| /* |
| * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include "internal/cryptlib.h" |
| #include "bn_local.h" |
| |
| /* r must not be a */ |
| /* |
| * I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96 |
| */ |
| int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) |
| { |
| int ret = bn_sqr_fixed_top(r, a, ctx); |
| |
| bn_correct_top(r); |
| bn_check_top(r); |
| |
| return ret; |
| } |
| |
| int bn_sqr_fixed_top(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) |
| { |
| int max, al; |
| int ret = 0; |
| BIGNUM *tmp, *rr; |
| |
| bn_check_top(a); |
| |
| al = a->top; |
| if (al <= 0) { |
| r->top = 0; |
| r->neg = 0; |
| return 1; |
| } |
| |
| BN_CTX_start(ctx); |
| rr = (a != r) ? r : BN_CTX_get(ctx); |
| tmp = BN_CTX_get(ctx); |
| if (rr == NULL || tmp == NULL) |
| goto err; |
| |
| max = 2 * al; /* Non-zero (from above) */ |
| if (bn_wexpand(rr, max) == NULL) |
| goto err; |
| |
| if (al == 4) { |
| #ifndef BN_SQR_COMBA |
| BN_ULONG t[8]; |
| bn_sqr_normal(rr->d, a->d, 4, t); |
| #else |
| bn_sqr_comba4(rr->d, a->d); |
| #endif |
| } else if (al == 8) { |
| #ifndef BN_SQR_COMBA |
| BN_ULONG t[16]; |
| bn_sqr_normal(rr->d, a->d, 8, t); |
| #else |
| bn_sqr_comba8(rr->d, a->d); |
| #endif |
| } else { |
| #if defined(BN_RECURSION) |
| if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) { |
| BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2]; |
| bn_sqr_normal(rr->d, a->d, al, t); |
| } else { |
| int j, k; |
| |
| j = BN_num_bits_word((BN_ULONG)al); |
| j = 1 << (j - 1); |
| k = j + j; |
| if (al == j) { |
| if (bn_wexpand(tmp, k * 2) == NULL) |
| goto err; |
| bn_sqr_recursive(rr->d, a->d, al, tmp->d); |
| } else { |
| if (bn_wexpand(tmp, max) == NULL) |
| goto err; |
| bn_sqr_normal(rr->d, a->d, al, tmp->d); |
| } |
| } |
| #else |
| if (bn_wexpand(tmp, max) == NULL) |
| goto err; |
| bn_sqr_normal(rr->d, a->d, al, tmp->d); |
| #endif |
| } |
| |
| rr->neg = 0; |
| rr->top = max; |
| rr->flags |= BN_FLG_FIXED_TOP; |
| if (r != rr && BN_copy(r, rr) == NULL) |
| goto err; |
| |
| ret = 1; |
| err: |
| bn_check_top(rr); |
| bn_check_top(tmp); |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| /* tmp must have 2*n words */ |
| void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp) |
| { |
| int i, j, max; |
| const BN_ULONG *ap; |
| BN_ULONG *rp; |
| |
| max = n * 2; |
| ap = a; |
| rp = r; |
| rp[0] = rp[max - 1] = 0; |
| rp++; |
| j = n; |
| |
| if (--j > 0) { |
| ap++; |
| rp[j] = bn_mul_words(rp, ap, j, ap[-1]); |
| rp += 2; |
| } |
| |
| for (i = n - 2; i > 0; i--) { |
| j--; |
| ap++; |
| rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]); |
| rp += 2; |
| } |
| |
| bn_add_words(r, r, r, max); |
| |
| /* There will not be a carry */ |
| |
| bn_sqr_words(tmp, a, n); |
| |
| bn_add_words(r, r, tmp, max); |
| } |
| |
| #ifdef BN_RECURSION |
| /*- |
| * r is 2*n words in size, |
| * a and b are both n words in size. (There's not actually a 'b' here ...) |
| * n must be a power of 2. |
| * We multiply and return the result. |
| * t must be 2*n words in size |
| * We calculate |
| * a[0]*b[0] |
| * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) |
| * a[1]*b[1] |
| */ |
| void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t) |
| { |
| int n = n2 / 2; |
| int zero, c1; |
| BN_ULONG ln, lo, *p; |
| |
| if (n2 == 4) { |
| # ifndef BN_SQR_COMBA |
| bn_sqr_normal(r, a, 4, t); |
| # else |
| bn_sqr_comba4(r, a); |
| # endif |
| return; |
| } else if (n2 == 8) { |
| # ifndef BN_SQR_COMBA |
| bn_sqr_normal(r, a, 8, t); |
| # else |
| bn_sqr_comba8(r, a); |
| # endif |
| return; |
| } |
| if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { |
| bn_sqr_normal(r, a, n2, t); |
| return; |
| } |
| /* r=(a[0]-a[1])*(a[1]-a[0]) */ |
| c1 = bn_cmp_words(a, &(a[n]), n); |
| zero = 0; |
| if (c1 > 0) |
| bn_sub_words(t, a, &(a[n]), n); |
| else if (c1 < 0) |
| bn_sub_words(t, &(a[n]), a, n); |
| else |
| zero = 1; |
| |
| /* The result will always be negative unless it is zero */ |
| p = &(t[n2 * 2]); |
| |
| if (!zero) |
| bn_sqr_recursive(&(t[n2]), t, n, p); |
| else |
| memset(&t[n2], 0, sizeof(*t) * n2); |
| bn_sqr_recursive(r, a, n, p); |
| bn_sqr_recursive(&(r[n2]), &(a[n]), n, p); |
| |
| /*- |
| * t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero |
| * r[10] holds (a[0]*b[0]) |
| * r[32] holds (b[1]*b[1]) |
| */ |
| |
| c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); |
| |
| /* t[32] is negative */ |
| c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); |
| |
| /*- |
| * t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1]) |
| * r[10] holds (a[0]*a[0]) |
| * r[32] holds (a[1]*a[1]) |
| * c1 holds the carry bits |
| */ |
| c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); |
| if (c1) { |
| p = &(r[n + n2]); |
| lo = *p; |
| ln = (lo + c1) & BN_MASK2; |
| *p = ln; |
| |
| /* |
| * The overflow will stop before we over write words we should not |
| * overwrite |
| */ |
| if (ln < (BN_ULONG)c1) { |
| do { |
| p++; |
| lo = *p; |
| ln = (lo + 1) & BN_MASK2; |
| *p = ln; |
| } while (ln == 0); |
| } |
| } |
| } |
| #endif |