the padding is invalid |
| */ |
| if (enc_err == 0) { |
| if (ossl_statem_in_error(s)) { |
| /* SSLfatal() got called */ |
| return 0; |
| } |
| /* For DTLS we simply ignore bad packets. */ |
| rr->length = 0; |
| RECORD_LAYER_reset_packet_length(&s->rlayer); |
| return 0; |
| } |
| #ifdef SSL_DEBUG |
| printf("dec %ld\n", rr->length); |
| { |
| size_t z; |
| for (z = 0; z < rr->length; z++) |
| printf("%02X%c", rr->data[z], ((z + 1) % 16) ? ' ' : '\n'); |
| } |
| printf("\n"); |
| #endif |
| |
| /* r->length is now the compressed data plus mac */ |
| if ((sess != NULL) && !SSL_READ_ETM(s) && |
| (s->enc_read_ctx != NULL) && (EVP_MD_CTX_md(s->read_hash) != NULL)) { |
| /* s->read_hash != NULL => mac_size != -1 */ |
| unsigned char *mac = NULL; |
| unsigned char mac_tmp[EVP_MAX_MD_SIZE]; |
| |
| /* TODO(size_t): Convert this to do size_t properly */ |
| imac_size = EVP_MD_CTX_size(s->read_hash); |
| if (imac_size < 0) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
| ERR_LIB_EVP); |
| return 0; |
| } |
| mac_size = (size_t)imac_size; |
| if (!ossl_assert(mac_size <= EVP_MAX_MD_SIZE)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
| ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| /* |
| * orig_len is the length of the record before any padding was |
| * removed. This is public information, as is the MAC in use, |
| * therefore we can safely process the record in a different amount |
| * of time if it's too short to possibly contain a MAC. |
| */ |
| if (rr->orig_len < mac_size || |
| /* CBC records must have a padding length byte too. */ |
| (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE && |
| rr->orig_len < mac_size + 1)) { |
| SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
| SSL_R_LENGTH_TOO_SHORT); |
| return 0; |
| } |
| |
| if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) { |
| /* |
| * We update the length so that the TLS header bytes can be |
| * constructed correctly but we need to extract the MAC in |
| * constant time from within the record, without leaking the |
| * contents of the padding bytes. |
| */ |
| mac = mac_tmp; |
| if (!ssl3_cbc_copy_mac(mac_tmp, rr, mac_size)) { |
| SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_DTLS1_PROCESS_RECORD, |
| ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| rr->length -= mac_size; |
| } else { |
| /* |
| * In this case there's no padding, so |rec->orig_len| equals |
| * |rec->length| and we checked that there's enough bytes for |
| * |mac_size| above. |
| */ |
| rr->length -= mac_size; |
| mac = &rr->data[rr->length]; |
| } |
| |
| i = s->method->ssl3_enc->mac(s, rr, md, 0 /* not send */ ); |
| if (i == 0 || mac == NULL |
| || CRYPTO_memcmp(md, mac, mac_size) != 0) |
| enc_err = -1; |
| if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size) |
| enc_err = -1; |
| } |
| |
| if (enc_err < 0) { |
| /* decryption failed, silently discard message */ |
| rr->length = 0; |
| RECORD_LAYER_reset_packet_length(&s->rlayer); |
| return 0; |
| } |
| |
| /* r->length is now just compressed */ |
| if (s->expand != NULL) { |
| if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH) { |
| SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD, |
| SSL_R_COMPRESSED_LENGTH_TOO_LONG); |
| return 0; |
| } |
| if (!ssl3_do_uncompress(s, rr)) { |
| SSLfatal(s, SSL_AD_DECOMPRESSION_FAILURE, |
| SSL_F_DTLS1_PROCESS_RECORD, SSL_R_BAD_DECOMPRESSION); |
| return 0; |
| } |
| } |
| |
| if (rr->length > SSL3_RT_MAX_PLAIN_LENGTH) { |
| SSLfatal(s, SSL_AD_RECORD_OVERFLOW, SSL_F_DTLS1_PROCESS_RECORD, |
| SSL_R_DATA_LENGTH_TOO_LONG); |
| return 0; |
| } |
| |
| rr->off = 0; |
| /*- |
| * So at this point the following is true |
| * ssl->s3->rrec.type is the type of record |
| * ssl->s3->rrec.length == number of bytes in record |
| * ssl->s3->rrec.off == offset to first valid byte |
| * ssl->s3->rrec.data == where to take bytes from, increment |
| * after use :-). |
| */ |
| |
| /* we have pulled in a full packet so zero things */ |
| RECORD_LAYER_reset_packet_length(&s->rlayer); |
| |
| /* Mark receipt of record. */ |
| dtls1_record_bitmap_update(s, bitmap); |
| |
| return 1; |
| } |
| |
| /* |
| * Retrieve a buffered record that belongs to the current epoch, i.e. processed |
| */ |
| #define dtls1_get_processed_record(s) \ |
| dtls1_retrieve_buffered_record((s), \ |
| &(DTLS_RECORD_LAYER_get_processed_rcds(&s->rlayer))) |
| |
| /*- |
| * Call this to get a new input record. |
| * It will return <= 0 if more data is needed, normally due to an error |
| * or non-blocking IO. |
| * When it finishes, one packet has been decoded and can be found in |
| * ssl->s3->rrec.type - is the type of record |
| * ssl->s3->rrec.data, - data |
| * ssl->s3->rrec.length, - number of bytes |
| */ |
| /* used only by dtls1_read_bytes */ |
| int dtls1_get_record(SSL *s) |
| { |
| int ssl_major, ssl_minor; |
| int rret; |
| size_t more, n; |
| SSL3_RECORD *rr; |
| unsigned char *p = NULL; |
| unsigned short version; |
| DTLS1_BITMAP *bitmap; |
| unsigned int is_next_epoch; |
| |
| rr = RECORD_LAYER_get_rrec(&s->rlayer); |
| |
| again: |
| /* |
| * The epoch may have changed. If so, process all the pending records. |
| * This is a non-blocking operation. |
| */ |
| if (!dtls1_process_buffered_records(s)) { |
| /* SSLfatal() already called */ |
| return -1; |
| } |
| |
| /* if we're renegotiating, then there may be buffered records */ |
| if (dtls1_get_processed_record(s)) |
| return 1; |
| |
| /* get something from the wire */ |
| |
| /* check if we have the header */ |
| if ((RECORD_LAYER_get_rstate(&s->rlayer) != SSL_ST_READ_BODY) || |
| (RECORD_LAYER_get_packet_length(&s->rlayer) < DTLS1_RT_HEADER_LENGTH)) { |
| rret = ssl3_read_n(s, DTLS1_RT_HEADER_LENGTH, |
| SSL3_BUFFER_get_len(&s->rlayer.rbuf), 0, 1, &n); |
| /* read timeout is handled by dtls1_read_bytes */ |
| if (rret <= 0) { |
| /* SSLfatal() already called if appropriate */ |
| return rret; /* error or non-blocking */ |
| } |
| |
| /* this packet contained a partial record, dump it */ |
| if (RECORD_LAYER_get_packet_length(&s->rlayer) != |
| DTLS1_RT_HEADER_LENGTH) { |
| RECORD_LAYER_reset_packet_length(&s->rlayer); |
| goto again; |
| } |
| |
| RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_BODY); |
| |
| p = RECORD_LAYER_get_packet(&s->rlayer); |
| |
| if (s->msg_callback) |
| s->msg_callback(0, 0, SSL3_RT_HEADER, p, DTLS1_RT_HEADER_LENGTH, |
| s, s->msg_callback_arg); |
| |
| /* Pull apart the header into the DTLS1_RECORD */ |
| rr->type = *(p++); |
| ssl_major = *(p++); |
| ssl_minor = *(p++); |
| version = (ssl_major << 8) | ssl_minor; |
| |
| /* sequence number is 64 bits, with top 2 bytes = epoch */ |
| n2s(p, rr->epoch); |
| |
| memcpy(&(RECORD_LAYER_get_read_sequence(&s->rlayer)[2]), p, 6); |
| p += 6; |
| |
| n2s(p, rr->length); |
| |
| /* Lets check version */ |
| if (!s->first_packet) { |
| if (version != s->version) { |
| /* unexpected version, silently discard */ |
| rr->length = 0; |
| RECORD_LAYER_reset_packet_length(&s->rlayer); |
| goto again; |
| } |
| } |
| |
| if ((version & 0xff00) != (s->version & 0xff00)) { |
| /* wrong version, silently discard record */ |
| rr->length = 0; |
| RECORD_LAYER_reset_packet_length(&s->rlayer); |
| goto again; |
| } |
| |
| if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) { |
| /* record too long, silently discard it */ |
| rr->length = 0; |
| RECORD_LAYER_reset_packet_length(&s->rlayer); |
| goto again; |
| } |
| |
| /* If received packet overflows own-client Max Fragment Length setting */ |
| if (s->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(s->session) |
| && rr->length > GET_MAX_FRAGMENT_LENGTH(s->session)) { |
| /* record too long, silently discard it */ |
| rr->length = 0; |
| RECORD_LAYER_reset_packet_length(&s->rlayer); |
| goto again; |
| } |
| |
| /* now s->rlayer.rstate == SSL_ST_READ_BODY */ |
| } |
| |
| /* s->rlayer.rstate == SSL_ST_READ_BODY, get and decode the data */ |
| |
| if (rr->length > |
| RECORD_LAYER_get_packet_length(&s->rlayer) - DTLS1_RT_HEADER_LENGTH) { |
| /* now s->packet_length == DTLS1_RT_HEADER_LENGTH */ |
| more = rr->length; |
| rret = ssl3_read_n(s, more, more, 1, 1, &n); |
| /* this packet contained a partial record, dump it */ |
| if (rret <= 0 || n != more) { |
| if (ossl_statem_in_error(s)) { |
| /* ssl3_read_n() called SSLfatal() */ |
| return -1; |
| } |
| rr->length = 0; |
| RECORD_LAYER_reset_packet_length(&s->rlayer); |
| goto again; |
| } |
| |
| /* |
| * now n == rr->length, and s->packet_length == |
| * DTLS1_RT_HEADER_LENGTH + rr->length |
| */ |
| } |
| /* set state for later operations */ |
| RECORD_LAYER_set_rstate(&s->rlayer, SSL_ST_READ_HEADER); |
| |
| /* match epochs. NULL means the packet is dropped on the floor */ |
| bitmap = dtls1_get_bitmap(s, rr, &is_next_epoch); |
| if (bitmap == NULL) { |
| rr->length = 0; |
| RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */ |
| goto again; /* get another record */ |
| } |
| #ifndef OPENSSL_NO_SCTP |
| /* Only do replay check if no SCTP bio */ |
| if (!BIO_dgram_is_sctp(SSL_get_rbio(s))) { |
| #endif |
| /* Check whether this is a repeat, or aged record. */ |
| /* |
| * TODO: Does it make sense to have replay protection in epoch 0 where |
| * we have no integrity negotiated yet? |
| */ |
| if (!dtls1_record_replay_check(s, bitmap)) { |
| rr->length = 0; |
| RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */ |
| goto again; /* get another record */ |
| } |
| #ifndef OPENSSL_NO_SCTP |
| } |
| #endif |
| |
| /* just read a 0 length packet */ |
| if (rr->length == 0) |
| goto again; |
| |
| /* |
| * If this record is from the next epoch (either HM or ALERT), and a |
| * handshake is currently in progress, buffer it since it cannot be |
| * processed at this time. |
| */ |
| if (is_next_epoch) { |
| if ((SSL_in_init(s) || ossl_statem_get_in_handshake(s))) { |
| if (dtls1_buffer_record (s, |
| &(DTLS_RECORD_LAYER_get_unprocessed_rcds(&s->rlayer)), |
| rr->seq_num) < 0) { |
| /* SSLfatal() already called */ |
| return -1; |
| } |
| } |
| rr->length = 0; |
| RECORD_LAYER_reset_packet_length(&s->rlayer); |
| goto again; |
| } |
| |
| if (!dtls1_process_record(s, bitmap)) { |
| if (ossl_statem_in_error(s)) { |
| /* dtls1_process_record() called SSLfatal */ |
| return -1; |
| } |
| rr->length = 0; |
| RECORD_LAYER_reset_packet_length(&s->rlayer); /* dump this record */ |
| goto again; /* get another record */ |
| } |
| |
| return 1; |
| |
| } |