| /* |
| * Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| /* We need to use the OPENSSL_fork_*() deprecated APIs */ |
| #define OPENSSL_SUPPRESS_DEPRECATED |
| |
| #include <openssl/crypto.h> |
| #include <crypto/cryptlib.h> |
| #include "internal/cryptlib.h" |
| #include "internal/rcu.h" |
| #include "rcu_internal.h" |
| |
| #if defined(__clang__) && defined(__has_feature) |
| # if __has_feature(thread_sanitizer) |
| # define __SANITIZE_THREAD__ |
| # endif |
| #endif |
| |
| #if defined(__SANITIZE_THREAD__) |
| # include <sanitizer/tsan_interface.h> |
| # define TSAN_FAKE_UNLOCK(x) __tsan_mutex_pre_unlock((x), 0); \ |
| __tsan_mutex_post_unlock((x), 0) |
| |
| # define TSAN_FAKE_LOCK(x) __tsan_mutex_pre_lock((x), 0); \ |
| __tsan_mutex_post_lock((x), 0, 0) |
| #else |
| # define TSAN_FAKE_UNLOCK(x) |
| # define TSAN_FAKE_LOCK(x) |
| #endif |
| |
| #if defined(__sun) |
| # include <atomic.h> |
| #endif |
| |
| #if defined(__apple_build_version__) && __apple_build_version__ < 6000000 |
| /* |
| * OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and |
| * __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free() |
| * rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))). |
| * All of this makes impossible to use __atomic_is_lock_free here. |
| * |
| * See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760 |
| */ |
| # define BROKEN_CLANG_ATOMICS |
| #endif |
| |
| #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS) |
| |
| # if defined(OPENSSL_SYS_UNIX) |
| # include <sys/types.h> |
| # include <unistd.h> |
| # endif |
| |
| # include <assert.h> |
| |
| /* |
| * The Non-Stop KLT thread model currently seems broken in its rwlock |
| * implementation |
| */ |
| # if defined(PTHREAD_RWLOCK_INITIALIZER) && !defined(_KLT_MODEL_) |
| # define USE_RWLOCK |
| # endif |
| |
| /* |
| * For all GNU/clang atomic builtins, we also need fallbacks, to cover all |
| * other compilers. |
| |
| * Unfortunately, we can't do that with some "generic type", because there's no |
| * guarantee that the chosen generic type is large enough to cover all cases. |
| * Therefore, we implement fallbacks for each applicable type, with composed |
| * names that include the type they handle. |
| * |
| * (an anecdote: we previously tried to use |void *| as the generic type, with |
| * the thought that the pointer itself is the largest type. However, this is |
| * not true on 32-bit pointer platforms, as a |uint64_t| is twice as large) |
| * |
| * All applicable ATOMIC_ macros take the intended type as first parameter, so |
| * they can map to the correct fallback function. In the GNU/clang case, that |
| * parameter is simply ignored. |
| */ |
| |
| /* |
| * Internal types used with the ATOMIC_ macros, to make it possible to compose |
| * fallback function names. |
| */ |
| typedef void *pvoid; |
| |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \ |
| && !defined(USE_ATOMIC_FALLBACKS) |
| # define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o) |
| # define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o) |
| # define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o) |
| # define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o) |
| # define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o) |
| # else |
| static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER; |
| |
| # define IMPL_fallback_atomic_load_n(t) \ |
| static ossl_inline t fallback_atomic_load_n_##t(t *p) \ |
| { \ |
| t ret; \ |
| \ |
| pthread_mutex_lock(&atomic_sim_lock); \ |
| ret = *p; \ |
| pthread_mutex_unlock(&atomic_sim_lock); \ |
| return ret; \ |
| } |
| IMPL_fallback_atomic_load_n(uint32_t) |
| IMPL_fallback_atomic_load_n(uint64_t) |
| IMPL_fallback_atomic_load_n(pvoid) |
| |
| # define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p) |
| |
| # define IMPL_fallback_atomic_store_n(t) \ |
| static ossl_inline t fallback_atomic_store_n_##t(t *p, t v) \ |
| { \ |
| t ret; \ |
| \ |
| pthread_mutex_lock(&atomic_sim_lock); \ |
| ret = *p; \ |
| *p = v; \ |
| pthread_mutex_unlock(&atomic_sim_lock); \ |
| return ret; \ |
| } |
| IMPL_fallback_atomic_store_n(uint32_t) |
| |
| # define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v) |
| |
| # define IMPL_fallback_atomic_store(t) \ |
| static ossl_inline void fallback_atomic_store_##t(t *p, t *v) \ |
| { \ |
| pthread_mutex_lock(&atomic_sim_lock); \ |
| *p = *v; \ |
| pthread_mutex_unlock(&atomic_sim_lock); \ |
| } |
| IMPL_fallback_atomic_store(pvoid) |
| |
| # define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v) |
| |
| /* |
| * The fallbacks that follow don't need any per type implementation, as |
| * they are designed for uint64_t only. If there comes a time when multiple |
| * types need to be covered, it's relatively easy to refactor them the same |
| * way as the fallbacks above. |
| */ |
| |
| static ossl_inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v) |
| { |
| uint64_t ret; |
| |
| pthread_mutex_lock(&atomic_sim_lock); |
| *p += v; |
| ret = *p; |
| pthread_mutex_unlock(&atomic_sim_lock); |
| return ret; |
| } |
| |
| # define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v) |
| |
| static ossl_inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v) |
| { |
| uint64_t ret; |
| |
| pthread_mutex_lock(&atomic_sim_lock); |
| *p -= v; |
| ret = *p; |
| pthread_mutex_unlock(&atomic_sim_lock); |
| return ret; |
| } |
| |
| # define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v) |
| # endif |
| |
| /* |
| * This is the core of an rcu lock. It tracks the readers and writers for the |
| * current quiescence point for a given lock. Users is the 64 bit value that |
| * stores the READERS/ID as defined above |
| * |
| */ |
| struct rcu_qp { |
| uint64_t users; |
| }; |
| |
| struct thread_qp { |
| struct rcu_qp *qp; |
| unsigned int depth; |
| CRYPTO_RCU_LOCK *lock; |
| }; |
| |
| # define MAX_QPS 10 |
| /* |
| * This is the per thread tracking data |
| * that is assigned to each thread participating |
| * in an rcu qp |
| * |
| * qp points to the qp that it last acquired |
| * |
| */ |
| struct rcu_thr_data { |
| struct thread_qp thread_qps[MAX_QPS]; |
| }; |
| |
| /* |
| * This is the internal version of a CRYPTO_RCU_LOCK |
| * it is cast from CRYPTO_RCU_LOCK |
| */ |
| struct rcu_lock_st { |
| /* Callbacks to call for next ossl_synchronize_rcu */ |
| struct rcu_cb_item *cb_items; |
| |
| /* The context we are being created against */ |
| OSSL_LIB_CTX *ctx; |
| |
| /* Array of quiescent points for synchronization */ |
| struct rcu_qp *qp_group; |
| |
| /* rcu generation counter for in-order retirement */ |
| uint32_t id_ctr; |
| |
| /* Number of elements in qp_group array */ |
| uint32_t group_count; |
| |
| /* Index of the current qp in the qp_group array */ |
| uint32_t reader_idx; |
| |
| /* value of the next id_ctr value to be retired */ |
| uint32_t next_to_retire; |
| |
| /* index of the next free rcu_qp in the qp_group */ |
| uint32_t current_alloc_idx; |
| |
| /* number of qp's in qp_group array currently being retired */ |
| uint32_t writers_alloced; |
| |
| /* lock protecting write side operations */ |
| pthread_mutex_t write_lock; |
| |
| /* lock protecting updates to writers_alloced/current_alloc_idx */ |
| pthread_mutex_t alloc_lock; |
| |
| /* signal to wake threads waiting on alloc_lock */ |
| pthread_cond_t alloc_signal; |
| |
| /* lock to enforce in-order retirement */ |
| pthread_mutex_t prior_lock; |
| |
| /* signal to wake threads waiting on prior_lock */ |
| pthread_cond_t prior_signal; |
| }; |
| |
| /* Read side acquisition of the current qp */ |
| static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock) |
| { |
| uint32_t qp_idx; |
| |
| /* get the current qp index */ |
| for (;;) { |
| qp_idx = ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_RELAXED); |
| |
| /* |
| * Notes on use of __ATOMIC_ACQUIRE |
| * We need to ensure the following: |
| * 1) That subsequent operations aren't optimized by hoisting them above |
| * this operation. Specifically, we don't want the below re-load of |
| * qp_idx to get optimized away |
| * 2) We want to ensure that any updating of reader_idx on the write side |
| * of the lock is flushed from a local cpu cache so that we see any |
| * updates prior to the load. This is a non-issue on cache coherent |
| * systems like x86, but is relevant on other arches |
| */ |
| ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1, |
| __ATOMIC_ACQUIRE); |
| |
| /* if the idx hasn't changed, we're good, else try again */ |
| if (qp_idx == ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, |
| __ATOMIC_RELAXED)) |
| break; |
| |
| ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1, |
| __ATOMIC_RELAXED); |
| } |
| |
| return &lock->qp_group[qp_idx]; |
| } |
| |
| static void ossl_rcu_free_local_data(void *arg) |
| { |
| OSSL_LIB_CTX *ctx = arg; |
| CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx); |
| struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey); |
| |
| OPENSSL_free(data); |
| CRYPTO_THREAD_set_local(lkey, NULL); |
| } |
| |
| void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock) |
| { |
| struct rcu_thr_data *data; |
| int i, available_qp = -1; |
| CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx); |
| |
| /* |
| * we're going to access current_qp here so ask the |
| * processor to fetch it |
| */ |
| data = CRYPTO_THREAD_get_local(lkey); |
| |
| if (data == NULL) { |
| data = OPENSSL_zalloc(sizeof(*data)); |
| OPENSSL_assert(data != NULL); |
| CRYPTO_THREAD_set_local(lkey, data); |
| ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data); |
| } |
| |
| for (i = 0; i < MAX_QPS; i++) { |
| if (data->thread_qps[i].qp == NULL && available_qp == -1) |
| available_qp = i; |
| /* If we have a hold on this lock already, we're good */ |
| if (data->thread_qps[i].lock == lock) { |
| data->thread_qps[i].depth++; |
| return; |
| } |
| } |
| |
| /* |
| * if we get here, then we don't have a hold on this lock yet |
| */ |
| assert(available_qp != -1); |
| |
| data->thread_qps[available_qp].qp = get_hold_current_qp(lock); |
| data->thread_qps[available_qp].depth = 1; |
| data->thread_qps[available_qp].lock = lock; |
| } |
| |
| void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock) |
| { |
| int i; |
| CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx); |
| struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey); |
| uint64_t ret; |
| |
| assert(data != NULL); |
| |
| for (i = 0; i < MAX_QPS; i++) { |
| if (data->thread_qps[i].lock == lock) { |
| /* |
| * we have to use __ATOMIC_RELEASE here |
| * to ensure that all preceding read instructions complete |
| * before the decrement is visible to ossl_synchronize_rcu |
| */ |
| data->thread_qps[i].depth--; |
| if (data->thread_qps[i].depth == 0) { |
| ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users, |
| (uint64_t)1, __ATOMIC_RELEASE); |
| OPENSSL_assert(ret != UINT64_MAX); |
| data->thread_qps[i].qp = NULL; |
| data->thread_qps[i].lock = NULL; |
| } |
| return; |
| } |
| } |
| /* |
| * If we get here, we're trying to unlock a lock that we never acquired - |
| * that's fatal. |
| */ |
| assert(0); |
| } |
| |
| /* |
| * Write side allocation routine to get the current qp |
| * and replace it with a new one |
| */ |
| static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock, uint32_t *curr_id) |
| { |
| uint32_t current_idx; |
| |
| pthread_mutex_lock(&lock->alloc_lock); |
| |
| /* |
| * we need at least one qp to be available with one |
| * left over, so that readers can start working on |
| * one that isn't yet being waited on |
| */ |
| while (lock->group_count - lock->writers_alloced < 2) |
| /* we have to wait for one to be free */ |
| pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock); |
| |
| current_idx = lock->current_alloc_idx; |
| |
| /* Allocate the qp */ |
| lock->writers_alloced++; |
| |
| /* increment the allocation index */ |
| lock->current_alloc_idx = |
| (lock->current_alloc_idx + 1) % lock->group_count; |
| |
| *curr_id = lock->id_ctr; |
| lock->id_ctr++; |
| |
| ATOMIC_STORE_N(uint32_t, &lock->reader_idx, lock->current_alloc_idx, |
| __ATOMIC_RELAXED); |
| |
| /* |
| * this should make sure that the new value of reader_idx is visible in |
| * get_hold_current_qp, directly after incrementing the users count |
| */ |
| ATOMIC_ADD_FETCH(&lock->qp_group[current_idx].users, (uint64_t)0, |
| __ATOMIC_RELEASE); |
| |
| /* wake up any waiters */ |
| pthread_cond_signal(&lock->alloc_signal); |
| pthread_mutex_unlock(&lock->alloc_lock); |
| return &lock->qp_group[current_idx]; |
| } |
| |
| static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp) |
| { |
| pthread_mutex_lock(&lock->alloc_lock); |
| lock->writers_alloced--; |
| pthread_cond_signal(&lock->alloc_signal); |
| pthread_mutex_unlock(&lock->alloc_lock); |
| } |
| |
| static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock, |
| uint32_t count) |
| { |
| struct rcu_qp *new = |
| OPENSSL_zalloc(sizeof(*new) * count); |
| |
| lock->group_count = count; |
| return new; |
| } |
| |
| void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock) |
| { |
| pthread_mutex_lock(&lock->write_lock); |
| TSAN_FAKE_UNLOCK(&lock->write_lock); |
| } |
| |
| void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock) |
| { |
| TSAN_FAKE_LOCK(&lock->write_lock); |
| pthread_mutex_unlock(&lock->write_lock); |
| } |
| |
| void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock) |
| { |
| struct rcu_qp *qp; |
| uint64_t count; |
| uint32_t curr_id; |
| struct rcu_cb_item *cb_items, *tmpcb; |
| |
| pthread_mutex_lock(&lock->write_lock); |
| cb_items = lock->cb_items; |
| lock->cb_items = NULL; |
| pthread_mutex_unlock(&lock->write_lock); |
| |
| qp = update_qp(lock, &curr_id); |
| |
| /* retire in order */ |
| pthread_mutex_lock(&lock->prior_lock); |
| while (lock->next_to_retire != curr_id) |
| pthread_cond_wait(&lock->prior_signal, &lock->prior_lock); |
| |
| /* |
| * wait for the reader count to reach zero |
| * Note the use of __ATOMIC_ACQUIRE here to ensure that any |
| * prior __ATOMIC_RELEASE write operation in ossl_rcu_read_unlock |
| * is visible prior to our read |
| * however this is likely just necessary to silence a tsan warning |
| * because the read side should not do any write operation |
| * outside the atomic itself |
| */ |
| do { |
| count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE); |
| } while (count != (uint64_t)0); |
| |
| lock->next_to_retire++; |
| pthread_cond_broadcast(&lock->prior_signal); |
| pthread_mutex_unlock(&lock->prior_lock); |
| |
| retire_qp(lock, qp); |
| |
| /* handle any callbacks that we have */ |
| while (cb_items != NULL) { |
| tmpcb = cb_items; |
| cb_items = cb_items->next; |
| tmpcb->fn(tmpcb->data); |
| OPENSSL_free(tmpcb); |
| } |
| } |
| |
| /* |
| * Note: This call assumes its made under the protection of |
| * ossl_rcu_write_lock |
| */ |
| int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data) |
| { |
| struct rcu_cb_item *new = |
| OPENSSL_zalloc(sizeof(*new)); |
| |
| if (new == NULL) |
| return 0; |
| |
| new->data = data; |
| new->fn = cb; |
| |
| new->next = lock->cb_items; |
| lock->cb_items = new; |
| |
| return 1; |
| } |
| |
| void *ossl_rcu_uptr_deref(void **p) |
| { |
| return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE); |
| } |
| |
| void ossl_rcu_assign_uptr(void **p, void **v) |
| { |
| ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE); |
| } |
| |
| CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx) |
| { |
| struct rcu_lock_st *new; |
| |
| /* |
| * We need a minimum of 2 qp's |
| */ |
| if (num_writers < 2) |
| num_writers = 2; |
| |
| ctx = ossl_lib_ctx_get_concrete(ctx); |
| if (ctx == NULL) |
| return 0; |
| |
| new = OPENSSL_zalloc(sizeof(*new)); |
| if (new == NULL) |
| return NULL; |
| |
| new->ctx = ctx; |
| pthread_mutex_init(&new->write_lock, NULL); |
| pthread_mutex_init(&new->prior_lock, NULL); |
| pthread_mutex_init(&new->alloc_lock, NULL); |
| pthread_cond_init(&new->prior_signal, NULL); |
| pthread_cond_init(&new->alloc_signal, NULL); |
| |
| new->qp_group = allocate_new_qp_group(new, num_writers); |
| if (new->qp_group == NULL) { |
| OPENSSL_free(new); |
| new = NULL; |
| } |
| |
| return new; |
| } |
| |
| void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock) |
| { |
| struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock; |
| |
| if (lock == NULL) |
| return; |
| |
| /* make sure we're synchronized */ |
| ossl_synchronize_rcu(rlock); |
| |
| OPENSSL_free(rlock->qp_group); |
| /* There should only be a single qp left now */ |
| OPENSSL_free(rlock); |
| } |
| |
| CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void) |
| { |
| # ifdef USE_RWLOCK |
| CRYPTO_RWLOCK *lock; |
| |
| if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL) |
| /* Don't set error, to avoid recursion blowup. */ |
| return NULL; |
| |
| if (pthread_rwlock_init(lock, NULL) != 0) { |
| OPENSSL_free(lock); |
| return NULL; |
| } |
| # else |
| pthread_mutexattr_t attr; |
| CRYPTO_RWLOCK *lock; |
| |
| if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL) |
| /* Don't set error, to avoid recursion blowup. */ |
| return NULL; |
| |
| /* |
| * We don't use recursive mutexes, but try to catch errors if we do. |
| */ |
| pthread_mutexattr_init(&attr); |
| # if !defined (__TANDEM) && !defined (_SPT_MODEL_) |
| # if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK) |
| pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK); |
| # endif |
| # else |
| /* The SPT Thread Library does not define MUTEX attributes. */ |
| # endif |
| |
| if (pthread_mutex_init(lock, &attr) != 0) { |
| pthread_mutexattr_destroy(&attr); |
| OPENSSL_free(lock); |
| return NULL; |
| } |
| |
| pthread_mutexattr_destroy(&attr); |
| # endif |
| |
| return lock; |
| } |
| |
| __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock) |
| { |
| # ifdef USE_RWLOCK |
| if (!ossl_assert(pthread_rwlock_rdlock(lock) == 0)) |
| return 0; |
| # else |
| if (pthread_mutex_lock(lock) != 0) { |
| assert(errno != EDEADLK && errno != EBUSY); |
| return 0; |
| } |
| # endif |
| |
| return 1; |
| } |
| |
| __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock) |
| { |
| # ifdef USE_RWLOCK |
| if (!ossl_assert(pthread_rwlock_wrlock(lock) == 0)) |
| return 0; |
| # else |
| if (pthread_mutex_lock(lock) != 0) { |
| assert(errno != EDEADLK && errno != EBUSY); |
| return 0; |
| } |
| # endif |
| |
| return 1; |
| } |
| |
| int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock) |
| { |
| # ifdef USE_RWLOCK |
| if (pthread_rwlock_unlock(lock) != 0) |
| return 0; |
| # else |
| if (pthread_mutex_unlock(lock) != 0) { |
| assert(errno != EPERM); |
| return 0; |
| } |
| # endif |
| |
| return 1; |
| } |
| |
| void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock) |
| { |
| if (lock == NULL) |
| return; |
| |
| # ifdef USE_RWLOCK |
| pthread_rwlock_destroy(lock); |
| # else |
| pthread_mutex_destroy(lock); |
| # endif |
| OPENSSL_free(lock); |
| |
| return; |
| } |
| |
| int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void)) |
| { |
| if (pthread_once(once, init) != 0) |
| return 0; |
| |
| return 1; |
| } |
| |
| int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *)) |
| { |
| if (pthread_key_create(key, cleanup) != 0) |
| return 0; |
| |
| return 1; |
| } |
| |
| void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key) |
| { |
| return pthread_getspecific(*key); |
| } |
| |
| int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val) |
| { |
| if (pthread_setspecific(*key, val) != 0) |
| return 0; |
| |
| return 1; |
| } |
| |
| int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key) |
| { |
| if (pthread_key_delete(*key) != 0) |
| return 0; |
| |
| return 1; |
| } |
| |
| CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void) |
| { |
| return pthread_self(); |
| } |
| |
| int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b) |
| { |
| return pthread_equal(a, b); |
| } |
| |
| int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock) |
| { |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
| if (__atomic_is_lock_free(sizeof(*val), val)) { |
| *ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL); |
| return 1; |
| } |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
| /* This will work for all future Solaris versions. */ |
| if (ret != NULL) { |
| *ret = atomic_add_int_nv((volatile unsigned int *)val, amount); |
| return 1; |
| } |
| # endif |
| if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
| return 0; |
| |
| *val += amount; |
| *ret = *val; |
| |
| if (!CRYPTO_THREAD_unlock(lock)) |
| return 0; |
| |
| return 1; |
| } |
| |
| int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret, |
| CRYPTO_RWLOCK *lock) |
| { |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
| if (__atomic_is_lock_free(sizeof(*val), val)) { |
| *ret = __atomic_add_fetch(val, op, __ATOMIC_ACQ_REL); |
| return 1; |
| } |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
| /* This will work for all future Solaris versions. */ |
| if (ret != NULL) { |
| *ret = atomic_add_64_nv(val, op); |
| return 1; |
| } |
| # endif |
| if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
| return 0; |
| *val += op; |
| *ret = *val; |
| |
| if (!CRYPTO_THREAD_unlock(lock)) |
| return 0; |
| |
| return 1; |
| } |
| |
| int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret, |
| CRYPTO_RWLOCK *lock) |
| { |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
| if (__atomic_is_lock_free(sizeof(*val), val)) { |
| *ret = __atomic_and_fetch(val, op, __ATOMIC_ACQ_REL); |
| return 1; |
| } |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
| /* This will work for all future Solaris versions. */ |
| if (ret != NULL) { |
| *ret = atomic_and_64_nv(val, op); |
| return 1; |
| } |
| # endif |
| if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
| return 0; |
| *val &= op; |
| *ret = *val; |
| |
| if (!CRYPTO_THREAD_unlock(lock)) |
| return 0; |
| |
| return 1; |
| } |
| |
| int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret, |
| CRYPTO_RWLOCK *lock) |
| { |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
| if (__atomic_is_lock_free(sizeof(*val), val)) { |
| *ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL); |
| return 1; |
| } |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
| /* This will work for all future Solaris versions. */ |
| if (ret != NULL) { |
| *ret = atomic_or_64_nv(val, op); |
| return 1; |
| } |
| # endif |
| if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
| return 0; |
| *val |= op; |
| *ret = *val; |
| |
| if (!CRYPTO_THREAD_unlock(lock)) |
| return 0; |
| |
| return 1; |
| } |
| |
| int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock) |
| { |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
| if (__atomic_is_lock_free(sizeof(*val), val)) { |
| __atomic_load(val, ret, __ATOMIC_ACQUIRE); |
| return 1; |
| } |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
| /* This will work for all future Solaris versions. */ |
| if (ret != NULL) { |
| *ret = atomic_or_64_nv(val, 0); |
| return 1; |
| } |
| # endif |
| if (lock == NULL || !CRYPTO_THREAD_read_lock(lock)) |
| return 0; |
| *ret = *val; |
| if (!CRYPTO_THREAD_unlock(lock)) |
| return 0; |
| |
| return 1; |
| } |
| |
| int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock) |
| { |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
| if (__atomic_is_lock_free(sizeof(*dst), dst)) { |
| __atomic_store(dst, &val, __ATOMIC_RELEASE); |
| return 1; |
| } |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
| /* This will work for all future Solaris versions. */ |
| if (dst != NULL) { |
| atomic_swap_64(dst, val); |
| return 1; |
| } |
| # endif |
| if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
| return 0; |
| *dst = val; |
| if (!CRYPTO_THREAD_unlock(lock)) |
| return 0; |
| |
| return 1; |
| } |
| |
| int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock) |
| { |
| # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS) |
| if (__atomic_is_lock_free(sizeof(*val), val)) { |
| __atomic_load(val, ret, __ATOMIC_ACQUIRE); |
| return 1; |
| } |
| # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11)) |
| /* This will work for all future Solaris versions. */ |
| if (ret != NULL) { |
| *ret = (int)atomic_or_uint_nv((unsigned int *)val, 0); |
| return 1; |
| } |
| # endif |
| if (lock == NULL || !CRYPTO_THREAD_read_lock(lock)) |
| return 0; |
| *ret = *val; |
| if (!CRYPTO_THREAD_unlock(lock)) |
| return 0; |
| |
| return 1; |
| } |
| |
| # ifndef FIPS_MODULE |
| int openssl_init_fork_handlers(void) |
| { |
| return 1; |
| } |
| # endif /* FIPS_MODULE */ |
| |
| int openssl_get_fork_id(void) |
| { |
| return getpid(); |
| } |
| #endif |