blob: 3c7b2f04fb1b6c333078b2e876221614d6905cce [file] [log] [blame]
// Copyright (C) 2021 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import {searchSegment} from '../../base/binary_search';
import {duration, Time, time} from '../../base/time';
import {Actions} from '../../common/actions';
import {colorForSample} from '../../common/colorizer';
import {TrackData} from '../../common/track_data';
import {TimelineFetcher} from '../../common/track_helper';
import {globals} from '../../frontend/globals';
import {PanelSize} from '../../frontend/panel';
import {TimeScale} from '../../frontend/time_scale';
import {
EngineProxy,
Plugin,
PluginContext,
PluginContextTrace,
PluginDescriptor,
Track,
} from '../../public';
import {
LONG,
NUM,
NUM_NULL,
STR_NULL,
} from '../../trace_processor/query_result';
const BAR_HEIGHT = 3;
const MARGIN_TOP = 4.5;
const RECT_HEIGHT = 30.5;
export const CPU_PROFILE_TRACK_KIND = 'CpuProfileTrack';
interface Data extends TrackData {
ids: Float64Array;
tsStarts: BigInt64Array;
callsiteId: Uint32Array;
}
class CpuProfileTrack implements Track {
private centerY = this.getHeight() / 2 + BAR_HEIGHT;
private markerWidth = (this.getHeight() - MARGIN_TOP - BAR_HEIGHT) / 2;
private hoveredTs: time|undefined = undefined;
private fetcher = new TimelineFetcher<Data>(this.onBoundsChange.bind(this));
private engine: EngineProxy;
private utid: number;
constructor(engine: EngineProxy, utid: number) {
this.engine = engine;
this.utid = utid;
}
async onUpdate(): Promise<void> {
await this.fetcher.requestDataForCurrentTime();
}
async onBoundsChange(start: time, end: time, resolution: duration):
Promise<Data> {
const query = `select
id,
ts,
callsite_id as callsiteId
from cpu_profile_stack_sample
where utid = ${this.utid}
order by ts`;
const result = await this.engine.query(query);
const numRows = result.numRows();
const data: Data = {
start,
end,
resolution,
length: numRows,
ids: new Float64Array(numRows),
tsStarts: new BigInt64Array(numRows),
callsiteId: new Uint32Array(numRows),
};
const it = result.iter({id: NUM, ts: LONG, callsiteId: NUM});
for (let row = 0; it.valid(); it.next(), ++row) {
data.ids[row] = it.id;
data.tsStarts[row] = it.ts;
data.callsiteId[row] = it.callsiteId;
}
return data;
}
async onDestroy(): Promise<void> {
this.fetcher.dispose();
}
getHeight() {
return MARGIN_TOP + RECT_HEIGHT - 1;
}
render(ctx: CanvasRenderingContext2D, _size: PanelSize): void {
const {
visibleTimeScale: timeScale,
} = globals.timeline;
const data = this.fetcher.data;
if (data === undefined) return;
for (let i = 0; i < data.tsStarts.length; i++) {
const centerX = Time.fromRaw(data.tsStarts[i]);
const selection = globals.state.currentSelection;
const isHovered = this.hoveredTs === centerX;
const isSelected = selection !== null &&
selection.kind === 'CPU_PROFILE_SAMPLE' && selection.ts === centerX;
const strokeWidth = isSelected ? 3 : 0;
this.drawMarker(
ctx,
timeScale.timeToPx(centerX),
this.centerY,
isHovered,
strokeWidth,
data.callsiteId[i]);
}
// Group together identical identical CPU profile samples by connecting them
// with an horizontal bar.
let clusterStartIndex = 0;
while (clusterStartIndex < data.tsStarts.length) {
const callsiteId = data.callsiteId[clusterStartIndex];
// Find the end of the cluster by searching for the next different CPU
// sample. The resulting range [clusterStartIndex, clusterEndIndex] is
// inclusive and within array bounds.
let clusterEndIndex = clusterStartIndex;
while (clusterEndIndex + 1 < data.tsStarts.length &&
data.callsiteId[clusterEndIndex + 1] === callsiteId) {
clusterEndIndex++;
}
// If there are multiple CPU samples in the cluster, draw a line.
if (clusterStartIndex !== clusterEndIndex) {
const startX = Time.fromRaw(data.tsStarts[clusterStartIndex]);
const endX = Time.fromRaw(data.tsStarts[clusterEndIndex]);
const leftPx = timeScale.timeToPx(startX) - this.markerWidth;
const rightPx = timeScale.timeToPx(endX) + this.markerWidth;
const width = rightPx - leftPx;
ctx.fillStyle = colorForSample(callsiteId, false);
ctx.fillRect(leftPx, MARGIN_TOP, width, BAR_HEIGHT);
}
// Move to the next cluster.
clusterStartIndex = clusterEndIndex + 1;
}
}
drawMarker(
ctx: CanvasRenderingContext2D, x: number, y: number, isHovered: boolean,
strokeWidth: number, callsiteId: number): void {
ctx.beginPath();
ctx.moveTo(x - this.markerWidth, y - this.markerWidth);
ctx.lineTo(x, y + this.markerWidth);
ctx.lineTo(x + this.markerWidth, y - this.markerWidth);
ctx.lineTo(x - this.markerWidth, y - this.markerWidth);
ctx.closePath();
ctx.fillStyle = colorForSample(callsiteId, isHovered);
ctx.fill();
if (strokeWidth > 0) {
ctx.strokeStyle = colorForSample(callsiteId, false);
ctx.lineWidth = strokeWidth;
ctx.stroke();
}
}
onMouseMove({x, y}: {x: number, y: number}) {
const data = this.fetcher.data;
if (data === undefined) return;
const {
visibleTimeScale: timeScale,
} = globals.timeline;
const time = timeScale.pxToHpTime(x);
const [left, right] = searchSegment(data.tsStarts, time.toTime());
const index = this.findTimestampIndex(left, timeScale, data, x, y, right);
this.hoveredTs =
index === -1 ? undefined : Time.fromRaw(data.tsStarts[index]);
}
onMouseOut() {
this.hoveredTs = undefined;
}
onMouseClick({x, y}: {x: number, y: number}) {
const data = this.fetcher.data;
if (data === undefined) return false;
const {
visibleTimeScale: timeScale,
} = globals.timeline;
const time = timeScale.pxToHpTime(x);
const [left, right] = searchSegment(data.tsStarts, time.toTime());
const index = this.findTimestampIndex(left, timeScale, data, x, y, right);
if (index !== -1) {
const id = data.ids[index];
const ts = Time.fromRaw(data.tsStarts[index]);
globals.makeSelection(
Actions.selectCpuProfileSample({id, utid: this.utid, ts}));
return true;
}
return false;
}
// If the markers overlap the rightmost one will be selected.
findTimestampIndex(
left: number, timeScale: TimeScale, data: Data, x: number, y: number,
right: number): number {
let index = -1;
if (left !== -1) {
const start = Time.fromRaw(data.tsStarts[left]);
const centerX = timeScale.timeToPx(start);
if (this.isInMarker(x, y, centerX)) {
index = left;
}
}
if (right !== -1) {
const start = Time.fromRaw(data.tsStarts[right]);
const centerX = timeScale.timeToPx(start);
if (this.isInMarker(x, y, centerX)) {
index = right;
}
}
return index;
}
isInMarker(x: number, y: number, centerX: number) {
return Math.abs(x - centerX) + Math.abs(y - this.centerY) <=
this.markerWidth;
}
}
class CpuProfile implements Plugin {
onActivate(_ctx: PluginContext): void {}
async onTraceLoad(ctx: PluginContextTrace): Promise<void> {
const result = await ctx.engine.query(`
select
utid,
tid,
upid,
thread.name as threadName
from
thread
join (select utid
from cpu_profile_stack_sample group by utid
) using(utid)
left join process using(upid)
where utid != 0
group by utid`);
const it = result.iter({
utid: NUM,
upid: NUM_NULL,
tid: NUM_NULL,
threadName: STR_NULL,
});
for (; it.valid(); it.next()) {
const utid = it.utid;
const threadName = it.threadName;
ctx.registerTrack({
uri: `perfetto.CpuProfile#${utid}`,
displayName: `${threadName} (CPU Stack Samples)`,
kind: CPU_PROFILE_TRACK_KIND,
utid,
track: () => new CpuProfileTrack(ctx.engine, utid),
});
}
}
}
export const plugin: PluginDescriptor = {
pluginId: 'perfetto.CpuProfile',
plugin: CpuProfile,
};