|  | /* | 
|  | * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | #include <stddef.h> | 
|  | #include <stdio.h> | 
|  | #include <string.h> | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/err.h> | 
|  | #include <internal/numbers.h> | 
|  |  | 
|  | #ifndef OPENSSL_NO_SCRYPT | 
|  |  | 
|  | #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) | 
|  | static void salsa208_word_specification(uint32_t inout[16]) | 
|  | { | 
|  | int i; | 
|  | uint32_t x[16]; | 
|  | memcpy(x, inout, sizeof(x)); | 
|  | for (i = 8; i > 0; i -= 2) { | 
|  | x[4] ^= R(x[0] + x[12], 7); | 
|  | x[8] ^= R(x[4] + x[0], 9); | 
|  | x[12] ^= R(x[8] + x[4], 13); | 
|  | x[0] ^= R(x[12] + x[8], 18); | 
|  | x[9] ^= R(x[5] + x[1], 7); | 
|  | x[13] ^= R(x[9] + x[5], 9); | 
|  | x[1] ^= R(x[13] + x[9], 13); | 
|  | x[5] ^= R(x[1] + x[13], 18); | 
|  | x[14] ^= R(x[10] + x[6], 7); | 
|  | x[2] ^= R(x[14] + x[10], 9); | 
|  | x[6] ^= R(x[2] + x[14], 13); | 
|  | x[10] ^= R(x[6] + x[2], 18); | 
|  | x[3] ^= R(x[15] + x[11], 7); | 
|  | x[7] ^= R(x[3] + x[15], 9); | 
|  | x[11] ^= R(x[7] + x[3], 13); | 
|  | x[15] ^= R(x[11] + x[7], 18); | 
|  | x[1] ^= R(x[0] + x[3], 7); | 
|  | x[2] ^= R(x[1] + x[0], 9); | 
|  | x[3] ^= R(x[2] + x[1], 13); | 
|  | x[0] ^= R(x[3] + x[2], 18); | 
|  | x[6] ^= R(x[5] + x[4], 7); | 
|  | x[7] ^= R(x[6] + x[5], 9); | 
|  | x[4] ^= R(x[7] + x[6], 13); | 
|  | x[5] ^= R(x[4] + x[7], 18); | 
|  | x[11] ^= R(x[10] + x[9], 7); | 
|  | x[8] ^= R(x[11] + x[10], 9); | 
|  | x[9] ^= R(x[8] + x[11], 13); | 
|  | x[10] ^= R(x[9] + x[8], 18); | 
|  | x[12] ^= R(x[15] + x[14], 7); | 
|  | x[13] ^= R(x[12] + x[15], 9); | 
|  | x[14] ^= R(x[13] + x[12], 13); | 
|  | x[15] ^= R(x[14] + x[13], 18); | 
|  | } | 
|  | for (i = 0; i < 16; ++i) | 
|  | inout[i] += x[i]; | 
|  | OPENSSL_cleanse(x, sizeof(x)); | 
|  | } | 
|  |  | 
|  | static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) | 
|  | { | 
|  | uint64_t i, j; | 
|  | uint32_t X[16], *pB; | 
|  |  | 
|  | memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); | 
|  | pB = B; | 
|  | for (i = 0; i < r * 2; i++) { | 
|  | for (j = 0; j < 16; j++) | 
|  | X[j] ^= *pB++; | 
|  | salsa208_word_specification(X); | 
|  | memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); | 
|  | } | 
|  | OPENSSL_cleanse(X, sizeof(X)); | 
|  | } | 
|  |  | 
|  | static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, | 
|  | uint32_t *X, uint32_t *T, uint32_t *V) | 
|  | { | 
|  | unsigned char *pB; | 
|  | uint32_t *pV; | 
|  | uint64_t i, k; | 
|  |  | 
|  | /* Convert from little endian input */ | 
|  | for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { | 
|  | *pV = *pB++; | 
|  | *pV |= *pB++ << 8; | 
|  | *pV |= *pB++ << 16; | 
|  | *pV |= (uint32_t)*pB++ << 24; | 
|  | } | 
|  |  | 
|  | for (i = 1; i < N; i++, pV += 32 * r) | 
|  | scryptBlockMix(pV, pV - 32 * r, r); | 
|  |  | 
|  | scryptBlockMix(X, V + (N - 1) * 32 * r, r); | 
|  |  | 
|  | for (i = 0; i < N; i++) { | 
|  | uint32_t j; | 
|  | j = X[16 * (2 * r - 1)] % N; | 
|  | pV = V + 32 * r * j; | 
|  | for (k = 0; k < 32 * r; k++) | 
|  | T[k] = X[k] ^ *pV++; | 
|  | scryptBlockMix(X, T, r); | 
|  | } | 
|  | /* Convert output to little endian */ | 
|  | for (i = 0, pB = B; i < 32 * r; i++) { | 
|  | uint32_t xtmp = X[i]; | 
|  | *pB++ = xtmp & 0xff; | 
|  | *pB++ = (xtmp >> 8) & 0xff; | 
|  | *pB++ = (xtmp >> 16) & 0xff; | 
|  | *pB++ = (xtmp >> 24) & 0xff; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef SIZE_MAX | 
|  | # define SIZE_MAX    ((size_t)-1) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Maximum power of two that will fit in uint64_t: this should work on | 
|  | * most (all?) platforms. | 
|  | */ | 
|  |  | 
|  | #define LOG2_UINT64_MAX         (sizeof(uint64_t) * 8 - 1) | 
|  |  | 
|  | /* | 
|  | * Maximum value of p * r: | 
|  | * p <= ((2^32-1) * hLen) / MFLen => | 
|  | * p <= ((2^32-1) * 32) / (128 * r) => | 
|  | * p * r <= (2^30-1) | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define SCRYPT_PR_MAX   ((1 << 30) - 1) | 
|  |  | 
|  | /* | 
|  | * Maximum permitted memory allow this to be overridden with Configuration | 
|  | * option: e.g. -DSCRYPT_MAX_MEM=0 for maximum possible. | 
|  | */ | 
|  |  | 
|  | #ifdef SCRYPT_MAX_MEM | 
|  | # if SCRYPT_MAX_MEM == 0 | 
|  | #  undef SCRYPT_MAX_MEM | 
|  | /* | 
|  | * Although we could theoretically allocate SIZE_MAX memory that would leave | 
|  | * no memory available for anything else so set limit as half that. | 
|  | */ | 
|  | #  define SCRYPT_MAX_MEM (SIZE_MAX/2) | 
|  | # endif | 
|  | #else | 
|  | /* Default memory limit: 32 MB */ | 
|  | # define SCRYPT_MAX_MEM  (1024 * 1024 * 32) | 
|  | #endif | 
|  |  | 
|  | int EVP_PBE_scrypt(const char *pass, size_t passlen, | 
|  | const unsigned char *salt, size_t saltlen, | 
|  | uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, | 
|  | unsigned char *key, size_t keylen) | 
|  | { | 
|  | int rv = 0; | 
|  | unsigned char *B; | 
|  | uint32_t *X, *V, *T; | 
|  | uint64_t i, Blen, Vlen; | 
|  | size_t allocsize; | 
|  |  | 
|  | /* Sanity check parameters */ | 
|  | /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ | 
|  | if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) | 
|  | return 0; | 
|  | /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ | 
|  | if (p > SCRYPT_PR_MAX / r) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Need to check N: if 2^(128 * r / 8) overflows limit this is | 
|  | * automatically satisfied since N <= UINT64_MAX. | 
|  | */ | 
|  |  | 
|  | if (16 * r <= LOG2_UINT64_MAX) { | 
|  | if (N >= (((uint64_t)1) << (16 * r))) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Memory checks: check total allocated buffer size fits in uint64_t */ | 
|  |  | 
|  | /* | 
|  | * B size in section 5 step 1.S | 
|  | * Note: we know p * 128 * r < UINT64_MAX because we already checked | 
|  | * p * r < SCRYPT_PR_MAX | 
|  | */ | 
|  | Blen = p * 128 * r; | 
|  |  | 
|  | /* | 
|  | * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in | 
|  | * uint64_t and also size_t (their sizes are unrelated). | 
|  | * This is combined size V, X and T (section 4) | 
|  | */ | 
|  | i = UINT64_MAX / (32 * sizeof(uint32_t)); | 
|  | if (N + 2 > i / r) | 
|  | return 0; | 
|  | Vlen = 32 * r * (N + 2) * sizeof(uint32_t); | 
|  |  | 
|  | /* check total allocated size fits in uint64_t */ | 
|  | if (Blen > UINT64_MAX - Vlen) | 
|  | return 0; | 
|  | /* check total allocated size fits in size_t */ | 
|  | if (Blen > SIZE_MAX - Vlen) | 
|  | return 0; | 
|  |  | 
|  | allocsize = (size_t)(Blen + Vlen); | 
|  |  | 
|  | if (maxmem == 0) | 
|  | maxmem = SCRYPT_MAX_MEM; | 
|  |  | 
|  | if (allocsize > maxmem) { | 
|  | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* If no key return to indicate parameters are OK */ | 
|  | if (key == NULL) | 
|  | return 1; | 
|  |  | 
|  | B = OPENSSL_malloc(allocsize); | 
|  | if (B == NULL) | 
|  | return 0; | 
|  | X = (uint32_t *)(B + Blen); | 
|  | T = X + 32 * r; | 
|  | V = T + 32 * r; | 
|  | if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(), | 
|  | Blen, B) == 0) | 
|  | goto err; | 
|  |  | 
|  | for (i = 0; i < p; i++) | 
|  | scryptROMix(B + 128 * r * i, r, N, X, T, V); | 
|  |  | 
|  | if (PKCS5_PBKDF2_HMAC(pass, passlen, B, Blen, 1, EVP_sha256(), | 
|  | keylen, key) == 0) | 
|  | goto err; | 
|  | rv = 1; | 
|  | err: | 
|  | OPENSSL_clear_free(B, allocsize); | 
|  | return rv; | 
|  | } | 
|  | #endif |