| // Copyright (C) 2021 The Android Open Source Project |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| |
| import {searchSegment} from '../../base/binary_search'; |
| import {duration, Time, time} from '../../base/time'; |
| import {Actions} from '../../common/actions'; |
| import {colorForSample} from '../../common/colorizer'; |
| import {TrackData} from '../../common/track_data'; |
| import {TimelineFetcher} from '../../common/track_helper'; |
| import {globals} from '../../frontend/globals'; |
| import {PanelSize} from '../../frontend/panel'; |
| import {TimeScale} from '../../frontend/time_scale'; |
| import { |
| EngineProxy, |
| Plugin, |
| PluginContext, |
| PluginContextTrace, |
| PluginDescriptor, |
| Track, |
| } from '../../public'; |
| import { |
| LONG, |
| NUM, |
| NUM_NULL, |
| STR_NULL, |
| } from '../../trace_processor/query_result'; |
| |
| const BAR_HEIGHT = 3; |
| const MARGIN_TOP = 4.5; |
| const RECT_HEIGHT = 30.5; |
| |
| export const CPU_PROFILE_TRACK_KIND = 'CpuProfileTrack'; |
| |
| interface Data extends TrackData { |
| ids: Float64Array; |
| tsStarts: BigInt64Array; |
| callsiteId: Uint32Array; |
| } |
| |
| class CpuProfileTrack implements Track { |
| private centerY = this.getHeight() / 2 + BAR_HEIGHT; |
| private markerWidth = (this.getHeight() - MARGIN_TOP - BAR_HEIGHT) / 2; |
| private hoveredTs: time|undefined = undefined; |
| private fetcher = new TimelineFetcher<Data>(this.onBoundsChange.bind(this)); |
| private engine: EngineProxy; |
| private utid: number; |
| |
| constructor(engine: EngineProxy, utid: number) { |
| this.engine = engine; |
| this.utid = utid; |
| } |
| |
| async onUpdate(): Promise<void> { |
| await this.fetcher.requestDataForCurrentTime(); |
| } |
| |
| async onBoundsChange(start: time, end: time, resolution: duration): |
| Promise<Data> { |
| const query = `select |
| id, |
| ts, |
| callsite_id as callsiteId |
| from cpu_profile_stack_sample |
| where utid = ${this.utid} |
| order by ts`; |
| |
| const result = await this.engine.query(query); |
| const numRows = result.numRows(); |
| const data: Data = { |
| start, |
| end, |
| resolution, |
| length: numRows, |
| ids: new Float64Array(numRows), |
| tsStarts: new BigInt64Array(numRows), |
| callsiteId: new Uint32Array(numRows), |
| }; |
| |
| const it = result.iter({id: NUM, ts: LONG, callsiteId: NUM}); |
| for (let row = 0; it.valid(); it.next(), ++row) { |
| data.ids[row] = it.id; |
| data.tsStarts[row] = it.ts; |
| data.callsiteId[row] = it.callsiteId; |
| } |
| |
| return data; |
| } |
| |
| async onDestroy(): Promise<void> { |
| this.fetcher.dispose(); |
| } |
| |
| getHeight() { |
| return MARGIN_TOP + RECT_HEIGHT - 1; |
| } |
| |
| render(ctx: CanvasRenderingContext2D, _size: PanelSize): void { |
| const { |
| visibleTimeScale: timeScale, |
| } = globals.timeline; |
| const data = this.fetcher.data; |
| |
| if (data === undefined) return; |
| |
| for (let i = 0; i < data.tsStarts.length; i++) { |
| const centerX = Time.fromRaw(data.tsStarts[i]); |
| const selection = globals.state.currentSelection; |
| const isHovered = this.hoveredTs === centerX; |
| const isSelected = selection !== null && |
| selection.kind === 'CPU_PROFILE_SAMPLE' && selection.ts === centerX; |
| const strokeWidth = isSelected ? 3 : 0; |
| this.drawMarker( |
| ctx, |
| timeScale.timeToPx(centerX), |
| this.centerY, |
| isHovered, |
| strokeWidth, |
| data.callsiteId[i]); |
| } |
| |
| // Group together identical identical CPU profile samples by connecting them |
| // with an horizontal bar. |
| let clusterStartIndex = 0; |
| while (clusterStartIndex < data.tsStarts.length) { |
| const callsiteId = data.callsiteId[clusterStartIndex]; |
| |
| // Find the end of the cluster by searching for the next different CPU |
| // sample. The resulting range [clusterStartIndex, clusterEndIndex] is |
| // inclusive and within array bounds. |
| let clusterEndIndex = clusterStartIndex; |
| while (clusterEndIndex + 1 < data.tsStarts.length && |
| data.callsiteId[clusterEndIndex + 1] === callsiteId) { |
| clusterEndIndex++; |
| } |
| |
| // If there are multiple CPU samples in the cluster, draw a line. |
| if (clusterStartIndex !== clusterEndIndex) { |
| const startX = Time.fromRaw(data.tsStarts[clusterStartIndex]); |
| const endX = Time.fromRaw(data.tsStarts[clusterEndIndex]); |
| const leftPx = timeScale.timeToPx(startX) - this.markerWidth; |
| const rightPx = timeScale.timeToPx(endX) + this.markerWidth; |
| const width = rightPx - leftPx; |
| ctx.fillStyle = colorForSample(callsiteId, false); |
| ctx.fillRect(leftPx, MARGIN_TOP, width, BAR_HEIGHT); |
| } |
| |
| // Move to the next cluster. |
| clusterStartIndex = clusterEndIndex + 1; |
| } |
| } |
| |
| drawMarker( |
| ctx: CanvasRenderingContext2D, x: number, y: number, isHovered: boolean, |
| strokeWidth: number, callsiteId: number): void { |
| ctx.beginPath(); |
| ctx.moveTo(x - this.markerWidth, y - this.markerWidth); |
| ctx.lineTo(x, y + this.markerWidth); |
| ctx.lineTo(x + this.markerWidth, y - this.markerWidth); |
| ctx.lineTo(x - this.markerWidth, y - this.markerWidth); |
| ctx.closePath(); |
| ctx.fillStyle = colorForSample(callsiteId, isHovered); |
| ctx.fill(); |
| if (strokeWidth > 0) { |
| ctx.strokeStyle = colorForSample(callsiteId, false); |
| ctx.lineWidth = strokeWidth; |
| ctx.stroke(); |
| } |
| } |
| |
| onMouseMove({x, y}: {x: number, y: number}) { |
| const data = this.fetcher.data; |
| if (data === undefined) return; |
| const { |
| visibleTimeScale: timeScale, |
| } = globals.timeline; |
| const time = timeScale.pxToHpTime(x); |
| const [left, right] = searchSegment(data.tsStarts, time.toTime()); |
| const index = this.findTimestampIndex(left, timeScale, data, x, y, right); |
| this.hoveredTs = |
| index === -1 ? undefined : Time.fromRaw(data.tsStarts[index]); |
| } |
| |
| onMouseOut() { |
| this.hoveredTs = undefined; |
| } |
| |
| onMouseClick({x, y}: {x: number, y: number}) { |
| const data = this.fetcher.data; |
| if (data === undefined) return false; |
| const { |
| visibleTimeScale: timeScale, |
| } = globals.timeline; |
| |
| const time = timeScale.pxToHpTime(x); |
| const [left, right] = searchSegment(data.tsStarts, time.toTime()); |
| |
| const index = this.findTimestampIndex(left, timeScale, data, x, y, right); |
| |
| if (index !== -1) { |
| const id = data.ids[index]; |
| const ts = Time.fromRaw(data.tsStarts[index]); |
| |
| globals.makeSelection( |
| Actions.selectCpuProfileSample({id, utid: this.utid, ts})); |
| return true; |
| } |
| return false; |
| } |
| |
| // If the markers overlap the rightmost one will be selected. |
| findTimestampIndex( |
| left: number, timeScale: TimeScale, data: Data, x: number, y: number, |
| right: number): number { |
| let index = -1; |
| if (left !== -1) { |
| const start = Time.fromRaw(data.tsStarts[left]); |
| const centerX = timeScale.timeToPx(start); |
| if (this.isInMarker(x, y, centerX)) { |
| index = left; |
| } |
| } |
| if (right !== -1) { |
| const start = Time.fromRaw(data.tsStarts[right]); |
| const centerX = timeScale.timeToPx(start); |
| if (this.isInMarker(x, y, centerX)) { |
| index = right; |
| } |
| } |
| return index; |
| } |
| |
| isInMarker(x: number, y: number, centerX: number) { |
| return Math.abs(x - centerX) + Math.abs(y - this.centerY) <= |
| this.markerWidth; |
| } |
| } |
| |
| class CpuProfile implements Plugin { |
| onActivate(_ctx: PluginContext): void {} |
| |
| async onTraceLoad(ctx: PluginContextTrace): Promise<void> { |
| const result = await ctx.engine.query(` |
| select |
| utid, |
| tid, |
| upid, |
| thread.name as threadName |
| from |
| thread |
| join (select utid |
| from cpu_profile_stack_sample group by utid |
| ) using(utid) |
| left join process using(upid) |
| where utid != 0 |
| group by utid`); |
| |
| const it = result.iter({ |
| utid: NUM, |
| upid: NUM_NULL, |
| tid: NUM_NULL, |
| threadName: STR_NULL, |
| }); |
| for (; it.valid(); it.next()) { |
| const utid = it.utid; |
| const threadName = it.threadName; |
| ctx.registerTrack({ |
| uri: `perfetto.CpuProfile#${utid}`, |
| displayName: `${threadName} (CPU Stack Samples)`, |
| kind: CPU_PROFILE_TRACK_KIND, |
| utid, |
| track: () => new CpuProfileTrack(ctx.engine, utid), |
| }); |
| } |
| } |
| } |
| |
| export const plugin: PluginDescriptor = { |
| pluginId: 'perfetto.CpuProfile', |
| plugin: CpuProfile, |
| }; |