blob: 1cd80820194969ab28e40277e18ace9c00c4098b [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "perfetto/protozero/proto_utils.h"
#include <limits>
#include "perfetto/base/logging.h"
#include "perfetto/ext/base/utils.h"
#include "test/gtest_and_gmock.h"
namespace protozero {
namespace proto_utils {
namespace {
using ::perfetto::base::ArraySize;
struct VarIntExpectation {
const char* encoded;
size_t encoded_size;
uint64_t int_value;
};
const VarIntExpectation kVarIntExpectations[] = {
{"\x00", 1, 0},
{"\x01", 1, 0x1},
{"\x7f", 1, 0x7F},
{"\xFF\x01", 2, 0xFF},
{"\xFF\x7F", 2, 0x3FFF},
{"\x80\x80\x01", 3, 0x4000},
{"\xFF\xFF\x7F", 3, 0x1FFFFF},
{"\x80\x80\x80\x01", 4, 0x200000},
{"\xFF\xFF\xFF\x7F", 4, 0xFFFFFFF},
{"\x80\x80\x80\x80\x01", 5, 0x10000000},
{"\xFF\xFF\xFF\xFF\x0F", 5, 0xFFFFFFFF},
{"\x80\x80\x80\x80\x10", 5, 0x100000000},
{"\xFF\xFF\xFF\xFF\x7F", 5, 0x7FFFFFFFF},
{"\x80\x80\x80\x80\x80\x01", 6, 0x800000000},
{"\xFF\xFF\xFF\xFF\xFF\x7F", 6, 0x3FFFFFFFFFF},
{"\x80\x80\x80\x80\x80\x80\x01", 7, 0x40000000000},
{"\xFF\xFF\xFF\xFF\xFF\xFF\x7F", 7, 0x1FFFFFFFFFFFF},
{"\x80\x80\x80\x80\x80\x80\x80\x01", 8, 0x2000000000000},
{"\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x7F", 8, 0xFFFFFFFFFFFFFF},
{"\x80\x80\x80\x80\x80\x80\x80\x80\x01", 9, 0x100000000000000},
{"\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x7F", 9, 0x7FFFFFFFFFFFFFFF},
{"\x80\x80\x80\x80\x80\x80\x80\x80\x80\x01", 10, 0x8000000000000000},
{"\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x01", 10, 0xFFFFFFFFFFFFFFFF},
};
TEST(ProtoUtilsTest, FieldPreambleEncoding) {
// According to C++ standard, right shift of negative value has
// implementation-defined resulting value.
if ((static_cast<int32_t>(0x80000000u) >> 31) != -1)
FAIL() << "Platform has unsupported negative number format or arithmetic";
EXPECT_EQ(0x08u, MakeTagVarInt(1));
EXPECT_EQ(0x09u, MakeTagFixed<uint64_t>(1));
EXPECT_EQ(0x0Au, MakeTagLengthDelimited(1));
EXPECT_EQ(0x0Du, MakeTagFixed<uint32_t>(1));
EXPECT_EQ(0x03F8u, MakeTagVarInt(0x7F));
EXPECT_EQ(0x03F9u, MakeTagFixed<int64_t>(0x7F));
EXPECT_EQ(0x03FAu, MakeTagLengthDelimited(0x7F));
EXPECT_EQ(0x03FDu, MakeTagFixed<int32_t>(0x7F));
EXPECT_EQ(0x0400u, MakeTagVarInt(0x80));
EXPECT_EQ(0x0401u, MakeTagFixed<double>(0x80));
EXPECT_EQ(0x0402u, MakeTagLengthDelimited(0x80));
EXPECT_EQ(0x0405u, MakeTagFixed<float>(0x80));
EXPECT_EQ(0x01FFF8u, MakeTagVarInt(0x3fff));
EXPECT_EQ(0x01FFF9u, MakeTagFixed<int64_t>(0x3fff));
EXPECT_EQ(0x01FFFAu, MakeTagLengthDelimited(0x3fff));
EXPECT_EQ(0x01FFFDu, MakeTagFixed<int32_t>(0x3fff));
EXPECT_EQ(0x020000u, MakeTagVarInt(0x4000));
EXPECT_EQ(0x020001u, MakeTagFixed<int64_t>(0x4000));
EXPECT_EQ(0x020002u, MakeTagLengthDelimited(0x4000));
EXPECT_EQ(0x020005u, MakeTagFixed<int32_t>(0x4000));
}
TEST(ProtoUtilsTest, ZigZagEncoding) {
EXPECT_EQ(0u, ZigZagEncode(0));
EXPECT_EQ(1u, ZigZagEncode(-1));
EXPECT_EQ(2u, ZigZagEncode(1));
EXPECT_EQ(3u, ZigZagEncode(-2));
EXPECT_EQ(4294967293u, ZigZagEncode(-2147483647));
EXPECT_EQ(4294967294u, ZigZagEncode(2147483647));
EXPECT_EQ(std::numeric_limits<uint32_t>::max(),
ZigZagEncode(std::numeric_limits<int32_t>::min()));
EXPECT_EQ(std::numeric_limits<uint64_t>::max(),
ZigZagEncode(std::numeric_limits<int64_t>::min()));
EXPECT_EQ(0, ZigZagDecode(ZigZagEncode(0)));
EXPECT_EQ(-1, ZigZagDecode(ZigZagEncode(-1)));
EXPECT_EQ(1, ZigZagDecode(ZigZagEncode(1)));
EXPECT_EQ(-127, ZigZagDecode(ZigZagEncode(-127)));
EXPECT_EQ(0x7fffffff, ZigZagDecode(ZigZagEncode(0x7fffffff)));
EXPECT_EQ(9000000000, ZigZagDecode(ZigZagEncode(9000000000)));
EXPECT_EQ(-9000000000, ZigZagDecode(ZigZagEncode(-9000000000)));
}
TEST(ProtoUtilsTest, VarIntEncoding) {
for (size_t i = 0; i < ArraySize(kVarIntExpectations); ++i) {
const VarIntExpectation& exp = kVarIntExpectations[i];
uint8_t buf[32];
uint8_t* res = WriteVarInt<uint64_t>(exp.int_value, buf);
ASSERT_EQ(exp.encoded_size, static_cast<size_t>(res - buf));
ASSERT_EQ(0, memcmp(buf, exp.encoded, exp.encoded_size));
if (exp.int_value <= std::numeric_limits<uint32_t>::max()) {
uint8_t* res_32 =
WriteVarInt<uint32_t>(static_cast<uint32_t>(exp.int_value), buf);
ASSERT_EQ(exp.encoded_size, static_cast<size_t>(res_32 - buf));
ASSERT_EQ(0, memcmp(buf, exp.encoded, exp.encoded_size));
}
}
}
TEST(ProtoUtilsTest, VarIntEncodingNegative) {
uint8_t buf[32];
size_t expected_size = 10;
uint8_t expected[] = "\x9c\xff\xff\xff\xff\xff\xff\xff\xff\x01";
{
uint8_t* res = WriteVarInt<int8_t>(-100, buf);
ASSERT_EQ(expected_size, static_cast<size_t>(res - buf));
ASSERT_EQ(0, memcmp(buf, expected, expected_size));
}
{
uint8_t* res = WriteVarInt<int16_t>(-100, buf);
ASSERT_EQ(expected_size, static_cast<size_t>(res - buf));
ASSERT_EQ(0, memcmp(buf, expected, expected_size));
}
{
uint8_t* res = WriteVarInt<int32_t>(-100, buf);
ASSERT_EQ(expected_size, static_cast<size_t>(res - buf));
ASSERT_EQ(0, memcmp(buf, expected, expected_size));
}
{
uint8_t* res = WriteVarInt<int64_t>(-100, buf);
ASSERT_EQ(expected_size, static_cast<size_t>(res - buf));
ASSERT_EQ(0, memcmp(buf, expected, expected_size));
}
}
TEST(ProtoUtilsTest, RedundantVarIntEncoding) {
uint8_t buf[kMessageLengthFieldSize];
WriteRedundantVarInt(0, buf);
EXPECT_EQ(0, memcmp("\x80\x80\x80\x00", buf, sizeof(buf)));
WriteRedundantVarInt(1, buf);
EXPECT_EQ(0, memcmp("\x81\x80\x80\x00", buf, sizeof(buf)));
WriteRedundantVarInt(0x80, buf);
EXPECT_EQ(0, memcmp("\x80\x81\x80\x00", buf, sizeof(buf)));
WriteRedundantVarInt(0x332211, buf);
EXPECT_EQ(0, memcmp("\x91\xC4\xCC\x01", buf, sizeof(buf)));
// Largest allowed length.
WriteRedundantVarInt(0x0FFFFFFF, buf);
EXPECT_EQ(0, memcmp("\xFF\xFF\xFF\x7F", buf, sizeof(buf)));
}
TEST(ProtoUtilsTest, VarIntDecoding) {
for (size_t i = 0; i < ArraySize(kVarIntExpectations); ++i) {
const VarIntExpectation& exp = kVarIntExpectations[i];
uint64_t value = std::numeric_limits<uint64_t>::max();
const uint8_t* res = ParseVarInt(
reinterpret_cast<const uint8_t*>(exp.encoded),
reinterpret_cast<const uint8_t*>(exp.encoded + exp.encoded_size),
&value);
ASSERT_EQ(reinterpret_cast<const void*>(exp.encoded + exp.encoded_size),
reinterpret_cast<const void*>(res));
ASSERT_EQ(exp.int_value, value);
}
}
// ParseVarInt() must fail gracefully if we hit the |end| without seeing the
// MSB == 0 (i.e. end-of-sequence).
TEST(ProtoUtilsTest, VarIntDecodingOutOfBounds) {
uint8_t buf[] = {0xff, 0xff, 0xff, 0xff};
for (size_t i = 0; i < 5; i++) {
uint64_t value = static_cast<uint64_t>(-1);
const uint8_t* res = ParseVarInt(buf, buf + i, &value);
EXPECT_EQ(&buf[0], res);
EXPECT_EQ(0u, value);
}
}
// Even if we see a valid end-of-sequence, ParseVarInt() must fail if the number
// is larger than 10 bytes. That would cause subtl bugs when trying to shift
// left by more than 64 bits.
TEST(ProtoUtilsTest, RejectVarIntTooBig) {
// This is the biggest valid varint we support (2**64 - 1).
uint8_t good[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01};
// Parsing this value must succeed.
uint64_t value = static_cast<uint64_t>(-1);
const uint8_t* res = ParseVarInt(&good[0], &good[sizeof(good)], &value);
EXPECT_EQ(&good[sizeof(good)], res);
EXPECT_EQ(value, static_cast<uint64_t>(-1));
uint8_t bad[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x01};
value = static_cast<uint64_t>(-1);
res = ParseVarInt(&bad[0], &bad[sizeof(bad)], &value);
EXPECT_EQ(&bad[0], res);
EXPECT_EQ(0u, value);
}
} // namespace
} // namespace proto_utils
} // namespace protozero