| /* |
| * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| /* |
| * DSA low level APIs are deprecated for public use, but still ok for |
| * internal use. |
| */ |
| #include "internal/deprecated.h" |
| |
| #include <stdio.h> |
| #include "internal/cryptlib.h" |
| #include <openssl/asn1t.h> |
| #include <openssl/x509.h> |
| #include "crypto/asn1.h" |
| #include "crypto/evp.h" |
| #include "crypto/x509.h" |
| #include <openssl/rsa.h> |
| #include <openssl/dsa.h> |
| #include <openssl/encoder.h> |
| #include "internal/provider.h" |
| |
| struct X509_pubkey_st { |
| X509_ALGOR *algor; |
| ASN1_BIT_STRING *public_key; |
| EVP_PKEY *pkey; |
| |
| /* extra data for the callback, used by d2i_PUBKEY_ex */ |
| OSSL_LIB_CTX *libctx; |
| char *propq; |
| }; |
| |
| static int x509_pubkey_decode(EVP_PKEY **pk, const X509_PUBKEY *key); |
| |
| static int x509_pubkey_set0_libctx(X509_PUBKEY *x, OSSL_LIB_CTX *libctx, |
| const char *propq) |
| { |
| if (x != NULL) { |
| x->libctx = libctx; |
| OPENSSL_free(x->propq); |
| x->propq = NULL; |
| if (propq != NULL) { |
| x->propq = OPENSSL_strdup(propq); |
| if (x->propq == NULL) |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| /* Minor tweak to operation: free up EVP_PKEY */ |
| static int pubkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, |
| void *exarg) |
| { |
| X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval; |
| |
| if (operation == ASN1_OP_FREE_POST) { |
| OPENSSL_free(pubkey->propq); |
| EVP_PKEY_free(pubkey->pkey); |
| } else if (operation == ASN1_OP_D2I_POST) { |
| /* Attempt to decode public key and cache in pubkey structure. */ |
| EVP_PKEY_free(pubkey->pkey); |
| pubkey->pkey = NULL; |
| /* |
| * Opportunistically decode the key but remove any non fatal errors |
| * from the queue. Subsequent explicit attempts to decode/use the key |
| * will return an appropriate error. |
| */ |
| ERR_set_mark(); |
| if (x509_pubkey_decode(&pubkey->pkey, pubkey) == -1) { |
| ERR_clear_last_mark(); |
| return 0; |
| } |
| ERR_pop_to_mark(); |
| } else if (operation == ASN1_OP_DUP_POST) { |
| X509_PUBKEY *old = exarg; |
| |
| if (!x509_pubkey_set0_libctx(pubkey, old->libctx, old->propq)) |
| return 0; |
| } |
| return 1; |
| } |
| |
| ASN1_SEQUENCE_cb(X509_PUBKEY, pubkey_cb) = { |
| ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR), |
| ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING) |
| } ASN1_SEQUENCE_END_cb(X509_PUBKEY, X509_PUBKEY) |
| |
| IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY) |
| IMPLEMENT_ASN1_DUP_FUNCTION(X509_PUBKEY) |
| |
| /* TODO should better be called X509_PUBKEY_set1 */ |
| int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey) |
| { |
| X509_PUBKEY *pk = NULL; |
| |
| if (x == NULL || pkey == NULL) { |
| ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| if (pkey->ameth != NULL) { |
| if ((pk = X509_PUBKEY_new()) == NULL) { |
| ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE); |
| goto error; |
| } |
| if (pkey->ameth->pub_encode != NULL) { |
| if (!pkey->ameth->pub_encode(pk, pkey)) { |
| ERR_raise(ERR_LIB_X509, X509_R_PUBLIC_KEY_ENCODE_ERROR); |
| goto error; |
| } |
| } else { |
| ERR_raise(ERR_LIB_X509, X509_R_METHOD_NOT_SUPPORTED); |
| goto error; |
| } |
| } else if (evp_pkey_is_provided(pkey)) { |
| unsigned char *der = NULL; |
| size_t derlen = 0; |
| OSSL_ENCODER_CTX *ectx = |
| OSSL_ENCODER_CTX_new_for_pkey(pkey, EVP_PKEY_PUBLIC_KEY, |
| "DER", "SubjectPublicKeyInfo", |
| NULL); |
| |
| if (OSSL_ENCODER_to_data(ectx, &der, &derlen)) { |
| const unsigned char *pder = der; |
| |
| pk = d2i_X509_PUBKEY(NULL, &pder, (long)derlen); |
| } |
| |
| OSSL_ENCODER_CTX_free(ectx); |
| OPENSSL_free(der); |
| } |
| |
| if (pk == NULL) { |
| ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM); |
| goto error; |
| } |
| |
| X509_PUBKEY_free(*x); |
| if (!EVP_PKEY_up_ref(pkey)) { |
| ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR); |
| goto error; |
| } |
| *x = pk; |
| |
| /* |
| * pk->pkey is NULL when using the legacy routine, but is non-NULL when |
| * going through the encoder, and for all intents and purposes, it's |
| * a perfect copy of |pkey|, just not the same instance. In that case, |
| * we could simply return early, right here. |
| * However, in the interest of being cautious leaning on paranoia, some |
| * application might very well depend on the passed |pkey| being used |
| * and none other, so we spend a few more cycles throwing away the newly |
| * created |pk->pkey| and replace it with |pkey|. |
| * TODO(3.0) Investigate if it's safe to change to simply return here |
| * if |pk->pkey != NULL|. |
| */ |
| if (pk->pkey != NULL) |
| EVP_PKEY_free(pk->pkey); |
| |
| pk->pkey = pkey; |
| return 1; |
| |
| error: |
| X509_PUBKEY_free(pk); |
| return 0; |
| } |
| |
| /* |
| * Attempt to decode a public key. |
| * Returns 1 on success, 0 for a decode failure and -1 for a fatal |
| * error e.g. malloc failure. |
| */ |
| |
| |
| static int x509_pubkey_decode(EVP_PKEY **ppkey, const X509_PUBKEY *key) |
| { |
| EVP_PKEY *pkey = EVP_PKEY_new(); |
| |
| if (pkey == NULL) { |
| ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE); |
| return -1; |
| } |
| |
| if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(key->algor->algorithm))) { |
| ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM); |
| goto error; |
| } |
| |
| if (pkey->ameth->pub_decode) { |
| /* |
| * Treat any failure of pub_decode as a decode error. In |
| * future we could have different return codes for decode |
| * errors and fatal errors such as malloc failure. |
| */ |
| if (!pkey->ameth->pub_decode(pkey, key)) |
| goto error; |
| } else { |
| ERR_raise(ERR_LIB_X509, X509_R_METHOD_NOT_SUPPORTED); |
| goto error; |
| } |
| |
| *ppkey = pkey; |
| return 1; |
| |
| error: |
| EVP_PKEY_free(pkey); |
| return 0; |
| } |
| |
| EVP_PKEY *X509_PUBKEY_get0(const X509_PUBKEY *key) |
| { |
| EVP_PKEY *ret = NULL; |
| |
| if (key == NULL || key->public_key == NULL) |
| return NULL; |
| |
| if (key->pkey != NULL) |
| return key->pkey; |
| |
| /* |
| * When the key ASN.1 is initially parsed an attempt is made to |
| * decode the public key and cache the EVP_PKEY structure. If this |
| * operation fails the cached value will be NULL. Parsing continues |
| * to allow parsing of unknown key types or unsupported forms. |
| * We repeat the decode operation so the appropriate errors are left |
| * in the queue. |
| */ |
| x509_pubkey_decode(&ret, key); |
| /* If decode doesn't fail something bad happened */ |
| if (ret != NULL) { |
| ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR); |
| EVP_PKEY_free(ret); |
| } |
| |
| return NULL; |
| } |
| |
| EVP_PKEY *X509_PUBKEY_get(const X509_PUBKEY *key) |
| { |
| EVP_PKEY *ret = X509_PUBKEY_get0(key); |
| |
| if (ret != NULL && !EVP_PKEY_up_ref(ret)) { |
| ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR); |
| ret = NULL; |
| } |
| return ret; |
| } |
| |
| /* |
| * Now three pseudo ASN1 routines that take an EVP_PKEY structure and encode |
| * or decode as X509_PUBKEY |
| */ |
| |
| EVP_PKEY *d2i_PUBKEY_ex(EVP_PKEY **a, const unsigned char **pp, long length, |
| OSSL_LIB_CTX *libctx, const char *propq) |
| { |
| X509_PUBKEY *xpk, *xpk2 = NULL, **pxpk = NULL; |
| EVP_PKEY *pktmp = NULL; |
| const unsigned char *q; |
| |
| q = *pp; |
| |
| /* |
| * If libctx or propq are non-NULL, we take advantage of the reuse |
| * feature. It's not generally recommended, but is safe enough for |
| * newly created structures. |
| */ |
| if (libctx != NULL || propq != NULL) { |
| xpk2 = OPENSSL_zalloc(sizeof(*xpk2)); |
| if (xpk2 == NULL) { |
| ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| if (!x509_pubkey_set0_libctx(xpk2, libctx, propq)) |
| goto end; |
| pxpk = &xpk2; |
| } |
| xpk = d2i_X509_PUBKEY(pxpk, &q, length); |
| if (xpk == NULL) |
| goto end; |
| pktmp = X509_PUBKEY_get(xpk); |
| X509_PUBKEY_free(xpk); |
| xpk2 = NULL; /* We know that xpk == xpk2 */ |
| if (pktmp == NULL) |
| goto end; |
| *pp = q; |
| if (a != NULL) { |
| EVP_PKEY_free(*a); |
| *a = pktmp; |
| } |
| end: |
| X509_PUBKEY_free(xpk2); |
| return pktmp; |
| } |
| |
| EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length) |
| { |
| return d2i_PUBKEY_ex(a, pp, length, NULL, NULL); |
| } |
| |
| int i2d_PUBKEY(const EVP_PKEY *a, unsigned char **pp) |
| { |
| int ret = -1; |
| |
| if (a == NULL) |
| return 0; |
| if (a->ameth != NULL) { |
| X509_PUBKEY *xpk = NULL; |
| |
| if ((xpk = X509_PUBKEY_new()) == NULL) |
| return -1; |
| |
| /* pub_encode() only encode parameters, not the key itself */ |
| if (a->ameth->pub_encode != NULL && a->ameth->pub_encode(xpk, a)) { |
| xpk->pkey = (EVP_PKEY *)a; |
| ret = i2d_X509_PUBKEY(xpk, pp); |
| xpk->pkey = NULL; |
| } |
| X509_PUBKEY_free(xpk); |
| } else if (a->keymgmt != NULL) { |
| OSSL_ENCODER_CTX *ctx = |
| OSSL_ENCODER_CTX_new_for_pkey(a, EVP_PKEY_PUBLIC_KEY, |
| "DER", "SubjectPublicKeyInfo", |
| NULL); |
| BIO *out = BIO_new(BIO_s_mem()); |
| BUF_MEM *buf = NULL; |
| |
| if (OSSL_ENCODER_CTX_get_num_encoders(ctx) != 0 |
| && out != NULL |
| && OSSL_ENCODER_to_bio(ctx, out) |
| && BIO_get_mem_ptr(out, &buf) > 0) { |
| ret = buf->length; |
| |
| if (pp != NULL) { |
| if (*pp == NULL) { |
| *pp = (unsigned char *)buf->data; |
| buf->length = 0; |
| buf->data = NULL; |
| } else { |
| memcpy(*pp, buf->data, ret); |
| *pp += ret; |
| } |
| } |
| } |
| BIO_free(out); |
| OSSL_ENCODER_CTX_free(ctx); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * The following are equivalents but which return RSA and DSA keys |
| */ |
| RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length) |
| { |
| EVP_PKEY *pkey; |
| RSA *key; |
| const unsigned char *q; |
| |
| q = *pp; |
| pkey = d2i_PUBKEY(NULL, &q, length); |
| if (pkey == NULL) |
| return NULL; |
| key = EVP_PKEY_get1_RSA(pkey); |
| EVP_PKEY_free(pkey); |
| if (key == NULL) |
| return NULL; |
| *pp = q; |
| if (a != NULL) { |
| RSA_free(*a); |
| *a = key; |
| } |
| return key; |
| } |
| |
| int i2d_RSA_PUBKEY(const RSA *a, unsigned char **pp) |
| { |
| EVP_PKEY *pktmp; |
| int ret; |
| if (!a) |
| return 0; |
| pktmp = EVP_PKEY_new(); |
| if (pktmp == NULL) { |
| ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
| return -1; |
| } |
| (void)EVP_PKEY_assign_RSA(pktmp, (RSA *)a); |
| ret = i2d_PUBKEY(pktmp, pp); |
| pktmp->pkey.ptr = NULL; |
| EVP_PKEY_free(pktmp); |
| return ret; |
| } |
| |
| #ifndef OPENSSL_NO_DSA |
| DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length) |
| { |
| EVP_PKEY *pkey; |
| DSA *key; |
| const unsigned char *q; |
| |
| q = *pp; |
| pkey = d2i_PUBKEY(NULL, &q, length); |
| if (pkey == NULL) |
| return NULL; |
| key = EVP_PKEY_get1_DSA(pkey); |
| EVP_PKEY_free(pkey); |
| if (key == NULL) |
| return NULL; |
| *pp = q; |
| if (a != NULL) { |
| DSA_free(*a); |
| *a = key; |
| } |
| return key; |
| } |
| |
| int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp) |
| { |
| EVP_PKEY *pktmp; |
| int ret; |
| if (!a) |
| return 0; |
| pktmp = EVP_PKEY_new(); |
| if (pktmp == NULL) { |
| ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
| return -1; |
| } |
| (void)EVP_PKEY_assign_DSA(pktmp, (DSA *)a); |
| ret = i2d_PUBKEY(pktmp, pp); |
| pktmp->pkey.ptr = NULL; |
| EVP_PKEY_free(pktmp); |
| return ret; |
| } |
| #endif |
| |
| #ifndef OPENSSL_NO_EC |
| EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length) |
| { |
| EVP_PKEY *pkey; |
| EC_KEY *key; |
| const unsigned char *q; |
| |
| q = *pp; |
| pkey = d2i_PUBKEY(NULL, &q, length); |
| if (pkey == NULL) |
| return NULL; |
| key = EVP_PKEY_get1_EC_KEY(pkey); |
| EVP_PKEY_free(pkey); |
| if (key == NULL) |
| return NULL; |
| *pp = q; |
| if (a != NULL) { |
| EC_KEY_free(*a); |
| *a = key; |
| } |
| return key; |
| } |
| |
| int i2d_EC_PUBKEY(const EC_KEY *a, unsigned char **pp) |
| { |
| EVP_PKEY *pktmp; |
| int ret; |
| |
| if (a == NULL) |
| return 0; |
| if ((pktmp = EVP_PKEY_new()) == NULL) { |
| ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); |
| return -1; |
| } |
| (void)EVP_PKEY_assign_EC_KEY(pktmp, (EC_KEY *)a); |
| ret = i2d_PUBKEY(pktmp, pp); |
| pktmp->pkey.ptr = NULL; |
| EVP_PKEY_free(pktmp); |
| return ret; |
| } |
| #endif |
| |
| int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj, |
| int ptype, void *pval, |
| unsigned char *penc, int penclen) |
| { |
| if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval)) |
| return 0; |
| if (penc) { |
| OPENSSL_free(pub->public_key->data); |
| pub->public_key->data = penc; |
| pub->public_key->length = penclen; |
| /* Set number of unused bits to zero */ |
| pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); |
| pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT; |
| } |
| return 1; |
| } |
| |
| int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg, |
| const unsigned char **pk, int *ppklen, |
| X509_ALGOR **pa, const X509_PUBKEY *pub) |
| { |
| if (ppkalg) |
| *ppkalg = pub->algor->algorithm; |
| if (pk) { |
| *pk = pub->public_key->data; |
| *ppklen = pub->public_key->length; |
| } |
| if (pa) |
| *pa = pub->algor; |
| return 1; |
| } |
| |
| ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x) |
| { |
| if (x == NULL) |
| return NULL; |
| return x->cert_info.key->public_key; |
| } |
| |
| /* Returns 1 for equal, 0, for non-equal, < 0 on error */ |
| int X509_PUBKEY_eq(const X509_PUBKEY *a, const X509_PUBKEY *b) |
| { |
| X509_ALGOR *algA, *algB; |
| EVP_PKEY *pA, *pB; |
| |
| if (a == b) |
| return 1; |
| if (a == NULL || b == NULL) |
| return 0; |
| if (!X509_PUBKEY_get0_param(NULL, NULL, NULL, &algA, a) || algA == NULL |
| || !X509_PUBKEY_get0_param(NULL, NULL, NULL, &algB, b) || algB == NULL) |
| return -2; |
| if (X509_ALGOR_cmp(algA, algB) != 0) |
| return 0; |
| if ((pA = X509_PUBKEY_get0(a)) == NULL |
| || (pB = X509_PUBKEY_get0(b)) == NULL) |
| return -2; |
| return EVP_PKEY_eq(pA, pB); |
| } |
| |
| int X509_PUBKEY_get0_libctx(OSSL_LIB_CTX **plibctx, const char **ppropq, |
| const X509_PUBKEY *key) |
| { |
| if (plibctx) |
| *plibctx = key->libctx; |
| if (ppropq) |
| *ppropq = key->propq; |
| return 1; |
| } |