blob: 33ead88fcd776d7b1215aaed6a98934081235527 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SRC_TRACE_PROCESSOR_STORAGE_COLUMNS_H_
#define SRC_TRACE_PROCESSOR_STORAGE_COLUMNS_H_
#include <deque>
#include <limits>
#include <memory>
#include <string>
#include <vector>
#include "src/trace_processor/filtered_row_index.h"
#include "src/trace_processor/sqlite/sqlite_utils.h"
#include "src/trace_processor/trace_storage.h"
namespace perfetto {
namespace trace_processor {
// A column of data backed by data storage.
class StorageColumn {
public:
struct Bounds {
uint32_t min_idx = 0;
uint32_t max_idx = std::numeric_limits<uint32_t>::max();
bool consumed = false;
};
using Predicate = std::function<bool(uint32_t)>;
using Comparator = std::function<int(uint32_t, uint32_t)>;
StorageColumn(std::string col_name, bool hidden);
virtual ~StorageColumn();
// Implements StorageCursor::ColumnReporter.
virtual void ReportResult(sqlite3_context*, uint32_t row) const = 0;
// Given a SQLite operator and value for the comparision, returns a
// predicate which takes in a row index and returns whether the row should
// be returned.
virtual void Filter(int op, sqlite3_value*, FilteredRowIndex*) const = 0;
// Given a order by constraint for this column, returns a comparator
// function which compares data in this column at two indices.
virtual Comparator Sort(const QueryConstraints::OrderBy& ob) const = 0;
// Returns the type of this column.
virtual SqlValue::Type GetType() const = 0;
// Bounds a filter on this column between a minimum and maximum index.
// Generally this is only possible if the column is sorted.
virtual Bounds BoundFilter(int, sqlite3_value*) const { return Bounds{}; }
// Returns whether this column is ordered.
virtual bool HasOrdering() const { return false; }
const std::string& name() const { return col_name_; }
bool hidden() const { return hidden_; }
private:
std::string col_name_;
bool hidden_ = false;
};
// The implementation of StorageColumn for Strings.
// The actual retrieval of the numerics from the data types is left to the
// Acessor trait (see below for definition).
template <typename Accessor /* <NullTermStringView> */>
class StringColumn final : public StorageColumn {
public:
StringColumn(std::string col_name, Accessor accessor, bool hidden = false)
: StorageColumn(col_name, hidden), accessor_(accessor) {}
void ReportResult(sqlite3_context* ctx, uint32_t row) const override {
NullTermStringView str = accessor_.Get(row);
if (str.c_str() == nullptr) {
sqlite3_result_null(ctx);
} else {
sqlite3_result_text(ctx, str.c_str(), -1, sqlite_utils::kSqliteStatic);
}
}
Bounds BoundFilter(int, sqlite3_value*) const override {
Bounds bounds;
bounds.max_idx = static_cast<uint32_t>(accessor_.Size());
return bounds;
}
void Filter(int, sqlite3_value*, FilteredRowIndex*) const override {}
Comparator Sort(const QueryConstraints::OrderBy& ob) const override {
if (ob.desc) {
return [this](uint32_t f, uint32_t s) {
NullTermStringView a = accessor_.Get(f);
NullTermStringView b = accessor_.Get(s);
return sqlite_utils::CompareValuesDesc(a, b);
};
}
return [this](uint32_t f, uint32_t s) {
NullTermStringView a = accessor_.Get(f);
NullTermStringView b = accessor_.Get(s);
return sqlite_utils::CompareValuesAsc(a, b);
};
}
SqlValue::Type GetType() const override { return SqlValue::Type::kString; }
bool HasOrdering() const override { return accessor_.HasOrdering(); }
private:
Accessor accessor_;
};
// The implementation of StorageColumn for numeric data types.
// The actual retrieval of the numerics from the data types is left to the
// Acessor trait (see below for definition).
template <typename Accessor,
typename sqlite_utils::is_numeric<typename Accessor::Type>* = nullptr>
class NumericStorageColumn : public StorageColumn {
public:
// The type of the column. This is one of uint32_t, int32_t, uint64_t etc.
using NumericType = typename Accessor::Type;
NumericStorageColumn(std::string col_name, bool hidden, Accessor accessor)
: StorageColumn(col_name, hidden), accessor_(accessor) {}
~NumericStorageColumn() override = default;
void ReportResult(sqlite3_context* ctx, uint32_t row) const override {
sqlite_utils::ReportSqliteResult(ctx, accessor_.Get(row));
}
Bounds BoundFilter(int op, sqlite3_value* sqlite_val) const override {
Bounds bounds;
bounds.max_idx = accessor_.Size();
if (!accessor_.HasOrdering())
return bounds;
// Makes the below code much more readable.
using namespace sqlite_utils;
NumericType min = kTMin;
NumericType max = kTMax;
if (IsOpGe(op) || IsOpGt(op)) {
min = FindGtBound<NumericType>(IsOpGe(op), sqlite_val);
} else if (IsOpLe(op) || IsOpLt(op)) {
max = FindLtBound<NumericType>(IsOpLe(op), sqlite_val);
} else if (IsOpEq(op)) {
auto val = FindEqBound<NumericType>(sqlite_val);
min = val;
max = val;
}
if (min <= kTMin && max >= kTMax)
return bounds;
bounds.min_idx = accessor_.LowerBoundIndex(min);
bounds.max_idx = accessor_.UpperBoundIndex(max);
bounds.consumed = true;
return bounds;
}
void Filter(int op,
sqlite3_value* value,
FilteredRowIndex* index) const override {
auto type = sqlite3_value_type(value);
bool same_type = (kIsIntegralType && type == SQLITE_INTEGER) ||
(kIsRealType && type == SQLITE_FLOAT);
if (sqlite_utils::IsOpEq(op) && same_type &&
accessor_.CanFindEqualIndices()) {
auto raw = sqlite_utils::ExtractSqliteValue<NumericType>(value);
index->IntersectRows(accessor_.EqualIndices(raw));
return;
}
if (kIsIntegralType && (type == SQLITE_INTEGER || type == SQLITE_NULL)) {
FilterWithCast<int64_t>(op, value, index);
} else if (type == SQLITE_INTEGER || type == SQLITE_FLOAT ||
type == SQLITE_NULL) {
FilterWithCast<double>(op, value, index);
} else {
PERFETTO_FATAL("Unexpected sqlite value to compare against");
}
}
Comparator Sort(const QueryConstraints::OrderBy& ob) const override {
if (ob.desc) {
return [this](uint32_t f, uint32_t s) {
return sqlite_utils::CompareValuesDesc(accessor_.Get(f),
accessor_.Get(s));
};
}
return [this](uint32_t f, uint32_t s) {
return sqlite_utils::CompareValuesAsc(accessor_.Get(f), accessor_.Get(s));
};
}
bool HasOrdering() const override { return accessor_.HasOrdering(); }
SqlValue::Type GetType() const override {
if (std::is_same<NumericType, uint8_t>::value ||
std::is_same<NumericType, uint32_t>::value ||
std::is_same<NumericType, int32_t>::value ||
std::is_same<NumericType, int64_t>::value) {
return SqlValue::Type::kLong;
} else if (std::is_same<NumericType, double>::value) {
return SqlValue::Type::kDouble;
}
PERFETTO_FATAL("Unexpected column type");
}
private:
static constexpr bool kIsIntegralType = std::is_integral<NumericType>::value;
static constexpr bool kIsRealType =
std::is_floating_point<NumericType>::value;
NumericType kTMin = std::numeric_limits<NumericType>::lowest();
NumericType kTMax = std::numeric_limits<NumericType>::max();
// Filters the rows of this column by creating the predicate from the sqlite
// value using type |UpcastNumericType| and casting data from the column
// to also be this type.
// Note: We cast here to make numeric comparisions as accurate as possible.
// For example, suppose NumericType == uint32_t and the sqlite value has
// an integer. Then UpcastNumericType == int64_t because uint32_t can be
// upcast to an int64_t and it's the most generic type we can compare using.
// Alternatively if either the column or sqlite value is real, we will always
// cast to a double before comparing.
template <typename UpcastNumericType>
void FilterWithCast(int op,
sqlite3_value* value,
FilteredRowIndex* index) const {
auto predicate =
sqlite_utils::CreateNumericPredicate<UpcastNumericType>(op, value);
auto cast_predicate = [this,
predicate](uint32_t row) PERFETTO_ALWAYS_INLINE {
return predicate(static_cast<UpcastNumericType>(accessor_.Get(row)));
};
index->FilterRows(cast_predicate);
}
Accessor accessor_;
};
// Defines an accessor for columns.
// An accessor is a abstraction over the method to retrieve data in a column. As
// there are many possible types of backing data (std::vector, std::deque,
// creating on the flight etc.), this class hides this complexity behind an
// interface to let the column implementation focus on actually interfacing
// with SQLite and rest of trace processor.
// This class exists as an interface for documentation purposes. There should
// be no use of it apart from classes inheriting from it to ensure they comply
// with the requirements of the interface.
template <typename DataType>
class Accessor {
public:
using Type = DataType;
virtual ~Accessor() = default;
// Returns the number of elements in the backing storage.
virtual uint32_t Size() const = 0;
// Returns the element located at index |idx|.
virtual Type Get(uint32_t idx) const = 0;
// Returns whether the backing data source is ordered. |LowerBoundIndex| and
// |UpperBoundIndex| will be called only if HasOrdering() returns true.
virtual bool HasOrdering() const { return false; }
// Returns the index of the lower bound of the value.
virtual uint32_t LowerBoundIndex(Type) const { PERFETTO_CHECK(false); }
// Returns the index of the lower bound of the value.
virtual uint32_t UpperBoundIndex(Type) const { PERFETTO_CHECK(false); }
// Returns whether the backing data sources can efficiently provide the
// indices of elements equal to a given value. |EqualIndices| will be called
// only if |CanFindEqualIndices| returns true.
virtual bool CanFindEqualIndices() const { return false; }
// Returns the indices into the backing data source with value equal to
// |value|.
virtual std::vector<uint32_t> EqualIndices(Type) const {
PERFETTO_CHECK(false);
}
};
// An accessor implementation for string which uses a deque to store offsets
// into a StringPool.
class StringPoolAccessor : public Accessor<NullTermStringView> {
public:
StringPoolAccessor(const std::deque<StringPool::Id>* deque,
const StringPool* string_pool);
~StringPoolAccessor() override;
uint32_t Size() const override {
return static_cast<uint32_t>(deque_->size());
}
NullTermStringView Get(uint32_t idx) const override {
return string_pool_->Get((*deque_)[idx]);
}
private:
const std::deque<StringPool::Id>* deque_;
const StringPool* string_pool_;
};
// An accessor implementation for string which uses a deque to store indices
// into a vector of strings.
template <typename Id>
class StringVectorAccessor : public Accessor<NullTermStringView> {
public:
StringVectorAccessor(const std::deque<Id>* deque,
const std::vector<NullTermStringView>* string_map)
: deque_(deque), string_map_(string_map) {}
~StringVectorAccessor() override = default;
uint32_t Size() const override {
return static_cast<uint32_t>(deque_->size());
}
NullTermStringView Get(uint32_t idx) const override {
return (*string_map_)[static_cast<size_t>((*deque_)[idx])];
}
private:
const std::deque<Id>* deque_;
const std::vector<NullTermStringView>* string_map_;
};
// An accessor implementation for numeric columns which uses a deque as the
// backing storage with an opitonal index for quick equality filtering.
template <typename NumericType>
class NumericDequeAccessor : public Accessor<NumericType> {
public:
NumericDequeAccessor(const std::deque<NumericType>* deque,
const std::deque<std::vector<uint32_t>>* index,
bool has_ordering)
: deque_(deque), index_(index), has_ordering_(has_ordering) {}
~NumericDequeAccessor() override = default;
uint32_t Size() const override {
return static_cast<uint32_t>(deque_->size());
}
NumericType Get(uint32_t idx) const override { return (*deque_)[idx]; }
bool HasOrdering() const override { return has_ordering_; }
uint32_t LowerBoundIndex(NumericType value) const override {
PERFETTO_DCHECK(HasOrdering());
auto it = std::lower_bound(deque_->begin(), deque_->end(), value);
return static_cast<uint32_t>(std::distance(deque_->begin(), it));
}
uint32_t UpperBoundIndex(NumericType value) const override {
PERFETTO_DCHECK(HasOrdering());
auto it = std::upper_bound(deque_->begin(), deque_->end(), value);
return static_cast<uint32_t>(std::distance(deque_->begin(), it));
}
bool CanFindEqualIndices() const override {
return std::is_integral<NumericType>::value && index_ != nullptr;
}
std::vector<uint32_t> EqualIndices(NumericType value) const override {
PERFETTO_DCHECK(CanFindEqualIndices());
if (value < 0 || static_cast<size_t>(value) >= index_->size())
return {};
return (*index_)[static_cast<size_t>(value)];
}
private:
const std::deque<NumericType>* deque_ = nullptr;
const std::deque<std::vector<uint32_t>>* index_ = nullptr;
bool has_ordering_ = false;
};
class TsEndAccessor : public Accessor<int64_t> {
public:
TsEndAccessor(const std::deque<int64_t>* ts, const std::deque<int64_t>* dur);
~TsEndAccessor() override;
uint32_t Size() const override { return static_cast<uint32_t>(ts_->size()); }
int64_t Get(uint32_t idx) const override {
return (*ts_)[idx] + (*dur_)[idx];
}
private:
const std::deque<int64_t>* ts_ = nullptr;
const std::deque<int64_t>* dur_ = nullptr;
};
class RowAccessor : public Accessor<uint32_t> {
public:
RowAccessor();
~RowAccessor() override;
uint32_t Size() const override {
return std::numeric_limits<uint32_t>::max();
}
uint32_t Get(uint32_t idx) const override { return idx; }
bool HasOrdering() const override { return true; }
uint32_t LowerBoundIndex(uint32_t idx) const override { return idx; }
uint32_t UpperBoundIndex(uint32_t idx) const override { return idx + 1; }
};
} // namespace trace_processor
} // namespace perfetto
#endif // SRC_TRACE_PROCESSOR_STORAGE_COLUMNS_H_