| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef SRC_TRACE_PROCESSOR_CONTAINERS_BIT_VECTOR_H_ |
| #define SRC_TRACE_PROCESSOR_CONTAINERS_BIT_VECTOR_H_ |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| |
| #include <algorithm> |
| #include <array> |
| #include <vector> |
| |
| #include "perfetto/base/logging.h" |
| |
| namespace perfetto { |
| namespace trace_processor { |
| |
| namespace internal { |
| |
| class BaseIterator; |
| class AllBitsIterator; |
| class SetBitsIterator; |
| |
| } // namespace internal |
| |
| // A bitvector which compactly stores a vector of bools using a single bit |
| // for each bool. |
| class BitVector { |
| public: |
| using AllBitsIterator = internal::AllBitsIterator; |
| using SetBitsIterator = internal::SetBitsIterator; |
| |
| // Creates an empty bitvector. |
| BitVector(); |
| |
| explicit BitVector(std::initializer_list<bool> init); |
| |
| // Creates a bitvector of |count| size filled with |value|. |
| explicit BitVector(uint32_t count, bool value = false); |
| |
| // Enable moving bitvectors as they have no unmovable state. |
| BitVector(BitVector&&) noexcept = default; |
| BitVector& operator=(BitVector&&) = default; |
| |
| // Create a copy of the bitvector. |
| BitVector Copy() const; |
| |
| // Returns the size of the bitvector. |
| uint32_t size() const { return static_cast<uint32_t>(size_); } |
| |
| // Returns whether the bit at |idx| is set. |
| bool IsSet(uint32_t idx) const { |
| PERFETTO_DCHECK(idx < size()); |
| |
| Address a = IndexToAddress(idx); |
| return blocks_[a.block_idx].IsSet(a.block_offset); |
| } |
| |
| // Returns the number of set bits in the bitvector. |
| uint32_t CountSetBits() const { return CountSetBits(size()); } |
| |
| // Returns the number of set bits between the start of the bitvector |
| // (inclusive) and the index |end| (exclusive). |
| uint32_t CountSetBits(uint32_t end) const { |
| if (end == 0) |
| return 0; |
| |
| // Although the external interface we present uses an exclusive |end|, |
| // internally it's a lot nicer to work with an inclusive |end| (mainly |
| // because we get block rollovers on exclusive ends which means we need |
| // to have if checks to ensure we don't overflow the number of blocks). |
| Address addr = IndexToAddress(end - 1); |
| uint32_t idx = addr.block_idx; |
| |
| // Add the number of set bits until the start of the block to the number |
| // of set bits until the end address inside the block. |
| return counts_[idx] + blocks_[idx].CountSetBits(addr.block_offset); |
| } |
| |
| // Returns the index of the |n|th set bit. Should only be called with |n| < |
| // CountSetBits(). |
| uint32_t IndexOfNthSet(uint32_t n) const { |
| PERFETTO_DCHECK(n < CountSetBits()); |
| |
| // First search for the block which, up until the start of it, has more than |
| // n bits set. Note that this should never return |counts.begin()| as |
| // that should always be 0. |
| // TODO(lalitm): investigate whether we can make this faster with small |
| // binary search followed by a linear search instead of binary searching the |
| // full way. |
| auto it = std::upper_bound(counts_.begin(), counts_.end(), n); |
| PERFETTO_DCHECK(it != counts_.begin()); |
| |
| // Go back one block to find the block which has the bit we are looking for. |
| uint32_t block_idx = |
| static_cast<uint32_t>(std::distance(counts_.begin(), it) - 1); |
| |
| // Figure out how many set bits forward we are looking inside the block |
| // by taking away the number of bits at the start of the block from n. |
| uint32_t set_in_block = n - counts_[block_idx]; |
| |
| // Compute the address of the bit in the block then convert the full |
| // address back to an index. |
| BlockOffset block_offset = blocks_[block_idx].IndexOfNthSet(set_in_block); |
| return AddressToIndex(Address{block_idx, block_offset}); |
| } |
| |
| // Sets the bit at index |idx| to true and returns the previous value. |
| bool Set(uint32_t idx) { |
| // Set the bit to the correct value inside the block but store the old |
| // bit to help fix the counts. |
| auto addr = IndexToAddress(idx); |
| bool old_value = blocks_[addr.block_idx].IsSet(addr.block_offset); |
| |
| // If the old value was unset, set the bit and add one to the count. |
| if (PERFETTO_LIKELY(!old_value)) { |
| blocks_[addr.block_idx].Set(addr.block_offset); |
| |
| uint32_t size = static_cast<uint32_t>(counts_.size()); |
| for (uint32_t i = addr.block_idx + 1; i < size; ++i) { |
| counts_[i]++; |
| } |
| } |
| return old_value; |
| } |
| |
| // Sets the bit at index |idx| to false. |
| void Clear(uint32_t idx) { |
| // Set the bit to the correct value inside the block but store the old |
| // bit to help fix the counts. |
| auto addr = IndexToAddress(idx); |
| bool old_value = blocks_[addr.block_idx].IsSet(addr.block_offset); |
| |
| // If the old value was set, clear the bit and subtract one from all the |
| // counts. |
| if (PERFETTO_LIKELY(old_value)) { |
| blocks_[addr.block_idx].Clear(addr.block_offset); |
| |
| uint32_t size = static_cast<uint32_t>(counts_.size()); |
| for (uint32_t i = addr.block_idx + 1; i < size; ++i) { |
| counts_[i]--; |
| } |
| } |
| } |
| |
| // Appends true to the bitvector. |
| void AppendTrue() { |
| Address addr = IndexToAddress(size_); |
| uint32_t old_blocks_size = static_cast<uint32_t>(blocks_.size()); |
| uint32_t new_blocks_size = addr.block_idx + 1; |
| |
| if (PERFETTO_UNLIKELY(new_blocks_size > old_blocks_size)) { |
| uint32_t t = CountSetBits(); |
| blocks_.emplace_back(); |
| counts_.emplace_back(t); |
| } |
| |
| size_++; |
| blocks_[addr.block_idx].Set(addr.block_offset); |
| } |
| |
| // Appends false to the bitvector. |
| void AppendFalse() { |
| Address addr = IndexToAddress(size_); |
| uint32_t old_blocks_size = static_cast<uint32_t>(blocks_.size()); |
| uint32_t new_blocks_size = addr.block_idx + 1; |
| |
| if (PERFETTO_UNLIKELY(new_blocks_size > old_blocks_size)) { |
| uint32_t t = CountSetBits(); |
| blocks_.emplace_back(); |
| counts_.emplace_back(t); |
| } |
| |
| size_++; |
| // We don't need to clear the bit as we ensure that anything after |
| // size_ is always set to false. |
| } |
| |
| // Resizes the BitVector to the given |size|. |
| // Truncates the BitVector if |size| < |size()| or fills the new space with |
| // |value| if |size| > |size()|. Calling this method is a noop if |size| == |
| // |size()|. |
| void Resize(uint32_t size, bool value = false) { |
| uint32_t old_size = size_; |
| if (size == old_size) |
| return; |
| |
| // Empty bitvectors should be memory efficient so we don't keep any data |
| // around in the bitvector. |
| if (size == 0) { |
| blocks_.clear(); |
| counts_.clear(); |
| size_ = 0; |
| return; |
| } |
| |
| // Compute the address of the new last bit in the bitvector. |
| Address last_addr = IndexToAddress(size - 1); |
| uint32_t old_blocks_size = static_cast<uint32_t>(counts_.size()); |
| uint32_t new_blocks_size = last_addr.block_idx + 1; |
| |
| // Then, resize the block and count vectors to have the correct |
| // number of entries. |
| blocks_.resize(new_blocks_size); |
| counts_.resize(new_blocks_size); |
| |
| if (size > old_size) { |
| if (value) { |
| // If the new space should be filled with true, then set all the bits |
| // between the address of the old size and the new last address. |
| const Address& start = IndexToAddress(old_size); |
| Set(start, last_addr); |
| |
| // We then need to update the counts vector to match the changes we |
| // made to the blocks. |
| |
| // We start by adding the bits we set in the first block to the |
| // cummulative count before the range we changed. |
| Address end_of_block = {start.block_idx, |
| {Block::kWords - 1, BitWord::kBits - 1}}; |
| uint32_t count_in_block_after_end = |
| AddressToIndex(end_of_block) - AddressToIndex(start) + 1; |
| uint32_t set_count = CountSetBits() + count_in_block_after_end; |
| |
| for (uint32_t i = start.block_idx + 1; i <= last_addr.block_idx; ++i) { |
| // Set the count to the cummulative count so far. |
| counts_[i] = set_count; |
| |
| // Add a full block of set bits to the count. |
| set_count += Block::kBits; |
| } |
| } else { |
| // If the newly added bits are false, we just need to update the |
| // counts vector with the current size of the bitvector for all |
| // the newly added blocks. |
| if (new_blocks_size > old_blocks_size) { |
| uint32_t count = CountSetBits(); |
| for (uint32_t i = old_blocks_size; i < new_blocks_size; ++i) { |
| counts_[i] = count; |
| } |
| } |
| } |
| } else { |
| // Throw away all the bits after the new last bit. We do this to make |
| // future lookup, append and resize operations not have to worrying about |
| // trailing garbage bits in the last block. |
| blocks_[last_addr.block_idx].ClearAfter(last_addr.block_offset); |
| } |
| |
| // Actually update the size. |
| size_ = size; |
| } |
| |
| // Creates a BitVector of size |end| with the bits between |start| and |end| |
| // filled by calling the filler function |f(index of bit)|. |
| // |
| // As an example, suppose Range(3, 7, [](x) { return x < 5 }). This would |
| // result in the following bitvector: |
| // [0 0 0 1 1 0 0 0] |
| template <typename Filler = bool(uint32_t)> |
| static BitVector Range(uint32_t start, uint32_t end, Filler f) { |
| // Compute the block index and bitvector index where we start and end |
| // working one block at a time. |
| uint32_t start_fast_block = BlockCeil(start); |
| uint32_t start_fast_idx = BlockToIndex(start_fast_block); |
| uint32_t end_fast_block = BlockFloor(end); |
| uint32_t end_fast_idx = BlockToIndex(end_fast_block); |
| |
| // First, create the BitVector up to |start| then fill up to |
| // |start_fast_index| with values from the filler. |
| BitVector bv(start, false); |
| for (uint32_t i = start; i < start_fast_idx; ++i) { |
| bv.Append(f(i)); |
| } |
| |
| // At this point we can work one block at a time. |
| for (uint32_t i = start_fast_block; i < end_fast_block; ++i) { |
| bv.counts_.emplace_back(bv.CountSetBits()); |
| bv.blocks_.emplace_back(Block::FromFiller(bv.size_, f)); |
| bv.size_ += Block::kBits; |
| } |
| |
| // Add the last few elements to finish up to |end|. |
| for (uint32_t i = end_fast_idx; i < end; ++i) { |
| bv.Append(f(i)); |
| } |
| return bv; |
| } |
| |
| // Requests the removal of unused capacity. |
| // Matches the semantics of std::vector::shrink_to_fit. |
| void ShrinkToFit() { |
| blocks_.shrink_to_fit(); |
| counts_.shrink_to_fit(); |
| } |
| |
| // Updates the ith set bit of this bitvector with the value of |
| // |other.IsSet(i)|. |
| // |
| // This is the best way to batch update all the bits which are set; for |
| // example when filtering rows, we want to filter all rows which are currently |
| // included but ignore rows which have already been excluded. |
| // |
| // For example suppose the following: |
| // this: 1 1 0 0 1 0 1 |
| // other: 0 1 1 0 |
| // This will change this to the following: |
| // this: 0 1 0 0 1 0 0 |
| // TODO(lalitm): investigate whether we should just change this to And. |
| void UpdateSetBits(const BitVector& other); |
| |
| // Iterate all the bits in the BitVector. |
| // |
| // Usage: |
| // for (auto it = bv.IterateAllBits(); it; it.Next()) { |
| // ... |
| // } |
| AllBitsIterator IterateAllBits() const; |
| |
| // Iterate all the set bits in the BitVector. |
| // |
| // Usage: |
| // for (auto it = bv.IterateSetBits(); it; it.Next()) { |
| // ... |
| // } |
| SetBitsIterator IterateSetBits() const; |
| |
| // Returns the approximate cost (in bytes) of storing a bitvector with size |
| // |n|. This can be used to make decisions about whether using a BitVector is |
| // worthwhile. |
| // This cost should not be treated as exact - it just gives an indication of |
| // the memory needed. |
| static constexpr uint32_t ApproxBytesCost(uint32_t n) { |
| // The two main things making up a bitvector is the cost of the blocks of |
| // bits and the cost of the counts vector. |
| return BlockCeil(n) * Block::kBits + BlockCeil(n) * sizeof(uint32_t); |
| } |
| |
| private: |
| friend class internal::BaseIterator; |
| friend class internal::AllBitsIterator; |
| friend class internal::SetBitsIterator; |
| |
| // Represents the offset of a bit within a block. |
| struct BlockOffset { |
| uint16_t word_idx; |
| uint16_t bit_idx; |
| }; |
| |
| // Represents the address of a bit within the bitvector. |
| struct Address { |
| uint32_t block_idx; |
| BlockOffset block_offset; |
| }; |
| |
| // Represents the smallest collection of bits we can refer to as |
| // one unit. |
| // |
| // Currently, this is implemented as a 64 bit integer as this is the |
| // largest type which we can assume to be present on all platforms. |
| class BitWord { |
| public: |
| static constexpr uint32_t kBits = 64; |
| |
| // Returns whether the bit at the given index is set. |
| bool IsSet(uint32_t idx) const { |
| PERFETTO_DCHECK(idx < kBits); |
| return (word_ >> idx) & 1ull; |
| } |
| |
| // Bitwise ors the given |mask| to the current value. |
| void Or(uint64_t mask) { word_ |= mask; } |
| |
| // Sets the bit at the given index to true. |
| void Set(uint32_t idx) { |
| PERFETTO_DCHECK(idx < kBits); |
| |
| // Or the value for the true shifted up to |idx| with the word. |
| Or(1ull << idx); |
| } |
| |
| // Sets the bit at the given index to false. |
| void Clear(uint32_t idx) { |
| PERFETTO_DCHECK(idx < kBits); |
| |
| // And the integer of all bits set apart from |idx| with the word. |
| word_ &= ~(1ull << idx); |
| } |
| |
| // Clears all the bits (i.e. sets the atom to zero). |
| void ClearAll() { word_ = 0; } |
| |
| // Returns the index of the nth set bit. |
| // Undefined if |n| >= |CountSetBits()|. |
| uint16_t IndexOfNthSet(uint32_t n) const { |
| PERFETTO_DCHECK(n < kBits); |
| |
| // The below code is very dense but essentially computes the nth set |
| // bit inside |atom| in the "broadword" style of programming (sometimes |
| // referred to as "SIMD within a register"). |
| // |
| // Instead of treating a uint64 as an individual unit, broadword |
| // algorithms treat them as a packed vector of uint8. By doing this, they |
| // allow branchless algorithms when considering bits of a uint64. |
| // |
| // In benchmarks, this algorithm has found to be the fastest, portable |
| // way of computing the nth set bit (if we were only targetting new |
| // versions of x64, we could also use pdep + ctz but unfortunately |
| // this would fail on WASM - this about 2.5-3x faster on x64). |
| // |
| // The code below was taken from the paper |
| // http://vigna.di.unimi.it/ftp/papers/Broadword.pdf |
| uint64_t s = word_ - ((word_ & 0xAAAAAAAAAAAAAAAA) >> 1); |
| s = (s & 0x3333333333333333) + ((s >> 2) & 0x3333333333333333); |
| s = ((s + (s >> 4)) & 0x0F0F0F0F0F0F0F0F) * L8; |
| |
| uint64_t b = (BwLessThan(s, n * L8) >> 7) * L8 >> 53 & ~7ull; |
| uint64_t l = n - ((s << 8) >> b & 0xFF); |
| s = (BwGtZero(((word_ >> b & 0xFF) * L8) & 0x8040201008040201) >> 7) * L8; |
| |
| uint64_t ret = b + ((BwLessThan(s, l * L8) >> 7) * L8 >> 56); |
| |
| return static_cast<uint16_t>(ret); |
| } |
| |
| // Returns the number of set bits. |
| uint32_t CountSetBits() const { |
| return static_cast<uint32_t>(PERFETTO_POPCOUNT(word_)); |
| } |
| |
| // Returns the number of set bits up to and including the bit at |idx|. |
| uint32_t CountSetBits(uint32_t idx) const { |
| PERFETTO_DCHECK(idx < kBits); |
| return static_cast<uint32_t>(PERFETTO_POPCOUNT(WordUntil(idx))); |
| } |
| |
| // Retains all bits up to and including the bit at |idx| and clears |
| // all bits after this point. |
| void ClearAfter(uint32_t idx) { |
| PERFETTO_DCHECK(idx < kBits); |
| word_ = WordUntil(idx); |
| } |
| |
| // Sets all bits between the bit at |start| and |end| (inclusive). |
| void Set(uint32_t start, uint32_t end) { |
| uint32_t diff = end - start; |
| word_ |= (MaskAllBitsSetUntil(diff) << static_cast<uint64_t>(start)); |
| } |
| |
| private: |
| // Constant with all the low bit of every byte set. |
| static constexpr uint64_t L8 = 0x0101010101010101; |
| |
| // Constant with all the high bit of every byte set. |
| static constexpr uint64_t H8 = 0x8080808080808080; |
| |
| // Returns a packed uint64 encoding whether each byte of x is less |
| // than each corresponding byte of y. |
| // This is computed in the "broadword" style of programming; see |
| // IndexOfNthSet for details on this. |
| static uint64_t BwLessThan(uint64_t x, uint64_t y) { |
| return (((y | H8) - (x & ~H8)) ^ x ^ y) & H8; |
| } |
| |
| // Returns a packed uint64 encoding whether each byte of x is greater |
| // than or equal zero. |
| // This is computed in the "broadword" style of programming; see |
| // IndexOfNthSet for details on this. |
| static uint64_t BwGtZero(uint64_t x) { return (((x | H8) - L8) | x) & H8; } |
| |
| // Returns the bits up to and including the bit at |idx|. |
| uint64_t WordUntil(uint32_t idx) const { |
| PERFETTO_DCHECK(idx < kBits); |
| |
| // To understand what is happeninng here, consider an example. |
| // Suppose we want to all the bits up to the 7th bit in the atom |
| // 7th |
| // | |
| // v |
| // atom: 01010101011111000 |
| // |
| // The easiest way to do this would be if we had a mask with only |
| // the bottom 7 bits set: |
| // mask: 00000000001111111 |
| uint64_t mask = MaskAllBitsSetUntil(idx); |
| |
| // Finish up by and'ing the atom with the computed mask. |
| return word_ & mask; |
| } |
| |
| // Return a mask of all the bits up to and including bit at |idx|. |
| static uint64_t MaskAllBitsSetUntil(uint32_t idx) { |
| // Start with 1 and shift it up (idx + 1) bits we get: |
| // top : 00000000010000000 |
| uint64_t top = 1ull << ((idx + 1ull) % kBits); |
| |
| // We need to handle the case where idx == 63. In this case |top| will be |
| // zero because 1 << ((idx + 1) % 64) == 1 << (64 % 64) == 1. |
| // In this case, we actually want top == 0. We can do this by shifting |
| // down by (idx + 1) / kBits - this will be a noop for every index other |
| // than idx == 63. This should also be free on x86 because of the mod |
| // instruction above. |
| top = top >> ((idx + 1) / kBits); |
| |
| // Then if we take away 1, we get precisely the mask we want. |
| return top - 1u; |
| } |
| |
| uint64_t word_ = 0; |
| }; |
| |
| // Represents a group of bits with a bitcount such that it is |
| // efficient to work on these bits. |
| // |
| // On x86 architectures we generally target for trace processor, the |
| // size of a cache line is 64 bytes (or 512 bits). For this reason, |
| // we make the size of the block contain 8 atoms as 8 * 64 == 512. |
| // |
| // TODO(lalitm): investigate whether we should tune this value for |
| // WASM and ARM. |
| class Block { |
| public: |
| // See class documentation for how these constants are chosen. |
| static constexpr uint16_t kWords = 8; |
| static constexpr uint32_t kBits = kWords * BitWord::kBits; |
| |
| // Returns whether the bit at the given address is set. |
| bool IsSet(const BlockOffset& addr) const { |
| PERFETTO_DCHECK(addr.word_idx < kWords); |
| |
| return words_[addr.word_idx].IsSet(addr.bit_idx); |
| } |
| |
| // Sets the bit at the given address to true. |
| void Set(const BlockOffset& addr) { |
| PERFETTO_DCHECK(addr.word_idx < kWords); |
| |
| words_[addr.word_idx].Set(addr.bit_idx); |
| } |
| |
| // Sets the bit at the given address to false. |
| void Clear(const BlockOffset& addr) { |
| PERFETTO_DCHECK(addr.word_idx < kWords); |
| |
| words_[addr.word_idx].Clear(addr.bit_idx); |
| } |
| |
| // Gets the offset of the nth set bit in this block. |
| BlockOffset IndexOfNthSet(uint32_t n) const { |
| uint32_t count = 0; |
| for (uint16_t i = 0; i < kWords; ++i) { |
| // Keep a running count of all the set bits in the atom. |
| uint32_t value = count + words_[i].CountSetBits(); |
| if (value <= n) { |
| count = value; |
| continue; |
| } |
| |
| // The running count of set bits is more than |n|. That means this atom |
| // contains the bit we are looking for. |
| |
| // Take away the number of set bits to the start of this atom from |n|. |
| uint32_t set_in_atom = n - count; |
| |
| // Figure out the index of the set bit inside the atom and create the |
| // address of this bit from that. |
| uint16_t bit_idx = words_[i].IndexOfNthSet(set_in_atom); |
| PERFETTO_DCHECK(bit_idx < 64); |
| return BlockOffset{i, bit_idx}; |
| } |
| PERFETTO_FATAL("Index out of bounds"); |
| } |
| |
| // Gets the number of set bits within a block up to and including the bit |
| // at the given address. |
| uint32_t CountSetBits(const BlockOffset& addr) const { |
| PERFETTO_DCHECK(addr.word_idx < kWords); |
| |
| // Count all the set bits in the atom until we reach the last atom |
| // index. |
| uint32_t count = 0; |
| for (uint32_t i = 0; i < addr.word_idx; ++i) { |
| count += words_[i].CountSetBits(); |
| } |
| |
| // For the last atom, only count the bits upto and including the bit |
| // index. |
| return count + words_[addr.word_idx].CountSetBits(addr.bit_idx); |
| } |
| |
| // Gets the number of set bits within a block up. |
| uint32_t CountSetBits() const { |
| uint32_t count = 0; |
| for (uint32_t i = 0; i < kWords; ++i) { |
| count += words_[i].CountSetBits(); |
| } |
| return count; |
| } |
| |
| // Retains all bits up to and including the bit at |addr| and clears |
| // all bits after this point. |
| void ClearAfter(const BlockOffset& offset) { |
| PERFETTO_DCHECK(offset.word_idx < kWords); |
| |
| // In the first atom, keep the bits until the address specified. |
| words_[offset.word_idx].ClearAfter(offset.bit_idx); |
| |
| // For all subsequent atoms, we just clear the whole atom. |
| for (uint32_t i = offset.word_idx + 1; i < kWords; ++i) { |
| words_[i].ClearAll(); |
| } |
| } |
| |
| // Set all the bits between the offsets given by |start| and |end| |
| // (inclusive). |
| void Set(const BlockOffset& start, const BlockOffset& end) { |
| if (start.word_idx == end.word_idx) { |
| // If there is only one word we will change, just set the range within |
| // the word. |
| words_[start.word_idx].Set(start.bit_idx, end.bit_idx); |
| return; |
| } |
| |
| // Otherwise, we have more than one word to set. To do this, we will |
| // do this in three steps. |
| |
| // First, we set the first word from the start to the end of the word. |
| words_[start.word_idx].Set(start.bit_idx, BitWord::kBits - 1); |
| |
| // Next, we set all words (except the last). |
| for (uint32_t i = start.word_idx + 1; i < end.word_idx; ++i) { |
| words_[i].Set(0, BitWord::kBits - 1); |
| } |
| |
| // Finally, we set the word block from the start to the end offset. |
| words_[end.word_idx].Set(0, end.bit_idx); |
| } |
| |
| template <typename Filler> |
| static Block FromFiller(uint32_t offset, Filler f) { |
| // We choose to iterate the bits as the outer loop as this allows us |
| // to reuse the mask and the bit offset between iterations of the loop. |
| // This makes a small (but noticable) impact in the performance of this |
| // function. |
| Block b; |
| for (uint32_t i = 0; i < BitWord::kBits; ++i) { |
| uint64_t mask = 1ull << i; |
| uint32_t offset_with_bit = offset + i; |
| for (uint32_t j = 0; j < Block::kWords; ++j) { |
| bool res = f(offset_with_bit + j * BitWord::kBits); |
| b.words_[j].Or(res ? mask : 0); |
| } |
| } |
| return b; |
| } |
| |
| private: |
| std::array<BitWord, kWords> words_{}; |
| }; |
| |
| BitVector(std::vector<Block> blocks, |
| std::vector<uint32_t> counts, |
| uint32_t size); |
| |
| BitVector(const BitVector&) = delete; |
| BitVector& operator=(const BitVector&) = delete; |
| |
| // Set all the bits between the addresses given by |start| and |end| |
| // (inclusive). |
| // Note: this method does not update the counts vector - that is the |
| // responibility of the caller. |
| void Set(const Address& start, const Address& end) { |
| static constexpr BlockOffset kFirstBlockOffset = BlockOffset{0, 0}; |
| static constexpr BlockOffset kLastBlockOffset = |
| BlockOffset{Block::kWords - 1, BitWord::kBits - 1}; |
| |
| if (start.block_idx == end.block_idx) { |
| // If there is only one block we will change, just set the range within |
| // the block. |
| blocks_[start.block_idx].Set(start.block_offset, end.block_offset); |
| return; |
| } |
| |
| // Otherwise, we have more than one block to set. To do this, we will |
| // do this in three steps. |
| |
| // First, we set the first block from the start to the end of the block. |
| blocks_[start.block_idx].Set(start.block_offset, kLastBlockOffset); |
| |
| // Next, we set all blocks (except the last). |
| for (uint32_t i = start.block_idx + 1; i < end.block_idx; ++i) { |
| blocks_[i].Set(kFirstBlockOffset, kLastBlockOffset); |
| } |
| |
| // Finally, we set the last block from the start to the end offset. |
| blocks_[end.block_idx].Set(kFirstBlockOffset, end.block_offset); |
| } |
| |
| // Helper function to append a bit. Generally, prefer to call AppendTrue |
| // or AppendFalse instead of this function if you know the type - they will |
| // be faster. |
| void Append(bool value) { |
| if (value) { |
| AppendTrue(); |
| } else { |
| AppendFalse(); |
| } |
| } |
| |
| // Returns the number of words which would be required to store a bit at |
| // |idx|. |
| static uint32_t WordCeil(uint32_t idx) { |
| // See |BlockCeil| for an explanation of this trick. |
| return (idx + BitWord::kBits - 1) / BitWord::kBits; |
| } |
| |
| static Address IndexToAddress(uint32_t idx) { |
| Address a; |
| a.block_idx = idx / Block::kBits; |
| |
| uint16_t bit_idx_inside_block = idx % Block::kBits; |
| a.block_offset.word_idx = bit_idx_inside_block / BitWord::kBits; |
| a.block_offset.bit_idx = bit_idx_inside_block % BitWord::kBits; |
| return a; |
| } |
| |
| static uint32_t AddressToIndex(Address addr) { |
| return addr.block_idx * Block::kBits + |
| addr.block_offset.word_idx * BitWord::kBits + |
| addr.block_offset.bit_idx; |
| } |
| |
| // Rounds |idx| up to the nearest block boundary and returns the block |
| // index. If |idx| is already on a block boundary, the current block is |
| // returned. |
| // |
| // This is useful to be able to find indices where "fast" algorithms can start |
| // which work on entire blocks. |
| static constexpr uint32_t BlockCeil(uint32_t idx) { |
| // Adding |Block::kBits - 1| gives us a quick way to get the ceil. We |
| // do this instead of adding 1 at the end because that gives incorrect |
| // answers for index % Block::kBits == 0. |
| return (idx + Block::kBits - 1) / Block::kBits; |
| } |
| |
| // Returns the index of the block which would store |idx|. |
| static constexpr uint32_t BlockFloor(uint32_t idx) { |
| return idx / Block::kBits; |
| } |
| |
| // Converts a block index to a index in the BitVector. |
| static constexpr uint32_t BlockToIndex(uint32_t block) { |
| return block * Block::kBits; |
| } |
| |
| uint32_t size_ = 0; |
| std::vector<uint32_t> counts_; |
| std::vector<Block> blocks_; |
| }; |
| |
| } // namespace trace_processor |
| } // namespace perfetto |
| |
| #endif // SRC_TRACE_PROCESSOR_CONTAINERS_BIT_VECTOR_H_ |