blob: 720b7fd6c0508cc95b01130c49bbef4e62b6ceda [file] [log] [blame]
/*
* Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* We need to use some engine deprecated APIs */
#define OPENSSL_SUPPRESS_DEPRECATED
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/bn.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
#include <openssl/decoder.h>
#include <openssl/engine.h>
#include <openssl/x509.h>
#include <openssl/asn1.h>
#include "crypto/asn1.h"
#include "crypto/evp.h"
#include "internal/asn1.h"
static EVP_PKEY *
d2i_PrivateKey_decoder(int keytype, EVP_PKEY **a, const unsigned char **pp,
long length, OSSL_LIB_CTX *libctx, const char *propq)
{
OSSL_DECODER_CTX *dctx = NULL;
size_t len = length;
EVP_PKEY *pkey = NULL, *bak_a = NULL;
EVP_PKEY **ppkey = &pkey;
const char *key_name = NULL;
const char *input_structures[] = { "type-specific", "PrivateKeyInfo", NULL };
int i, ret;
if (keytype != EVP_PKEY_NONE) {
key_name = evp_pkey_type2name(keytype);
if (key_name == NULL)
return NULL;
}
for (i = 0; i < (int)OSSL_NELEM(input_structures); ++i) {
const unsigned char *p = *pp;
if (a != NULL && (bak_a = *a) != NULL)
ppkey = a;
dctx = OSSL_DECODER_CTX_new_for_pkey(ppkey, "DER",
input_structures[i], key_name,
EVP_PKEY_KEYPAIR, libctx, propq);
if (a != NULL)
*a = bak_a;
if (dctx == NULL)
continue;
ret = OSSL_DECODER_from_data(dctx, pp, &len);
OSSL_DECODER_CTX_free(dctx);
if (ret) {
if (*ppkey != NULL
&& evp_keymgmt_util_has(*ppkey, OSSL_KEYMGMT_SELECT_PRIVATE_KEY)) {
if (a != NULL)
*a = *ppkey;
return *ppkey;
}
*pp = p;
goto err;
}
}
/* Fall through to error if all decodes failed */
err:
if (ppkey != a)
EVP_PKEY_free(*ppkey);
return NULL;
}
EVP_PKEY *
ossl_d2i_PrivateKey_legacy(int keytype, EVP_PKEY **a, const unsigned char **pp,
long length, OSSL_LIB_CTX *libctx, const char *propq)
{
EVP_PKEY *ret;
const unsigned char *p = *pp;
if (a == NULL || *a == NULL) {
if ((ret = EVP_PKEY_new()) == NULL) {
ERR_raise(ERR_LIB_ASN1, ERR_R_EVP_LIB);
return NULL;
}
} else {
ret = *a;
#ifndef OPENSSL_NO_ENGINE
ENGINE_finish(ret->engine);
ret->engine = NULL;
#endif
}
if (!EVP_PKEY_set_type(ret, keytype)) {
ERR_raise(ERR_LIB_ASN1, ASN1_R_UNKNOWN_PUBLIC_KEY_TYPE);
goto err;
}
ERR_set_mark();
if (!ret->ameth->old_priv_decode ||
!ret->ameth->old_priv_decode(ret, &p, length)) {
if (ret->ameth->priv_decode != NULL
|| ret->ameth->priv_decode_ex != NULL) {
EVP_PKEY *tmp;
PKCS8_PRIV_KEY_INFO *p8 = NULL;
p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, length);
if (p8 == NULL) {
ERR_clear_last_mark();
goto err;
}
tmp = evp_pkcs82pkey_legacy(p8, libctx, propq);
PKCS8_PRIV_KEY_INFO_free(p8);
if (tmp == NULL) {
ERR_clear_last_mark();
goto err;
}
EVP_PKEY_free(ret);
ret = tmp;
ERR_pop_to_mark();
if (EVP_PKEY_type(keytype) != EVP_PKEY_get_base_id(ret))
goto err;
} else {
ERR_clear_last_mark();
ERR_raise(ERR_LIB_ASN1, ERR_R_ASN1_LIB);
goto err;
}
} else {
ERR_clear_last_mark();
}
*pp = p;
if (a != NULL)
*a = ret;
return ret;
err:
if (a == NULL || *a != ret)
EVP_PKEY_free(ret);
return NULL;
}
EVP_PKEY *d2i_PrivateKey_ex(int keytype, EVP_PKEY **a, const unsigned char **pp,
long length, OSSL_LIB_CTX *libctx,
const char *propq)
{
EVP_PKEY *ret;
ret = d2i_PrivateKey_decoder(keytype, a, pp, length, libctx, propq);
/* try the legacy path if the decoder failed */
if (ret == NULL)
ret = ossl_d2i_PrivateKey_legacy(keytype, a, pp, length, libctx, propq);
return ret;
}
EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **a, const unsigned char **pp,
long length)
{
return d2i_PrivateKey_ex(type, a, pp, length, NULL, NULL);
}
static EVP_PKEY *d2i_AutoPrivateKey_legacy(EVP_PKEY **a,
const unsigned char **pp,
long length,
OSSL_LIB_CTX *libctx,
const char *propq)
{
STACK_OF(ASN1_TYPE) *inkey;
const unsigned char *p;
int keytype;
p = *pp;
/*
* Dirty trick: read in the ASN1 data into a STACK_OF(ASN1_TYPE): by
* analyzing it we can determine the passed structure: this assumes the
* input is surrounded by an ASN1 SEQUENCE.
*/
inkey = d2i_ASN1_SEQUENCE_ANY(NULL, &p, length);
p = *pp;
/*
* Since we only need to discern "traditional format" RSA and DSA keys we
* can just count the elements.
*/
if (sk_ASN1_TYPE_num(inkey) == 6) {
keytype = EVP_PKEY_DSA;
} else if (sk_ASN1_TYPE_num(inkey) == 4) {
keytype = EVP_PKEY_EC;
} else if (sk_ASN1_TYPE_num(inkey) == 3) { /* This seems to be PKCS8, not
* traditional format */
PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, length);
EVP_PKEY *ret;
sk_ASN1_TYPE_pop_free(inkey, ASN1_TYPE_free);
if (p8 == NULL) {
ERR_raise(ERR_LIB_ASN1, ASN1_R_UNSUPPORTED_PUBLIC_KEY_TYPE);
return NULL;
}
ret = evp_pkcs82pkey_legacy(p8, libctx, propq);
PKCS8_PRIV_KEY_INFO_free(p8);
if (ret == NULL)
return NULL;
*pp = p;
if (a != NULL) {
*a = ret;
}
return ret;
} else {
keytype = EVP_PKEY_RSA;
}
sk_ASN1_TYPE_pop_free(inkey, ASN1_TYPE_free);
return ossl_d2i_PrivateKey_legacy(keytype, a, pp, length, libctx, propq);
}
/*
* This works like d2i_PrivateKey() except it passes the keytype as
* EVP_PKEY_NONE, which then figures out the type during decoding.
*/
EVP_PKEY *d2i_AutoPrivateKey_ex(EVP_PKEY **a, const unsigned char **pp,
long length, OSSL_LIB_CTX *libctx,
const char *propq)
{
EVP_PKEY *ret;
ret = d2i_PrivateKey_decoder(EVP_PKEY_NONE, a, pp, length, libctx, propq);
/* try the legacy path if the decoder failed */
if (ret == NULL)
ret = d2i_AutoPrivateKey_legacy(a, pp, length, libctx, propq);
return ret;
}
EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **a, const unsigned char **pp,
long length)
{
return d2i_AutoPrivateKey_ex(a, pp, length, NULL, NULL);
}