| /* |
| * Copyright (C) 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "src/tracing/core/trace_buffer.h" |
| |
| #include <sys/mman.h> |
| #include <limits> |
| |
| #include "perfetto/base/logging.h" |
| #include "perfetto/protozero/proto_utils.h" |
| #include "perfetto/tracing/core/shared_memory_abi.h" |
| #include "perfetto/tracing/core/trace_packet.h" |
| |
| #define TRACE_BUFFER_VERBOSE_LOGGING() 0 // Set to 1 when debugging unittests. |
| #if TRACE_BUFFER_VERBOSE_LOGGING() |
| #define TRACE_BUFFER_DLOG PERFETTO_DLOG |
| namespace { |
| std::string HexDump(const uint8_t* src, size_t size) { |
| std::string buf; |
| buf.reserve(4096 * 4); |
| char line[64]; |
| char* c = line; |
| for (size_t i = 0; i < size; i++) { |
| c += sprintf(c, "%02x ", src[i]); |
| if (i % 16 == 15) { |
| buf.append("\n"); |
| buf.append(line); |
| c = line; |
| } |
| } |
| return buf; |
| } |
| } // namespace |
| #else |
| #define TRACE_BUFFER_DLOG(...) void() |
| #endif |
| |
| namespace perfetto { |
| |
| namespace { |
| constexpr uint8_t kFirstPacketContinuesFromPrevChunk = |
| SharedMemoryABI::ChunkHeader::kFirstPacketContinuesFromPrevChunk; |
| constexpr uint8_t kLastPacketContinuesOnNextChunk = |
| SharedMemoryABI::ChunkHeader::kLastPacketContinuesOnNextChunk; |
| constexpr uint8_t kChunkNeedsPatching = |
| SharedMemoryABI::ChunkHeader::kChunkNeedsPatching; |
| } // namespace. |
| |
| constexpr size_t TraceBuffez::ChunkRecord::kMaxSize; |
| const size_t TraceBuffez::InlineChunkHeaderSize = sizeof(ChunkRecord); |
| |
| // static |
| std::unique_ptr<TraceBuffez> TraceBuffez::Create(size_t size_in_bytes) { |
| std::unique_ptr<TraceBuffez> trace_buffer(new TraceBuffez()); |
| if (!trace_buffer->Initialize(size_in_bytes)) |
| return nullptr; |
| return trace_buffer; |
| } |
| |
| TraceBuffez::TraceBuffez() { |
| // See comments in ChunkRecord for the rationale of this. |
| static_assert(sizeof(ChunkRecord) == sizeof(SharedMemoryABI::PageHeader) + |
| sizeof(SharedMemoryABI::ChunkHeader), |
| "ChunkRecord out of sync with the layout of SharedMemoryABI"); |
| } |
| |
| TraceBuffez::~TraceBuffez() = default; |
| |
| bool TraceBuffez::Initialize(size_t size) { |
| static_assert( |
| base::kPageSize % sizeof(ChunkRecord) == 0, |
| "sizeof(ChunkRecord) must be an integer divider of a page size"); |
| PERFETTO_CHECK(size % base::kPageSize == 0); |
| data_ = base::PageAllocator::AllocateMayFail(size); |
| if (!data_) { |
| PERFETTO_ELOG("Trace buffer allocation failed (size: %zu)", size); |
| return false; |
| } |
| size_ = size; |
| max_chunk_size_ = std::min(size, ChunkRecord::kMaxSize); |
| wptr_ = begin(); |
| index_.clear(); |
| last_chunk_id_.clear(); |
| read_iter_ = GetReadIterForSequence(index_.end()); |
| return true; |
| } |
| |
| // Note: |src| points to a shmem region that is shared with the producer. Assume |
| // that the producer is malicious and will change the content of |src| |
| // while we execute here. Don't do any processing on it other than memcpy(). |
| void TraceBuffez::CopyChunkUntrusted(ProducerID producer_id_trusted, |
| uid_t producer_uid_trusted, |
| WriterID writer_id, |
| ChunkID chunk_id, |
| uint16_t num_fragments, |
| uint8_t chunk_flags, |
| const uint8_t* src, |
| size_t size) { |
| // |record_size| = |size| + sizeof(ChunkRecord), rounded up to avoid to end |
| // up in a fragmented state where size_to_end() < sizeof(ChunkRecord). |
| const size_t record_size = |
| base::AlignUp<sizeof(ChunkRecord)>(size + sizeof(ChunkRecord)); |
| if (PERFETTO_UNLIKELY(record_size > max_chunk_size_)) { |
| PERFETTO_DCHECK(suppress_sanity_dchecks_for_testing_); |
| return; |
| } |
| |
| TRACE_BUFFER_DLOG("CopyChunk @ %lu, size=%zu", wptr_ - begin(), record_size); |
| |
| #if PERFETTO_DCHECK_IS_ON() |
| changed_since_last_read_ = true; |
| #endif |
| |
| // If there isn't enough room from the given write position. Write a padding |
| // record to clear the end of the buffer and wrap back. |
| const size_t cached_size_to_end = size_to_end(); |
| if (PERFETTO_UNLIKELY(record_size > cached_size_to_end)) { |
| size_t res = DeleteNextChunksFor(cached_size_to_end); |
| PERFETTO_DCHECK(res <= cached_size_to_end); |
| AddPaddingRecord(cached_size_to_end); |
| wptr_ = begin(); |
| stats_.write_wrap_count++; |
| PERFETTO_DCHECK(size_to_end() >= record_size); |
| } |
| |
| ChunkRecord record(record_size); |
| record.producer_id = producer_id_trusted; |
| record.chunk_id = chunk_id; |
| record.writer_id = writer_id; |
| record.num_fragments = num_fragments; |
| record.flags = chunk_flags; |
| |
| // At this point either |wptr_| points to an untouched part of the buffer |
| // (i.e. *wptr_ == 0) or we are about to overwrite one or more ChunkRecord(s). |
| // In the latter case we need to first figure out where the next valid |
| // ChunkRecord is (if it exists) and add padding between the new record. |
| // Example ((w) == write cursor): |
| // |
| // Initial state (wtpr_ == 0): |
| // |0 (w) |10 |30 |50 |
| // +---------+-----------------+--------------------+--------------------+ |
| // | Chunk 1 | Chunk 2 | Chunk 3 | Chunk 4 | |
| // +---------+-----------------+--------------------+--------------------+ |
| // |
| // Let's assume we now want now write a 5th Chunk of size == 35. The final |
| // state should look like this: |
| // |0 |35 (w) |50 |
| // +---------------------------------+---------------+--------------------+ |
| // | Chunk 5 | Padding Chunk | Chunk 4 | |
| // +---------------------------------+---------------+--------------------+ |
| |
| // Deletes all chunks from |wptr_| to |wptr_| + |record_size|. |
| size_t padding_size = DeleteNextChunksFor(record_size); |
| |
| // Now first insert the new chunk. At the end, if necessary, add the padding. |
| ChunkMeta::Key key(record); |
| auto it_and_inserted = |
| index_.emplace(key, ChunkMeta(GetChunkRecordAt(wptr_), num_fragments, |
| chunk_flags, producer_uid_trusted)); |
| if (PERFETTO_UNLIKELY(!it_and_inserted.second)) { |
| // More likely a producer bug, but could also be a malicious producer. |
| PERFETTO_DCHECK(suppress_sanity_dchecks_for_testing_); |
| index_.erase(it_and_inserted.first); |
| index_.emplace(key, ChunkMeta(GetChunkRecordAt(wptr_), num_fragments, |
| chunk_flags, producer_uid_trusted)); |
| } |
| TRACE_BUFFER_DLOG(" copying @ [%lu - %lu] %zu", wptr_ - begin(), |
| wptr_ - begin() + record_size, record_size); |
| WriteChunkRecord(record, src, size); |
| TRACE_BUFFER_DLOG("Chunk raw: %s", HexDump(wptr_, record_size).c_str()); |
| wptr_ += record_size; |
| if (wptr_ >= end()) { |
| PERFETTO_DCHECK(padding_size == 0); |
| wptr_ = begin(); |
| stats_.write_wrap_count++; |
| } |
| DcheckIsAlignedAndWithinBounds(wptr_); |
| |
| last_chunk_id_[std::make_pair(producer_id_trusted, writer_id)] = chunk_id; |
| |
| if (padding_size) |
| AddPaddingRecord(padding_size); |
| } |
| |
| size_t TraceBuffez::DeleteNextChunksFor(size_t bytes_to_clear) { |
| // Find the position of the first chunk which begins at or after |
| // (|wptr_| + |bytes|). Note that such a chunk might not exist and we might |
| // either reach the end of the buffer or a zeroed region of the buffer. |
| uint8_t* next_chunk_ptr = wptr_; |
| uint8_t* search_end = wptr_ + bytes_to_clear; |
| TRACE_BUFFER_DLOG("Delete [%zu %zu]", wptr_ - begin(), search_end - begin()); |
| DcheckIsAlignedAndWithinBounds(wptr_); |
| PERFETTO_DCHECK(search_end <= end()); |
| while (next_chunk_ptr < search_end) { |
| const ChunkRecord& next_chunk = *GetChunkRecordAt(next_chunk_ptr); |
| TRACE_BUFFER_DLOG( |
| " scanning chunk [%zu %zu] (valid=%d)", next_chunk_ptr - begin(), |
| next_chunk_ptr - begin() + next_chunk.size, next_chunk.is_valid()); |
| |
| // We just reached the untouched part of the buffer, it's going to be all |
| // zeroes from here to end(). |
| // TODO(primiano): optimization: if during Initialize() we fill the buffer |
| // with padding records we could get rid of this branch. |
| if (PERFETTO_UNLIKELY(!next_chunk.is_valid())) { |
| // This should happen only at the first iteration. The zeroed area can |
| // only begin precisely at the |wptr_|, not after. Otherwise it means that |
| // we wrapped but screwed up the ChunkRecord chain. |
| PERFETTO_DCHECK(next_chunk_ptr == wptr_); |
| return 0; |
| } |
| |
| // Remove |next_chunk| from the index, unless it's a padding record (padding |
| // records are not part of the index). |
| if (PERFETTO_LIKELY(!next_chunk.is_padding)) { |
| ChunkMeta::Key key(next_chunk); |
| const size_t removed = index_.erase(key); |
| TRACE_BUFFER_DLOG(" del index {%" PRIu32 ",%" PRIu32 |
| ",%u} @ [%lu - %lu] %zu", |
| key.producer_id, key.writer_id, key.chunk_id, |
| next_chunk_ptr - begin(), |
| next_chunk_ptr - begin() + next_chunk.size, removed); |
| PERFETTO_DCHECK(removed); |
| } |
| |
| next_chunk_ptr += next_chunk.size; |
| |
| // We should never hit this, unless we managed to screw up while writing |
| // to the buffer and breaking the ChunkRecord(s) chain. |
| // TODO(primiano): Write more meaningful logging with the status of the |
| // buffer, to get more actionable bugs in case we hit this. |
| PERFETTO_CHECK(next_chunk_ptr <= end()); |
| } |
| PERFETTO_DCHECK(next_chunk_ptr >= search_end && next_chunk_ptr <= end()); |
| return next_chunk_ptr - search_end; |
| } |
| |
| void TraceBuffez::AddPaddingRecord(size_t size) { |
| PERFETTO_DCHECK(size >= sizeof(ChunkRecord) && size <= ChunkRecord::kMaxSize); |
| ChunkRecord record(size); |
| record.is_padding = 1; |
| TRACE_BUFFER_DLOG("AddPaddingRecord @ [%lu - %lu] %zu", wptr_ - begin(), |
| wptr_ - begin() + size, size); |
| WriteChunkRecord(record, nullptr, size - sizeof(ChunkRecord)); |
| // |wptr_| is deliberately not advanced when writing a padding record. |
| } |
| |
| bool TraceBuffez::TryPatchChunkContents(ProducerID producer_id, |
| WriterID writer_id, |
| ChunkID chunk_id, |
| const Patch* patches, |
| size_t patches_size, |
| bool other_patches_pending) { |
| ChunkMeta::Key key(producer_id, writer_id, chunk_id); |
| auto it = index_.find(key); |
| if (it == index_.end()) { |
| stats_.failed_patches++; |
| return false; |
| } |
| ChunkMeta& chunk_meta = it->second; |
| |
| // Check that the index is consistent with the actual ProducerID/WriterID |
| // stored in the ChunkRecord. |
| PERFETTO_DCHECK(ChunkMeta::Key(*chunk_meta.chunk_record) == key); |
| uint8_t* chunk_begin = reinterpret_cast<uint8_t*>(chunk_meta.chunk_record); |
| PERFETTO_DCHECK(chunk_begin >= begin()); |
| uint8_t* chunk_end = chunk_begin + chunk_meta.chunk_record->size; |
| PERFETTO_DCHECK(chunk_end <= end()); |
| |
| static_assert(Patch::kSize == SharedMemoryABI::kPacketHeaderSize, |
| "Patch::kSize out of sync with SharedMemoryABI"); |
| |
| for (size_t i = 0; i < patches_size; i++) { |
| uint8_t* ptr = |
| chunk_begin + sizeof(ChunkRecord) + patches[i].offset_untrusted; |
| TRACE_BUFFER_DLOG("PatchChunk {%" PRIu32 ",%" PRIu32 |
| ",%u} size=%zu @ %zu with {%02x %02x %02x %02x}", |
| producer_id, writer_id, chunk_id, chunk_end - chunk_begin, |
| patches[i].offset_untrusted, patches[i].data[0], |
| patches[i].data[1], patches[i].data[2], |
| patches[i].data[3]); |
| if (ptr < chunk_begin + sizeof(ChunkRecord) || |
| ptr > chunk_end - Patch::kSize) { |
| // Either the IPC was so slow and in the meantime the writer managed to |
| // wrap over |chunk_id| or the producer sent a malicious IPC. |
| stats_.failed_patches++; |
| return false; |
| } |
| |
| // DCHECK that we are writing into a size-field zero-filled by |
| // trace_writer_impl.cc and that we are not writing over other valid data. |
| char zero[Patch::kSize]{}; |
| PERFETTO_DCHECK(memcmp(ptr, &zero, Patch::kSize) == 0); |
| |
| memcpy(ptr, &patches[i].data[0], Patch::kSize); |
| } |
| TRACE_BUFFER_DLOG( |
| "Chunk raw (after patch): %s", |
| HexDump(chunk_begin, chunk_meta.chunk_record->size).c_str()); |
| |
| stats_.succeeded_patches += patches_size; |
| if (!other_patches_pending) { |
| chunk_meta.flags &= ~kChunkNeedsPatching; |
| chunk_meta.chunk_record->flags = chunk_meta.flags; |
| } |
| return true; |
| } |
| |
| void TraceBuffez::BeginRead() { |
| read_iter_ = GetReadIterForSequence(index_.begin()); |
| #if PERFETTO_DCHECK_IS_ON() |
| changed_since_last_read_ = false; |
| #endif |
| } |
| |
| TraceBuffez::SequenceIterator TraceBuffez::GetReadIterForSequence( |
| ChunkMap::iterator seq_begin) { |
| SequenceIterator iter; |
| iter.seq_begin = seq_begin; |
| if (seq_begin == index_.end()) { |
| iter.cur = iter.seq_end = index_.end(); |
| return iter; |
| } |
| |
| #if PERFETTO_DCHECK_IS_ON() |
| // Either |seq_begin| is == index_.begin() or the item immediately before must |
| // belong to a different {ProducerID, WriterID} sequence. |
| if (seq_begin != index_.begin() && seq_begin != index_.end()) { |
| auto prev_it = seq_begin; |
| prev_it--; |
| PERFETTO_DCHECK( |
| seq_begin == index_.begin() || |
| std::tie(prev_it->first.producer_id, prev_it->first.writer_id) < |
| std::tie(seq_begin->first.producer_id, seq_begin->first.writer_id)); |
| } |
| #endif |
| |
| // Find the first entry that has a greater {ProducerID, WriterID} (or just |
| // index_.end() if we reached the end). |
| ChunkMeta::Key key = seq_begin->first; // Deliberate copy. |
| key.chunk_id = kMaxChunkID; |
| iter.seq_end = index_.upper_bound(key); |
| PERFETTO_DCHECK(iter.seq_begin != iter.seq_end); |
| |
| // Now find the first entry between [seq_begin, seq_end) that is |
| // > last_chunk_id_. This is where we the sequence will start (see notes about |
| // wrapping in the header). |
| auto producer_and_writer_id = std::make_pair(key.producer_id, key.writer_id); |
| PERFETTO_DCHECK(last_chunk_id_.count(producer_and_writer_id)); |
| iter.wrapping_id = last_chunk_id_[producer_and_writer_id]; |
| key.chunk_id = iter.wrapping_id; |
| iter.cur = index_.upper_bound(key); |
| if (iter.cur == iter.seq_end) |
| iter.cur = iter.seq_begin; |
| return iter; |
| } |
| |
| void TraceBuffez::SequenceIterator::MoveNext() { |
| // Note: |seq_begin| might be == |seq_end|. |
| if (cur == seq_end || cur->first.chunk_id == wrapping_id) { |
| cur = seq_end; |
| return; |
| } |
| if (++cur == seq_end) |
| cur = seq_begin; |
| } |
| |
| bool TraceBuffez::ReadNextTracePacket(TracePacket* packet, |
| uid_t* producer_uid) { |
| // Note: MoveNext() moves only within the next chunk within the same |
| // {ProducerID, WriterID} sequence. Here we want to: |
| // - return the next patched+complete packet in the current sequence, if any. |
| // - return the first patched+complete packet in the next sequence, if any. |
| // - return false if none of the above is found. |
| TRACE_BUFFER_DLOG("ReadNextTracePacket()"); |
| *producer_uid = -1; // Just in case we forget to initialize it below. |
| #if PERFETTO_DCHECK_IS_ON() |
| PERFETTO_DCHECK(!changed_since_last_read_); |
| #endif |
| for (;; read_iter_.MoveNext()) { |
| if (PERFETTO_UNLIKELY(!read_iter_.is_valid())) { |
| // We ran out of chunks in the current {ProducerID, WriterID} sequence or |
| // we just reached the index_.end(). |
| |
| if (PERFETTO_UNLIKELY(read_iter_.seq_end == index_.end())) |
| return false; |
| |
| // We reached the end of sequence, move to the next one. |
| // Note: ++read_iter_.seq_end might become index_.end(), but |
| // GetReadIterForSequence() knows how to deal with that. |
| read_iter_ = GetReadIterForSequence(read_iter_.seq_end); |
| PERFETTO_DCHECK(read_iter_.is_valid() && read_iter_.cur != index_.end()); |
| } |
| |
| ChunkMeta& chunk_meta = *read_iter_; |
| |
| // If the chunk has holes that are awaiting to be patched out-of-band, |
| // skip the current sequence and move to the next one. |
| if (chunk_meta.flags & kChunkNeedsPatching) { |
| read_iter_.MoveToEnd(); |
| continue; |
| } |
| |
| const uid_t trusted_uid = chunk_meta.trusted_uid; |
| |
| // At this point we have a chunk in |chunk_meta| that has not been fully |
| // read. We don't know yet whether we have enough data to read the full |
| // packet (in the case it's fragmented over several chunks) and we are about |
| // to find that out. Specifically: |
| // A) If the first fragment is unread and is a fragment continuing from a |
| // previous chunk, it means we have missed the previous ChunkID. In |
| // fact, if this wasn't the case, a previous call to ReadNext() shouldn't |
| // have moved the cursor to this chunk. |
| // B) Any fragment > 0 && < last is always readable. By definition an inner |
| // packet is never fragmented and hence doesn't require neither stitching |
| // nor any out-of-band patching. The same applies to the last packet |
| // iff it doesn't continue on the next chunk. |
| // C) If the last packet (which might be also the only packet in the chunk) |
| // is a fragment and continues on the next chunk, we peek at the next |
| // chunks and, if we have all of them, mark as read and move the cursor. |
| // |
| // +---------------+ +-------------------+ +---------------+ |
| // | ChunkID: 1 | | ChunkID: 2 | | ChunkID: 3 | |
| // |---------------+ +-------------------+ +---------------+ |
| // | Packet 1 | | | | ... Packet 3 | |
| // | Packet 2 | | ... Packet 3 ... | | Packet 4 | |
| // | Packet 3 ... | | | | Packet 5 ... | |
| // +---------------+ +-------------------+ +---------------+ |
| |
| PERFETTO_DCHECK(chunk_meta.num_fragments_read <= chunk_meta.num_fragments); |
| while (chunk_meta.num_fragments_read < chunk_meta.num_fragments) { |
| enum { kSkip = 0, kReadOnePacket, kTryReadAhead } action; |
| if (chunk_meta.num_fragments_read == 0) { |
| if (chunk_meta.flags & kFirstPacketContinuesFromPrevChunk) { |
| action = kSkip; // Case A. |
| } else if (chunk_meta.num_fragments == 1 && |
| (chunk_meta.flags & kLastPacketContinuesOnNextChunk)) { |
| action = kTryReadAhead; // Case C. |
| } else { |
| action = kReadOnePacket; // Case B. |
| } |
| } else if (chunk_meta.num_fragments_read < chunk_meta.num_fragments - 1 || |
| !(chunk_meta.flags & kLastPacketContinuesOnNextChunk)) { |
| action = kReadOnePacket; // Case B. |
| } else { |
| action = kTryReadAhead; // Case C. |
| } |
| |
| TRACE_BUFFER_DLOG(" chunk %u, packet %hu of %hu, action=%d", |
| read_iter_.chunk_id(), chunk_meta.num_fragments_read, |
| chunk_meta.num_fragments, action); |
| |
| if (action == kSkip) { |
| // This fragment will be skipped forever, not just in this ReadPacket() |
| // iteration. This happens by virtue of ReadNextPacketInChunk() |
| // incrementing the |num_fragments_read| and marking the fragment as |
| // read even if we didn't really. |
| ReadNextPacketInChunk(&chunk_meta, nullptr); |
| continue; |
| } |
| |
| if (action == kReadOnePacket) { |
| // The easy peasy case B. |
| if (PERFETTO_LIKELY(ReadNextPacketInChunk(&chunk_meta, packet))) { |
| *producer_uid = trusted_uid; |
| return true; |
| } |
| |
| // In extremely rare cases (producer bugged / malicious) the chunk might |
| // contain an invalid fragment. In such case we don't want to stall the |
| // sequence but just skip the chunk and move on. |
| break; |
| } |
| |
| PERFETTO_DCHECK(action == kTryReadAhead); |
| ReadAheadResult ra_res = ReadAhead(packet); |
| if (ra_res == ReadAheadResult::kSucceededReturnSlices) { |
| stats_.fragment_readahead_successes++; |
| *producer_uid = trusted_uid; |
| return true; |
| } |
| |
| if (ra_res == ReadAheadResult::kFailedMoveToNextSequence) { |
| // readahead didn't find a contigous packet sequence. We'll try again |
| // on the next ReadPacket() call. |
| stats_.fragment_readahead_failures++; |
| |
| // TODO(primiano): optimization: this MoveToEnd() is the reason why |
| // MoveNext() (that is called in the outer for(;;MoveNext)) needs to |
| // deal gracefully with the case of |cur|==|seq_end|. Maybe we can do |
| // something to avoid that check by reshuffling the code here? |
| read_iter_.MoveToEnd(); |
| |
| // This break will go back to beginning of the for(;;MoveNext()). That |
| // will move to the next sequence because we set the read iterator to |
| // its end. |
| break; |
| } |
| |
| PERFETTO_DCHECK(ra_res == ReadAheadResult::kFailedStayOnSameSequence); |
| } // while(...) [iterate over packet fragments for the current chunk]. |
| } // for(;;MoveNext()) [iterate over chunks]. |
| } |
| |
| TraceBuffez::ReadAheadResult TraceBuffez::ReadAhead(TracePacket* packet) { |
| static_assert(static_cast<ChunkID>(kMaxChunkID + 1) == 0, |
| "relying on kMaxChunkID to wrap naturally"); |
| TRACE_BUFFER_DLOG(" readahead start @ chunk %u", read_iter_.chunk_id()); |
| ChunkID next_chunk_id = read_iter_.chunk_id() + 1; |
| SequenceIterator it = read_iter_; |
| for (it.MoveNext(); it.is_valid(); it.MoveNext(), next_chunk_id++) { |
| // We should stay within the same sequence while iterating here. |
| PERFETTO_DCHECK(it.producer_id() == read_iter_.producer_id() && |
| it.writer_id() == read_iter_.writer_id()); |
| |
| TRACE_BUFFER_DLOG(" expected chunk ID: %u, actual ID: %u", next_chunk_id, |
| it.chunk_id()); |
| |
| if (PERFETTO_UNLIKELY((*it).num_fragments == 0)) |
| continue; |
| |
| // If we miss the next chunk, stop looking in the current sequence and |
| // try another sequence. This chunk might come in the near future. |
| // The second condition is the edge case of a buggy/malicious |
| // producer. The ChunkID is contiguous but its flags don't make sense. |
| if (it.chunk_id() != next_chunk_id || |
| PERFETTO_UNLIKELY( |
| !((*it).flags & kFirstPacketContinuesFromPrevChunk))) { |
| return ReadAheadResult::kFailedMoveToNextSequence; |
| } |
| |
| // This is the case of an intermediate chunk which contains only one |
| // fragment which continues on the next. This is the case for large |
| // packets, e.g.: [Packet0, Packet1(0)] [Packet1(1)] [Packet1(2), ...] |
| // (Packet1(X) := fragment X of Packet1). |
| if ((*it).num_fragments == 1 && |
| ((*it).flags & kLastPacketContinuesOnNextChunk)) { |
| continue; |
| } |
| |
| // We made it! We got all fragments for the packet without holes. |
| TRACE_BUFFER_DLOG(" readahead success @ chunk %u", it.chunk_id()); |
| PERFETTO_DCHECK(((*it).num_fragments == 1 && |
| !((*it).flags & kLastPacketContinuesOnNextChunk)) || |
| (*it).num_fragments > 1); |
| |
| // Now let's re-iterate over the [read_iter_, it] sequence and mark |
| // all the fragments as read. |
| bool packet_corruption = false; |
| for (;;) { |
| PERFETTO_DCHECK(read_iter_.is_valid()); |
| TRACE_BUFFER_DLOG(" commit chunk %u", read_iter_.chunk_id()); |
| if (PERFETTO_LIKELY((*read_iter_).num_fragments > 0)) { |
| // In the unlikely case of a corrupted packet, invalidate the all |
| // stitching and move on to the next chunk in the same sequence, |
| // if any. |
| packet_corruption |= !ReadNextPacketInChunk(&*read_iter_, packet); |
| } |
| if (read_iter_.cur == it.cur) |
| break; |
| read_iter_.MoveNext(); |
| } // for(;;) |
| PERFETTO_DCHECK(read_iter_.cur == it.cur); |
| |
| if (PERFETTO_UNLIKELY(packet_corruption)) { |
| *packet = TracePacket(); // clear. |
| return ReadAheadResult::kFailedStayOnSameSequence; |
| } |
| |
| return ReadAheadResult::kSucceededReturnSlices; |
| } // for(it...) [readahead loop] |
| return ReadAheadResult::kFailedMoveToNextSequence; |
| } |
| |
| bool TraceBuffez::ReadNextPacketInChunk(ChunkMeta* chunk_meta, |
| TracePacket* packet) { |
| PERFETTO_DCHECK(chunk_meta->num_fragments_read < chunk_meta->num_fragments); |
| // TODO DCHECK for chunks that are still awaiting patching. |
| |
| const uint8_t* record_begin = |
| reinterpret_cast<const uint8_t*>(chunk_meta->chunk_record); |
| const uint8_t* record_end = record_begin + chunk_meta->chunk_record->size; |
| const uint8_t* packets_begin = record_begin + sizeof(ChunkRecord); |
| const uint8_t* packet_begin = packets_begin + chunk_meta->cur_fragment_offset; |
| PERFETTO_CHECK(packet_begin >= packets_begin && packet_begin < record_end); |
| |
| // A packet (or a fragment) starts with a varint stating its size, followed |
| // by its content. The varint shouldn't be larger than 4 bytes (just in case |
| // the producer is using a redundant encoding) |
| uint64_t packet_size = 0; |
| const uint8_t* packet_data = protozero::proto_utils::ParseVarInt( |
| packet_begin, |
| packet_begin + protozero::proto_utils::kMessageLengthFieldSize, |
| &packet_size); |
| |
| const uint8_t* next_packet = packet_data + packet_size; |
| if (PERFETTO_UNLIKELY(next_packet <= packet_begin || |
| next_packet > record_end)) { |
| PERFETTO_DCHECK(suppress_sanity_dchecks_for_testing_); |
| chunk_meta->cur_fragment_offset = 0; |
| chunk_meta->num_fragments_read = chunk_meta->num_fragments; |
| return false; |
| } |
| chunk_meta->cur_fragment_offset = |
| static_cast<uint16_t>(next_packet - packets_begin); |
| chunk_meta->num_fragments_read++; |
| |
| if (PERFETTO_UNLIKELY(packet_size == 0)) |
| return false; |
| |
| if (PERFETTO_LIKELY(packet)) |
| packet->AddSlice(packet_data, static_cast<size_t>(packet_size)); |
| |
| return true; |
| } |
| |
| } // namespace perfetto |