| /* |
| * Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #if defined(_WIN32) |
| # include <windows.h> |
| # if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x600 |
| # define USE_RWLOCK |
| # endif |
| #endif |
| #include <assert.h> |
| |
| /* |
| * VC++ 2008 or earlier x86 compilers do not have an inline implementation |
| * of InterlockedOr64 for 32bit and will fail to run on Windows XP 32bit. |
| * https://docs.microsoft.com/en-us/cpp/intrinsics/interlockedor-intrinsic-functions#requirements |
| * To work around this problem, we implement a manual locking mechanism for |
| * only VC++ 2008 or earlier x86 compilers. |
| */ |
| |
| #if ((defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER <= 1600) || (defined(__MINGW32__) && !defined(__MINGW64__))) |
| # define NO_INTERLOCKEDOR64 |
| #endif |
| |
| #include <openssl/crypto.h> |
| #include <crypto/cryptlib.h> |
| #include "internal/common.h" |
| #include "internal/thread_arch.h" |
| #include "internal/rcu.h" |
| #include "rcu_internal.h" |
| |
| #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && defined(OPENSSL_SYS_WINDOWS) |
| |
| # ifdef USE_RWLOCK |
| typedef struct { |
| SRWLOCK lock; |
| int exclusive; |
| } CRYPTO_win_rwlock; |
| # endif |
| |
| /* |
| * This defines a quescent point (qp) |
| * This is the barrier beyond which a writer |
| * must wait before freeing data that was |
| * atomically updated |
| */ |
| struct rcu_qp { |
| volatile uint64_t users; |
| }; |
| |
| struct thread_qp { |
| struct rcu_qp *qp; |
| unsigned int depth; |
| CRYPTO_RCU_LOCK *lock; |
| }; |
| |
| # define MAX_QPS 10 |
| /* |
| * This is the per thread tracking data |
| * that is assigned to each thread participating |
| * in an rcu qp |
| * |
| * qp points to the qp that it last acquired |
| * |
| */ |
| struct rcu_thr_data { |
| struct thread_qp thread_qps[MAX_QPS]; |
| }; |
| |
| /* |
| * This is the internal version of a CRYPTO_RCU_LOCK |
| * it is cast from CRYPTO_RCU_LOCK |
| */ |
| struct rcu_lock_st { |
| /* Callbacks to call for next ossl_synchronize_rcu */ |
| struct rcu_cb_item *cb_items; |
| |
| /* The context we are being created against */ |
| OSSL_LIB_CTX *ctx; |
| |
| /* Array of quiescent points for synchronization */ |
| struct rcu_qp *qp_group; |
| |
| /* rcu generation counter for in-order retirement */ |
| uint32_t id_ctr; |
| |
| /* Number of elements in qp_group array */ |
| uint32_t group_count; |
| |
| /* Index of the current qp in the qp_group array */ |
| uint32_t reader_idx; |
| |
| /* value of the next id_ctr value to be retired */ |
| uint32_t next_to_retire; |
| |
| /* index of the next free rcu_qp in the qp_group */ |
| uint32_t current_alloc_idx; |
| |
| /* number of qp's in qp_group array currently being retired */ |
| uint32_t writers_alloced; |
| |
| /* lock protecting write side operations */ |
| CRYPTO_MUTEX *write_lock; |
| |
| /* lock protecting updates to writers_alloced/current_alloc_idx */ |
| CRYPTO_MUTEX *alloc_lock; |
| |
| /* signal to wake threads waiting on alloc_lock */ |
| CRYPTO_CONDVAR *alloc_signal; |
| |
| /* lock to enforce in-order retirement */ |
| CRYPTO_MUTEX *prior_lock; |
| |
| /* signal to wake threads waiting on prior_lock */ |
| CRYPTO_CONDVAR *prior_signal; |
| |
| /* lock used with NO_INTERLOCKEDOR64: VS2010 x86 */ |
| CRYPTO_RWLOCK *rw_lock; |
| }; |
| |
| static struct rcu_qp *allocate_new_qp_group(struct rcu_lock_st *lock, |
| uint32_t count) |
| { |
| struct rcu_qp *new = |
| OPENSSL_zalloc(sizeof(*new) * count); |
| |
| lock->group_count = count; |
| return new; |
| } |
| |
| CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx) |
| { |
| struct rcu_lock_st *new; |
| |
| /* |
| * We need a minimum of 2 qps |
| */ |
| if (num_writers < 2) |
| num_writers = 2; |
| |
| ctx = ossl_lib_ctx_get_concrete(ctx); |
| if (ctx == NULL) |
| return 0; |
| |
| new = OPENSSL_zalloc(sizeof(*new)); |
| |
| if (new == NULL) |
| return NULL; |
| |
| new->ctx = ctx; |
| new->rw_lock = CRYPTO_THREAD_lock_new(); |
| new->write_lock = ossl_crypto_mutex_new(); |
| new->alloc_signal = ossl_crypto_condvar_new(); |
| new->prior_signal = ossl_crypto_condvar_new(); |
| new->alloc_lock = ossl_crypto_mutex_new(); |
| new->prior_lock = ossl_crypto_mutex_new(); |
| new->qp_group = allocate_new_qp_group(new, num_writers); |
| if (new->qp_group == NULL |
| || new->alloc_signal == NULL |
| || new->prior_signal == NULL |
| || new->write_lock == NULL |
| || new->alloc_lock == NULL |
| || new->prior_lock == NULL |
| || new->rw_lock == NULL) { |
| CRYPTO_THREAD_lock_free(new->rw_lock); |
| OPENSSL_free(new->qp_group); |
| ossl_crypto_condvar_free(&new->alloc_signal); |
| ossl_crypto_condvar_free(&new->prior_signal); |
| ossl_crypto_mutex_free(&new->alloc_lock); |
| ossl_crypto_mutex_free(&new->prior_lock); |
| ossl_crypto_mutex_free(&new->write_lock); |
| OPENSSL_free(new); |
| new = NULL; |
| } |
| |
| return new; |
| |
| } |
| |
| void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock) |
| { |
| CRYPTO_THREAD_lock_free(lock->rw_lock); |
| OPENSSL_free(lock->qp_group); |
| ossl_crypto_condvar_free(&lock->alloc_signal); |
| ossl_crypto_condvar_free(&lock->prior_signal); |
| ossl_crypto_mutex_free(&lock->alloc_lock); |
| ossl_crypto_mutex_free(&lock->prior_lock); |
| ossl_crypto_mutex_free(&lock->write_lock); |
| OPENSSL_free(lock); |
| } |
| |
| /* Read side acquisition of the current qp */ |
| static ossl_inline struct rcu_qp *get_hold_current_qp(CRYPTO_RCU_LOCK *lock) |
| { |
| uint32_t qp_idx; |
| uint32_t tmp; |
| uint64_t tmp64; |
| |
| /* get the current qp index */ |
| for (;;) { |
| CRYPTO_atomic_load_int((int *)&lock->reader_idx, (int *)&qp_idx, |
| lock->rw_lock); |
| CRYPTO_atomic_add64(&lock->qp_group[qp_idx].users, (uint64_t)1, &tmp64, |
| lock->rw_lock); |
| CRYPTO_atomic_load_int((int *)&lock->reader_idx, (int *)&tmp, |
| lock->rw_lock); |
| if (qp_idx == tmp) |
| break; |
| CRYPTO_atomic_add64(&lock->qp_group[qp_idx].users, (uint64_t)-1, &tmp64, |
| lock->rw_lock); |
| } |
| |
| return &lock->qp_group[qp_idx]; |
| } |
| |
| static void ossl_rcu_free_local_data(void *arg) |
| { |
| OSSL_LIB_CTX *ctx = arg; |
| CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx); |
| struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey); |
| OPENSSL_free(data); |
| CRYPTO_THREAD_set_local(lkey, NULL); |
| } |
| |
| void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock) |
| { |
| struct rcu_thr_data *data; |
| int i; |
| int available_qp = -1; |
| CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx); |
| |
| /* |
| * we're going to access current_qp here so ask the |
| * processor to fetch it |
| */ |
| data = CRYPTO_THREAD_get_local(lkey); |
| |
| if (data == NULL) { |
| data = OPENSSL_zalloc(sizeof(*data)); |
| OPENSSL_assert(data != NULL); |
| CRYPTO_THREAD_set_local(lkey, data); |
| ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data); |
| } |
| |
| for (i = 0; i < MAX_QPS; i++) { |
| if (data->thread_qps[i].qp == NULL && available_qp == -1) |
| available_qp = i; |
| /* If we have a hold on this lock already, we're good */ |
| if (data->thread_qps[i].lock == lock) |
| return; |
| } |
| |
| /* |
| * if we get here, then we don't have a hold on this lock yet |
| */ |
| assert(available_qp != -1); |
| |
| data->thread_qps[available_qp].qp = get_hold_current_qp(lock); |
| data->thread_qps[available_qp].depth = 1; |
| data->thread_qps[available_qp].lock = lock; |
| } |
| |
| void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock) |
| { |
| ossl_crypto_mutex_lock(lock->write_lock); |
| } |
| |
| void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock) |
| { |
| ossl_crypto_mutex_unlock(lock->write_lock); |
| } |
| |
| void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock) |
| { |
| CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx); |
| struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey); |
| int i; |
| LONG64 ret; |
| |
| assert(data != NULL); |
| |
| for (i = 0; i < MAX_QPS; i++) { |
| if (data->thread_qps[i].lock == lock) { |
| data->thread_qps[i].depth--; |
| if (data->thread_qps[i].depth == 0) { |
| CRYPTO_atomic_add64(&data->thread_qps[i].qp->users, |
| (uint64_t)-1, (uint64_t *)&ret, |
| lock->rw_lock); |
| OPENSSL_assert(ret >= 0); |
| data->thread_qps[i].qp = NULL; |
| data->thread_qps[i].lock = NULL; |
| } |
| return; |
| } |
| } |
| } |
| |
| /* |
| * Write side allocation routine to get the current qp |
| * and replace it with a new one |
| */ |
| static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock, uint32_t *curr_id) |
| { |
| uint32_t current_idx; |
| uint32_t tmp; |
| |
| ossl_crypto_mutex_lock(lock->alloc_lock); |
| /* |
| * we need at least one qp to be available with one |
| * left over, so that readers can start working on |
| * one that isn't yet being waited on |
| */ |
| while (lock->group_count - lock->writers_alloced < 2) |
| /* we have to wait for one to be free */ |
| ossl_crypto_condvar_wait(lock->alloc_signal, lock->alloc_lock); |
| |
| current_idx = lock->current_alloc_idx; |
| |
| /* Allocate the qp */ |
| lock->writers_alloced++; |
| |
| /* increment the allocation index */ |
| lock->current_alloc_idx = |
| (lock->current_alloc_idx + 1) % lock->group_count; |
| |
| /* get and insert a new id */ |
| *curr_id = lock->id_ctr; |
| lock->id_ctr++; |
| |
| /* update the reader index to be the prior qp */ |
| tmp = lock->current_alloc_idx; |
| # if (defined(NO_INTERLOCKEDOR64)) |
| CRYPTO_THREAD_write_lock(lock->rw_lock); |
| lock->reader_idx = tmp; |
| CRYPTO_THREAD_unlock(lock->rw_lock); |
| # else |
| InterlockedExchange((LONG volatile *)&lock->reader_idx, tmp); |
| # endif |
| |
| /* wake up any waiters */ |
| ossl_crypto_condvar_broadcast(lock->alloc_signal); |
| ossl_crypto_mutex_unlock(lock->alloc_lock); |
| return &lock->qp_group[current_idx]; |
| } |
| |
| static void retire_qp(CRYPTO_RCU_LOCK *lock, |
| struct rcu_qp *qp) |
| { |
| ossl_crypto_mutex_lock(lock->alloc_lock); |
| lock->writers_alloced--; |
| ossl_crypto_condvar_broadcast(lock->alloc_signal); |
| ossl_crypto_mutex_unlock(lock->alloc_lock); |
| } |
| |
| |
| void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock) |
| { |
| struct rcu_qp *qp; |
| uint64_t count; |
| uint32_t curr_id; |
| struct rcu_cb_item *cb_items, *tmpcb; |
| |
| /* before we do anything else, lets grab the cb list */ |
| ossl_crypto_mutex_lock(lock->write_lock); |
| cb_items = lock->cb_items; |
| lock->cb_items = NULL; |
| ossl_crypto_mutex_unlock(lock->write_lock); |
| |
| qp = update_qp(lock, &curr_id); |
| |
| /* retire in order */ |
| ossl_crypto_mutex_lock(lock->prior_lock); |
| while (lock->next_to_retire != curr_id) |
| ossl_crypto_condvar_wait(lock->prior_signal, lock->prior_lock); |
| |
| /* wait for the reader count to reach zero */ |
| do { |
| CRYPTO_atomic_load(&qp->users, &count, lock->rw_lock); |
| } while (count != (uint64_t)0); |
| |
| lock->next_to_retire++; |
| ossl_crypto_condvar_broadcast(lock->prior_signal); |
| ossl_crypto_mutex_unlock(lock->prior_lock); |
| |
| retire_qp(lock, qp); |
| |
| /* handle any callbacks that we have */ |
| while (cb_items != NULL) { |
| tmpcb = cb_items; |
| cb_items = cb_items->next; |
| tmpcb->fn(tmpcb->data); |
| OPENSSL_free(tmpcb); |
| } |
| |
| /* and we're done */ |
| return; |
| |
| } |
| |
| /* |
| * Note, must be called under the protection of ossl_rcu_write_lock |
| */ |
| int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data) |
| { |
| struct rcu_cb_item *new; |
| |
| new = OPENSSL_zalloc(sizeof(struct rcu_cb_item)); |
| if (new == NULL) |
| return 0; |
| new->data = data; |
| new->fn = cb; |
| |
| new->next = lock->cb_items; |
| lock->cb_items = new; |
| |
| return 1; |
| } |
| |
| void *ossl_rcu_uptr_deref(void **p) |
| { |
| return (void *)*p; |
| } |
| |
| void ossl_rcu_assign_uptr(void **p, void **v) |
| { |
| InterlockedExchangePointer((void * volatile *)p, (void *)*v); |
| } |
| |
| |
| CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void) |
| { |
| CRYPTO_RWLOCK *lock; |
| # ifdef USE_RWLOCK |
| CRYPTO_win_rwlock *rwlock; |
| |
| if ((lock = OPENSSL_zalloc(sizeof(CRYPTO_win_rwlock))) == NULL) |
| /* Don't set error, to avoid recursion blowup. */ |
| return NULL; |
| rwlock = lock; |
| InitializeSRWLock(&rwlock->lock); |
| # else |
| |
| if ((lock = OPENSSL_zalloc(sizeof(CRITICAL_SECTION))) == NULL) |
| /* Don't set error, to avoid recursion blowup. */ |
| return NULL; |
| |
| # if !defined(_WIN32_WCE) |
| /* 0x400 is the spin count value suggested in the documentation */ |
| if (!InitializeCriticalSectionAndSpinCount(lock, 0x400)) { |
| OPENSSL_free(lock); |
| return NULL; |
| } |
| # else |
| InitializeCriticalSection(lock); |
| # endif |
| # endif |
| |
| return lock; |
| } |
| |
| __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock) |
| { |
| # ifdef USE_RWLOCK |
| CRYPTO_win_rwlock *rwlock = lock; |
| |
| AcquireSRWLockShared(&rwlock->lock); |
| # else |
| EnterCriticalSection(lock); |
| # endif |
| return 1; |
| } |
| |
| __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock) |
| { |
| # ifdef USE_RWLOCK |
| CRYPTO_win_rwlock *rwlock = lock; |
| |
| AcquireSRWLockExclusive(&rwlock->lock); |
| rwlock->exclusive = 1; |
| # else |
| EnterCriticalSection(lock); |
| # endif |
| return 1; |
| } |
| |
| int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock) |
| { |
| # ifdef USE_RWLOCK |
| CRYPTO_win_rwlock *rwlock = lock; |
| |
| if (rwlock->exclusive) { |
| rwlock->exclusive = 0; |
| ReleaseSRWLockExclusive(&rwlock->lock); |
| } else { |
| ReleaseSRWLockShared(&rwlock->lock); |
| } |
| # else |
| LeaveCriticalSection(lock); |
| # endif |
| return 1; |
| } |
| |
| void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock) |
| { |
| if (lock == NULL) |
| return; |
| |
| # ifndef USE_RWLOCK |
| DeleteCriticalSection(lock); |
| # endif |
| OPENSSL_free(lock); |
| |
| return; |
| } |
| |
| # define ONCE_UNINITED 0 |
| # define ONCE_ININIT 1 |
| # define ONCE_DONE 2 |
| |
| /* |
| * We don't use InitOnceExecuteOnce because that isn't available in WinXP which |
| * we still have to support. |
| */ |
| int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void)) |
| { |
| LONG volatile *lock = (LONG *)once; |
| LONG result; |
| |
| if (*lock == ONCE_DONE) |
| return 1; |
| |
| do { |
| result = InterlockedCompareExchange(lock, ONCE_ININIT, ONCE_UNINITED); |
| if (result == ONCE_UNINITED) { |
| init(); |
| *lock = ONCE_DONE; |
| return 1; |
| } |
| } while (result == ONCE_ININIT); |
| |
| return (*lock == ONCE_DONE); |
| } |
| |
| int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *)) |
| { |
| *key = TlsAlloc(); |
| if (*key == TLS_OUT_OF_INDEXES) |
| return 0; |
| |
| return 1; |
| } |
| |
| void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key) |
| { |
| DWORD last_error; |
| void *ret; |
| |
| /* |
| * TlsGetValue clears the last error even on success, so that callers may |
| * distinguish it successfully returning NULL or failing. It is documented |
| * to never fail if the argument is a valid index from TlsAlloc, so we do |
| * not need to handle this. |
| * |
| * However, this error-mangling behavior interferes with the caller's use of |
| * GetLastError. In particular SSL_get_error queries the error queue to |
| * determine whether the caller should look at the OS's errors. To avoid |
| * destroying state, save and restore the Windows error. |
| * |
| * https://msdn.microsoft.com/en-us/library/windows/desktop/ms686812(v=vs.85).aspx |
| */ |
| last_error = GetLastError(); |
| ret = TlsGetValue(*key); |
| SetLastError(last_error); |
| return ret; |
| } |
| |
| int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val) |
| { |
| if (TlsSetValue(*key, val) == 0) |
| return 0; |
| |
| return 1; |
| } |
| |
| int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key) |
| { |
| if (TlsFree(*key) == 0) |
| return 0; |
| |
| return 1; |
| } |
| |
| CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void) |
| { |
| return GetCurrentThreadId(); |
| } |
| |
| int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b) |
| { |
| return (a == b); |
| } |
| |
| int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock) |
| { |
| # if (defined(NO_INTERLOCKEDOR64)) |
| if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
| return 0; |
| *val += amount; |
| *ret = *val; |
| |
| if (!CRYPTO_THREAD_unlock(lock)) |
| return 0; |
| |
| return 1; |
| # else |
| *ret = (int)InterlockedExchangeAdd((LONG volatile *)val, (LONG)amount) |
| + amount; |
| return 1; |
| # endif |
| } |
| |
| int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret, |
| CRYPTO_RWLOCK *lock) |
| { |
| # if (defined(NO_INTERLOCKEDOR64)) |
| if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
| return 0; |
| *val += op; |
| *ret = *val; |
| |
| if (!CRYPTO_THREAD_unlock(lock)) |
| return 0; |
| |
| return 1; |
| # else |
| *ret = (uint64_t)InterlockedAdd64((LONG64 volatile *)val, (LONG64)op); |
| return 1; |
| # endif |
| } |
| |
| int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret, |
| CRYPTO_RWLOCK *lock) |
| { |
| # if (defined(NO_INTERLOCKEDOR64)) |
| if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
| return 0; |
| *val &= op; |
| *ret = *val; |
| |
| if (!CRYPTO_THREAD_unlock(lock)) |
| return 0; |
| |
| return 1; |
| # else |
| *ret = (uint64_t)InterlockedAnd64((LONG64 volatile *)val, (LONG64)op) & op; |
| return 1; |
| # endif |
| } |
| |
| int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret, |
| CRYPTO_RWLOCK *lock) |
| { |
| # if (defined(NO_INTERLOCKEDOR64)) |
| if (lock == NULL || !CRYPTO_THREAD_write_lock(lock)) |
| return 0; |
| *val |= op; |
| *ret = *val; |
| |
| if (!CRYPTO_THREAD_unlock(lock)) |
| return 0; |
| |
| return 1; |
| # else |
| *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, (LONG64)op) | op; |
| return 1; |
| # endif |
| } |
| |
| int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock) |
| { |
| # if (defined(NO_INTERLOCKEDOR64)) |
| if (lock == NULL || !CRYPTO_THREAD_read_lock(lock)) |
| return 0; |
| *ret = *val; |
| if (!CRYPTO_THREAD_unlock(lock)) |
| return 0; |
| |
| return 1; |
| # else |
| *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, 0); |
| return 1; |
| # endif |
| } |
| |
| int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock) |
| { |
| # if (defined(NO_INTERLOCKEDOR64)) |
| if (lock == NULL || !CRYPTO_THREAD_read_lock(lock)) |
| return 0; |
| *dst = val; |
| if (!CRYPTO_THREAD_unlock(lock)) |
| return 0; |
| |
| return 1; |
| # else |
| InterlockedExchange64(dst, val); |
| return 1; |
| # endif |
| } |
| |
| int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock) |
| { |
| # if (defined(NO_INTERLOCKEDOR64)) |
| if (lock == NULL || !CRYPTO_THREAD_read_lock(lock)) |
| return 0; |
| *ret = *val; |
| if (!CRYPTO_THREAD_unlock(lock)) |
| return 0; |
| |
| return 1; |
| # else |
| /* On Windows, LONG (but not long) is always the same size as int. */ |
| *ret = (int)InterlockedOr((LONG volatile *)val, 0); |
| return 1; |
| # endif |
| } |
| |
| int openssl_init_fork_handlers(void) |
| { |
| return 0; |
| } |
| |
| int openssl_get_fork_id(void) |
| { |
| return 0; |
| } |
| #endif |