| /* crypto/engine/eng_rsax.c */ |
| /* Copyright (c) 2010-2010 Intel Corp. |
| * Author: Vinodh.Gopal@intel.com |
| * Jim Guilford |
| * Erdinc.Ozturk@intel.com |
| * Maxim.Perminov@intel.com |
| * Ying.Huang@intel.com |
| * |
| * More information about algorithm used can be found at: |
| * http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| */ |
| |
| #include <openssl/opensslconf.h> |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include <openssl/crypto.h> |
| #include <openssl/buffer.h> |
| #include <openssl/engine.h> |
| #ifndef OPENSSL_NO_RSA |
| #include <openssl/rsa.h> |
| #endif |
| #include <openssl/bn.h> |
| #include <openssl/err.h> |
| |
| /* RSAX is available **ONLY* on x86_64 CPUs */ |
| #undef COMPILE_RSAX |
| |
| #if (defined(__x86_64) || defined(__x86_64__) || \ |
| defined(_M_AMD64) || defined (_M_X64)) && !defined(OPENSSL_NO_ASM) |
| #define COMPILE_RSAX |
| static ENGINE *ENGINE_rsax (void); |
| #endif |
| |
| void ENGINE_load_rsax (void) |
| { |
| /* On non-x86 CPUs it just returns. */ |
| #ifdef COMPILE_RSAX |
| ENGINE *toadd = ENGINE_rsax(); |
| if(!toadd) return; |
| ENGINE_add(toadd); |
| ENGINE_free(toadd); |
| ERR_clear_error(); |
| #endif |
| } |
| |
| #ifdef COMPILE_RSAX |
| #define E_RSAX_LIB_NAME "rsax engine" |
| |
| static int e_rsax_destroy(ENGINE *e); |
| static int e_rsax_init(ENGINE *e); |
| static int e_rsax_finish(ENGINE *e); |
| static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void)); |
| |
| #ifndef OPENSSL_NO_RSA |
| /* RSA stuff */ |
| static int e_rsax_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa, BN_CTX *ctx); |
| static int e_rsax_rsa_finish(RSA *r); |
| #endif |
| |
| static const ENGINE_CMD_DEFN e_rsax_cmd_defns[] = { |
| {0, NULL, NULL, 0} |
| }; |
| |
| #ifndef OPENSSL_NO_RSA |
| /* Our internal RSA_METHOD that we provide pointers to */ |
| static RSA_METHOD e_rsax_rsa = |
| { |
| "Intel RSA-X method", |
| NULL, |
| NULL, |
| NULL, |
| NULL, |
| e_rsax_rsa_mod_exp, |
| NULL, |
| NULL, |
| e_rsax_rsa_finish, |
| RSA_FLAG_CACHE_PUBLIC|RSA_FLAG_CACHE_PRIVATE, |
| NULL, |
| NULL, |
| NULL |
| }; |
| #endif |
| |
| /* Constants used when creating the ENGINE */ |
| static const char *engine_e_rsax_id = "rsax"; |
| static const char *engine_e_rsax_name = "RSAX engine support"; |
| |
| /* This internal function is used by ENGINE_rsax() */ |
| static int bind_helper(ENGINE *e) |
| { |
| #ifndef OPENSSL_NO_RSA |
| const RSA_METHOD *meth1; |
| #endif |
| if(!ENGINE_set_id(e, engine_e_rsax_id) || |
| !ENGINE_set_name(e, engine_e_rsax_name) || |
| #ifndef OPENSSL_NO_RSA |
| !ENGINE_set_RSA(e, &e_rsax_rsa) || |
| #endif |
| !ENGINE_set_destroy_function(e, e_rsax_destroy) || |
| !ENGINE_set_init_function(e, e_rsax_init) || |
| !ENGINE_set_finish_function(e, e_rsax_finish) || |
| !ENGINE_set_ctrl_function(e, e_rsax_ctrl) || |
| !ENGINE_set_cmd_defns(e, e_rsax_cmd_defns)) |
| return 0; |
| |
| #ifndef OPENSSL_NO_RSA |
| meth1 = RSA_PKCS1_SSLeay(); |
| e_rsax_rsa.rsa_pub_enc = meth1->rsa_pub_enc; |
| e_rsax_rsa.rsa_pub_dec = meth1->rsa_pub_dec; |
| e_rsax_rsa.rsa_priv_enc = meth1->rsa_priv_enc; |
| e_rsax_rsa.rsa_priv_dec = meth1->rsa_priv_dec; |
| e_rsax_rsa.bn_mod_exp = meth1->bn_mod_exp; |
| #endif |
| return 1; |
| } |
| |
| static ENGINE *ENGINE_rsax(void) |
| { |
| ENGINE *ret = ENGINE_new(); |
| if(!ret) |
| return NULL; |
| if(!bind_helper(ret)) |
| { |
| ENGINE_free(ret); |
| return NULL; |
| } |
| return ret; |
| } |
| |
| #ifndef OPENSSL_NO_RSA |
| /* Used to attach our own key-data to an RSA structure */ |
| static int rsax_ex_data_idx = -1; |
| #endif |
| |
| static int e_rsax_destroy(ENGINE *e) |
| { |
| return 1; |
| } |
| |
| /* (de)initialisation functions. */ |
| static int e_rsax_init(ENGINE *e) |
| { |
| #ifndef OPENSSL_NO_RSA |
| if (rsax_ex_data_idx == -1) |
| rsax_ex_data_idx = RSA_get_ex_new_index(0, |
| NULL, |
| NULL, NULL, NULL); |
| #endif |
| if (rsax_ex_data_idx == -1) |
| return 0; |
| return 1; |
| } |
| |
| static int e_rsax_finish(ENGINE *e) |
| { |
| return 1; |
| } |
| |
| static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void)) |
| { |
| int to_return = 1; |
| |
| switch(cmd) |
| { |
| /* The command isn't understood by this engine */ |
| default: |
| to_return = 0; |
| break; |
| } |
| |
| return to_return; |
| } |
| |
| |
| #ifndef OPENSSL_NO_RSA |
| |
| #ifdef _WIN32 |
| typedef unsigned __int64 UINT64; |
| #else |
| typedef unsigned long long UINT64; |
| #endif |
| typedef unsigned short UINT16; |
| |
| /* Table t is interleaved in the following manner: |
| * The order in memory is t[0][0], t[0][1], ..., t[0][7], t[1][0], ... |
| * A particular 512-bit value is stored in t[][index] rather than the more |
| * normal t[index][]; i.e. the qwords of a particular entry in t are not |
| * adjacent in memory |
| */ |
| |
| /* Init BIGNUM b from the interleaved UINT64 array */ |
| static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array); |
| |
| /* Extract array elements from BIGNUM b |
| * To set the whole array from b, call with n=8 |
| */ |
| static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *array); |
| |
| struct mod_ctx_512 { |
| UINT64 t[8][8]; |
| UINT64 m[8]; |
| UINT64 m1[8]; /* 2^278 % m */ |
| UINT64 m2[8]; /* 2^640 % m */ |
| UINT64 k1[2]; /* (- 1/m) % 2^128 */ |
| }; |
| |
| static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data); |
| |
| void mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */ |
| UINT64 *g, /* 512 bits, 8 qwords */ |
| UINT64 *exp, /* 512 bits, 8 qwords */ |
| struct mod_ctx_512 *data); |
| |
| typedef struct st_e_rsax_mod_ctx |
| { |
| UINT64 type; |
| union { |
| struct mod_ctx_512 b512; |
| } ctx; |
| |
| } E_RSAX_MOD_CTX; |
| |
| static E_RSAX_MOD_CTX *e_rsax_get_ctx(RSA *rsa, int idx, BIGNUM* m) |
| { |
| E_RSAX_MOD_CTX *hptr; |
| |
| if (idx < 0 || idx > 2) |
| return NULL; |
| |
| hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx); |
| if (!hptr) { |
| hptr = OPENSSL_malloc(3*sizeof(E_RSAX_MOD_CTX)); |
| if (!hptr) return NULL; |
| hptr[2].type = hptr[1].type= hptr[0].type = 0; |
| RSA_set_ex_data(rsa, rsax_ex_data_idx, hptr); |
| } |
| |
| if (hptr[idx].type == (UINT64)BN_num_bits(m)) |
| return hptr+idx; |
| |
| if (BN_num_bits(m) == 512) { |
| UINT64 _m[8]; |
| bn_extract_to_array_512(m, 8, _m); |
| memset( &hptr[idx].ctx.b512, 0, sizeof(struct mod_ctx_512)); |
| mod_exp_pre_compute_data_512(_m, &hptr[idx].ctx.b512); |
| } |
| |
| hptr[idx].type = BN_num_bits(m); |
| return hptr+idx; |
| } |
| |
| static int e_rsax_rsa_finish(RSA *rsa) |
| { |
| E_RSAX_MOD_CTX *hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx); |
| if(hptr) |
| { |
| OPENSSL_free(hptr); |
| RSA_set_ex_data(rsa, rsax_ex_data_idx, NULL); |
| } |
| if (rsa->_method_mod_n) |
| BN_MONT_CTX_free(rsa->_method_mod_n); |
| if (rsa->_method_mod_p) |
| BN_MONT_CTX_free(rsa->_method_mod_p); |
| if (rsa->_method_mod_q) |
| BN_MONT_CTX_free(rsa->_method_mod_q); |
| return 1; |
| } |
| |
| |
| static int e_rsax_bn_mod_exp(BIGNUM *r, const BIGNUM *g, const BIGNUM *e, |
| const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont, E_RSAX_MOD_CTX* rsax_mod_ctx ) |
| { |
| if (rsax_mod_ctx && BN_get_flags(e, BN_FLG_CONSTTIME) != 0) { |
| if (BN_num_bits(m) == 512) { |
| UINT64 _r[8]; |
| UINT64 _g[8]; |
| UINT64 _e[8]; |
| |
| /* Init the arrays from the BIGNUMs */ |
| bn_extract_to_array_512(g, 8, _g); |
| bn_extract_to_array_512(e, 8, _e); |
| |
| mod_exp_512(_r, _g, _e, &rsax_mod_ctx->ctx.b512); |
| /* Return the result in the BIGNUM */ |
| interleaved_array_to_bn_512(r, _r); |
| return 1; |
| } |
| } |
| |
| return BN_mod_exp_mont(r, g, e, m, ctx, in_mont); |
| } |
| |
| /* Declares for the Intel CIAP 512-bit / CRT / 1024 bit RSA modular |
| * exponentiation routine precalculations and a structure to hold the |
| * necessary values. These files are meant to live in crypto/rsa/ in |
| * the target openssl. |
| */ |
| |
| /* |
| * Local method: extracts a piece from a BIGNUM, to fit it into |
| * an array. Call with n=8 to extract an entire 512-bit BIGNUM |
| */ |
| static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *array) |
| { |
| int i; |
| UINT64 tmp; |
| unsigned char bn_buff[64]; |
| memset(bn_buff, 0, 64); |
| if (BN_num_bytes(b) > 64) { |
| printf ("Can't support this byte size\n"); |
| return 0; } |
| if (BN_num_bytes(b)!=0) { |
| if (!BN_bn2bin(b, bn_buff+(64-BN_num_bytes(b)))) { |
| printf ("Error's in bn2bin\n"); |
| /* We have to error, here */ |
| return 0; } } |
| while (n-- > 0) { |
| array[n] = 0; |
| for (i=7; i>=0; i--) { |
| tmp = bn_buff[63-(n*8+i)]; |
| array[n] |= tmp << (8*i); } } |
| return 1; |
| } |
| |
| /* Init a 512-bit BIGNUM from the UINT64*_ (8 * 64) interleaved array */ |
| static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array) |
| { |
| unsigned char tmp[64]; |
| int n=8; |
| int i; |
| while (n-- > 0) { |
| for (i = 7; i>=0; i--) { |
| tmp[63-(n*8+i)] = (unsigned char)(array[n]>>(8*i)); } } |
| BN_bin2bn(tmp, 64, b); |
| return 0; |
| } |
| |
| |
| /* The main 512bit precompute call */ |
| static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data) |
| { |
| BIGNUM two_768, two_640, two_128, two_512, tmp, _m, tmp2; |
| |
| /* We need a BN_CTX for the modulo functions */ |
| BN_CTX* ctx; |
| /* Some tmps */ |
| UINT64 _t[8]; |
| int i, j, ret = 0; |
| /* Init _m with m */ |
| BN_init(&_m); |
| interleaved_array_to_bn_512(&_m, m); |
| memset(_t, 0, 64); |
| |
| /* Inits */ |
| BN_init(&two_768); |
| BN_init(&two_640); |
| BN_init(&two_128); |
| BN_init(&two_512); |
| BN_init(&tmp); |
| BN_init(&tmp2); |
| |
| /* Create our context */ |
| if ((ctx=BN_CTX_new()) == NULL) { goto err; } |
| BN_CTX_start(ctx); |
| |
| /* |
| * For production, if you care, these only need to be set once, |
| * and may be made constants. |
| */ |
| BN_lshift(&two_768, BN_value_one(), 768); |
| BN_lshift(&two_640, BN_value_one(), 640); |
| BN_lshift(&two_128, BN_value_one(), 128); |
| BN_lshift(&two_512, BN_value_one(), 512); |
| |
| if (0 == (m[7] & 0x8000000000000000)) { |
| exit(1); |
| } |
| if (0 == (m[0] & 0x1)) { /* Odd modulus required for Mont */ |
| exit(1); |
| } |
| |
| /* Precompute m1 */ |
| BN_mod(&tmp, &two_768, &_m, ctx); |
| if (!bn_extract_to_array_512(&tmp, 8, &data->m1[0])) { |
| goto err; } |
| |
| /* Precompute m2 */ |
| BN_mod(&tmp, &two_640, &_m, ctx); |
| if (!bn_extract_to_array_512(&tmp, 8, &data->m2[0])) { |
| goto err; |
| } |
| |
| /* |
| * Precompute k1, a 128b number = ((-1)* m-1 ) mod 2128; k1 should |
| * be non-negative. |
| */ |
| BN_mod_inverse(&tmp, &_m, &two_128, ctx); |
| if (!BN_is_zero(&tmp)) { BN_sub(&tmp, &two_128, &tmp); } |
| if (!bn_extract_to_array_512(&tmp, 2, &data->k1[0])) { |
| goto err; } |
| |
| /* Precompute t */ |
| for (i=0; i<8; i++) { |
| BN_zero(&tmp); |
| if (i & 1) { BN_add(&tmp, &two_512, &tmp); } |
| if (i & 2) { BN_add(&tmp, &two_512, &tmp); } |
| if (i & 4) { BN_add(&tmp, &two_640, &tmp); } |
| |
| BN_nnmod(&tmp2, &tmp, &_m, ctx); |
| if (!bn_extract_to_array_512(&tmp2, 8, _t)) { |
| goto err; } |
| for (j=0; j<8; j++) data->t[j][i] = _t[j]; } |
| |
| /* Precompute m */ |
| for (i=0; i<8; i++) { |
| data->m[i] = m[i]; } |
| |
| ret = 1; |
| |
| err: |
| /* Cleanup */ |
| if (ctx != NULL) { |
| BN_CTX_end(ctx); BN_CTX_free(ctx); } |
| BN_free(&two_768); |
| BN_free(&two_640); |
| BN_free(&two_128); |
| BN_free(&two_512); |
| BN_free(&tmp); |
| BN_free(&tmp2); |
| BN_free(&_m); |
| |
| return ret; |
| } |
| |
| |
| static int e_rsax_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) |
| { |
| BIGNUM *r1,*m1,*vrfy; |
| BIGNUM local_dmp1,local_dmq1,local_c,local_r1; |
| BIGNUM *dmp1,*dmq1,*c,*pr1; |
| int ret=0; |
| BN_CTX_start(ctx); |
| r1 = BN_CTX_get(ctx); |
| m1 = BN_CTX_get(ctx); |
| vrfy = BN_CTX_get(ctx); |
| |
| { |
| BIGNUM local_p, local_q; |
| BIGNUM *p = NULL, *q = NULL; |
| int error = 0; |
| |
| /* Make sure BN_mod_inverse in Montgomery |
| * intialization uses the BN_FLG_CONSTTIME flag |
| * (unless RSA_FLAG_NO_CONSTTIME is set) |
| */ |
| if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) |
| { |
| BN_init(&local_p); |
| p = &local_p; |
| BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME); |
| |
| BN_init(&local_q); |
| q = &local_q; |
| BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME); |
| } |
| else |
| { |
| p = rsa->p; |
| q = rsa->q; |
| } |
| |
| if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) |
| { |
| if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_p, CRYPTO_LOCK_RSA, p, ctx)) |
| error = 1; |
| if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_q, CRYPTO_LOCK_RSA, q, ctx)) |
| error = 1; |
| } |
| |
| /* clean up */ |
| if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) |
| { |
| BN_free(&local_p); |
| BN_free(&local_q); |
| } |
| if ( error ) |
| goto err; |
| } |
| |
| if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
| if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, CRYPTO_LOCK_RSA, rsa->n, ctx)) |
| goto err; |
| |
| /* compute I mod q */ |
| if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) |
| { |
| c = &local_c; |
| BN_with_flags(c, I, BN_FLG_CONSTTIME); |
| if (!BN_mod(r1,c,rsa->q,ctx)) goto err; |
| } |
| else |
| { |
| if (!BN_mod(r1,I,rsa->q,ctx)) goto err; |
| } |
| |
| /* compute r1^dmq1 mod q */ |
| if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) |
| { |
| dmq1 = &local_dmq1; |
| BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME); |
| } |
| else |
| dmq1 = rsa->dmq1; |
| |
| if (!e_rsax_bn_mod_exp(m1,r1,dmq1,rsa->q,ctx, |
| rsa->_method_mod_q, e_rsax_get_ctx(rsa, 0, rsa->q) )) goto err; |
| |
| /* compute I mod p */ |
| if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) |
| { |
| c = &local_c; |
| BN_with_flags(c, I, BN_FLG_CONSTTIME); |
| if (!BN_mod(r1,c,rsa->p,ctx)) goto err; |
| } |
| else |
| { |
| if (!BN_mod(r1,I,rsa->p,ctx)) goto err; |
| } |
| |
| /* compute r1^dmp1 mod p */ |
| if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) |
| { |
| dmp1 = &local_dmp1; |
| BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME); |
| } |
| else |
| dmp1 = rsa->dmp1; |
| |
| if (!e_rsax_bn_mod_exp(r0,r1,dmp1,rsa->p,ctx, |
| rsa->_method_mod_p, e_rsax_get_ctx(rsa, 1, rsa->p) )) goto err; |
| |
| if (!BN_sub(r0,r0,m1)) goto err; |
| /* This will help stop the size of r0 increasing, which does |
| * affect the multiply if it optimised for a power of 2 size */ |
| if (BN_is_negative(r0)) |
| if (!BN_add(r0,r0,rsa->p)) goto err; |
| |
| if (!BN_mul(r1,r0,rsa->iqmp,ctx)) goto err; |
| |
| /* Turn BN_FLG_CONSTTIME flag on before division operation */ |
| if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) |
| { |
| pr1 = &local_r1; |
| BN_with_flags(pr1, r1, BN_FLG_CONSTTIME); |
| } |
| else |
| pr1 = r1; |
| if (!BN_mod(r0,pr1,rsa->p,ctx)) goto err; |
| |
| /* If p < q it is occasionally possible for the correction of |
| * adding 'p' if r0 is negative above to leave the result still |
| * negative. This can break the private key operations: the following |
| * second correction should *always* correct this rare occurrence. |
| * This will *never* happen with OpenSSL generated keys because |
| * they ensure p > q [steve] |
| */ |
| if (BN_is_negative(r0)) |
| if (!BN_add(r0,r0,rsa->p)) goto err; |
| if (!BN_mul(r1,r0,rsa->q,ctx)) goto err; |
| if (!BN_add(r0,r1,m1)) goto err; |
| |
| if (rsa->e && rsa->n) |
| { |
| if (!e_rsax_bn_mod_exp(vrfy,r0,rsa->e,rsa->n,ctx,rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, rsa->n) )) |
| goto err; |
| |
| /* If 'I' was greater than (or equal to) rsa->n, the operation |
| * will be equivalent to using 'I mod n'. However, the result of |
| * the verify will *always* be less than 'n' so we don't check |
| * for absolute equality, just congruency. */ |
| if (!BN_sub(vrfy, vrfy, I)) goto err; |
| if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) goto err; |
| if (BN_is_negative(vrfy)) |
| if (!BN_add(vrfy, vrfy, rsa->n)) goto err; |
| if (!BN_is_zero(vrfy)) |
| { |
| /* 'I' and 'vrfy' aren't congruent mod n. Don't leak |
| * miscalculated CRT output, just do a raw (slower) |
| * mod_exp and return that instead. */ |
| |
| BIGNUM local_d; |
| BIGNUM *d = NULL; |
| |
| if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME)) |
| { |
| d = &local_d; |
| BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
| } |
| else |
| d = rsa->d; |
| if (!e_rsax_bn_mod_exp(r0,I,d,rsa->n,ctx, |
| rsa->_method_mod_n, e_rsax_get_ctx(rsa, 2, rsa->n) )) goto err; |
| } |
| } |
| ret=1; |
| |
| err: |
| BN_CTX_end(ctx); |
| |
| return ret; |
| } |
| #endif /* !OPENSSL_NO_RSA */ |
| #endif /* !COMPILE_RSAX */ |