blob: 8d55c1d78cc6fc801b57e1fbbb456501444aa400 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "perfetto/profiling/pprof_builder.h"
#include "perfetto/base/build_config.h"
#if !PERFETTO_BUILDFLAG(PERFETTO_OS_WIN)
#include <cxxabi.h>
#endif
#include <algorithm>
#include <cinttypes>
#include <map>
#include <set>
#include <unordered_map>
#include <vector>
#include "perfetto/base/logging.h"
#include "perfetto/ext/base/hash.h"
#include "perfetto/ext/base/string_utils.h"
#include "perfetto/ext/base/utils.h"
#include "perfetto/protozero/packed_repeated_fields.h"
#include "perfetto/protozero/scattered_heap_buffer.h"
#include "perfetto/trace_processor/trace_processor.h"
#include "src/trace_processor/containers/string_pool.h"
#include "src/traceconv/utils.h"
#include "protos/third_party/pprof/profile.pbzero.h"
// Quick hint on navigating the file:
// Conversions for both perf and heap profiles start with |TraceToPprof|.
// Non-shared logic is in the |heap_profile| and |perf_profile| namespaces.
//
// To build one or more profiles, first the callstack information is queried
// from the SQL tables, and converted into an in-memory representation by
// |PreprocessLocations|. Then an instance of |GProfileBuilder| is used to
// accumulate samples for that profile, and emit all additional information as a
// serialized proto. Only the entities referenced by that particular
// |GProfileBuilder| instance are emitted.
//
// See protos/third_party/pprof/profile.proto for the meaning of terms like
// function/location/line.
namespace {
using StringId = ::perfetto::trace_processor::StringPool::Id;
// In-memory representation of a Profile.Function.
struct Function {
StringId name_id = StringId::Null();
StringId system_name_id = StringId::Null();
StringId filename_id = StringId::Null();
Function(StringId n, StringId s, StringId f)
: name_id(n), system_name_id(s), filename_id(f) {}
bool operator==(const Function& other) const {
return std::tie(name_id, system_name_id, filename_id) ==
std::tie(other.name_id, other.system_name_id, other.filename_id);
}
};
// In-memory representation of a Profile.Line.
struct Line {
int64_t function_id = 0; // LocationTracker's interned Function id
int64_t line_no = 0;
Line(int64_t func, int64_t line) : function_id(func), line_no(line) {}
bool operator==(const Line& other) const {
return function_id == other.function_id && line_no == other.line_no;
}
};
// In-memory representation of a Profile.Location.
struct Location {
int64_t mapping_id = 0; // sqlite row id
// Common case: location references a single function.
int64_t single_function_id = 0; // interned Function id
// Alternatively: multiple inlined functions, recovered via offline
// symbolisation. Leaf-first ordering.
std::vector<Line> inlined_functions;
Location(int64_t map, int64_t func, std::vector<Line> inlines)
: mapping_id(map),
single_function_id(func),
inlined_functions(std::move(inlines)) {}
bool operator==(const Location& other) const {
return std::tie(mapping_id, single_function_id, inlined_functions) ==
std::tie(other.mapping_id, other.single_function_id,
other.inlined_functions);
}
};
} // namespace
template <>
struct std::hash<Function> {
size_t operator()(const Function& loc) const {
perfetto::base::Hasher hasher;
hasher.Update(loc.name_id.raw_id());
hasher.Update(loc.system_name_id.raw_id());
hasher.Update(loc.filename_id.raw_id());
return static_cast<size_t>(hasher.digest());
}
};
template <>
struct std::hash<Location> {
size_t operator()(const Location& loc) const {
perfetto::base::Hasher hasher;
hasher.Update(loc.mapping_id);
hasher.Update(loc.single_function_id);
for (auto line : loc.inlined_functions) {
hasher.Update(line.function_id);
hasher.Update(line.line_no);
}
return static_cast<size_t>(hasher.digest());
}
};
namespace perfetto {
namespace trace_to_text {
namespace {
using ::perfetto::trace_processor::Iterator;
uint64_t ToPprofId(int64_t id) {
PERFETTO_DCHECK(id >= 0);
return static_cast<uint64_t>(id) + 1;
}
std::string AsCsvString(std::vector<uint64_t> vals) {
std::string ret;
for (size_t i = 0; i < vals.size(); i++) {
if (i != 0) {
ret += ",";
}
ret += std::to_string(vals[i]);
}
return ret;
}
std::optional<int64_t> GetStatsEntry(
trace_processor::TraceProcessor* tp,
const std::string& name,
std::optional<uint64_t> idx = std::nullopt) {
std::string query = "select value from stats where name == '" + name + "'";
if (idx.has_value())
query += " and idx == " + std::to_string(idx.value());
auto it = tp->ExecuteQuery(query);
if (!it.Next()) {
if (!it.Status().ok()) {
PERFETTO_DFATAL_OR_ELOG("Invalid iterator: %s",
it.Status().message().c_str());
return std::nullopt;
}
// some stats are not present unless non-zero
return std::make_optional(0);
}
return std::make_optional(it.Get(0).AsLong());
}
// Interns Locations, Lines, and Functions. Interning is done by the entity's
// contents, and has no relation to the row ids in the SQL tables.
// Contains all data for the trace, so can be reused when emitting multiple
// profiles.
//
// TODO(rsavitski): consider moving mappings into here as well. For now, they're
// still emitted in a single scan during profile building. Mappings should be
// unique-enough already in the SQL tables, with only incremental state clearing
// duplicating entries.
class LocationTracker {
public:
int64_t InternLocation(Location loc) {
auto it = locations_.find(loc);
if (it == locations_.end()) {
bool inserted = false;
std::tie(it, inserted) = locations_.emplace(
std::move(loc), static_cast<int64_t>(locations_.size()));
PERFETTO_DCHECK(inserted);
}
return it->second;
}
int64_t InternFunction(Function func) {
auto it = functions_.find(func);
if (it == functions_.end()) {
bool inserted = false;
std::tie(it, inserted) =
functions_.emplace(func, static_cast<int64_t>(functions_.size()));
PERFETTO_DCHECK(inserted);
}
return it->second;
}
bool IsCallsiteProcessed(int64_t callstack_id) const {
return callsite_to_locations_.find(callstack_id) !=
callsite_to_locations_.end();
}
void MaybeSetCallsiteLocations(int64_t callstack_id,
const std::vector<int64_t>& locs) {
// nop if already set
callsite_to_locations_.emplace(callstack_id, locs);
}
const std::vector<int64_t>& LocationsForCallstack(
int64_t callstack_id) const {
auto it = callsite_to_locations_.find(callstack_id);
PERFETTO_CHECK(callstack_id >= 0 && it != callsite_to_locations_.end());
return it->second;
}
const std::unordered_map<Location, int64_t>& AllLocations() const {
return locations_;
}
const std::unordered_map<Function, int64_t>& AllFunctions() const {
return functions_;
}
private:
// Root-first location ids for a given callsite id.
std::unordered_map<int64_t, std::vector<int64_t>> callsite_to_locations_;
std::unordered_map<Location, int64_t> locations_;
std::unordered_map<Function, int64_t> functions_;
};
struct PreprocessedInline {
// |name_id| is already demangled
StringId name_id = StringId::Null();
StringId filename_id = StringId::Null();
int64_t line_no = 0;
PreprocessedInline(StringId s, StringId f, int64_t line)
: name_id(s), filename_id(f), line_no(line) {}
};
std::unordered_map<int64_t, std::vector<PreprocessedInline>>
PreprocessInliningInfo(trace_processor::TraceProcessor* tp,
trace_processor::StringPool* interner) {
std::unordered_map<int64_t, std::vector<PreprocessedInline>> inlines;
// Most-inlined function (leaf) has the lowest id within a symbol set. Query
// such that the per-set line vectors are built up leaf-first.
Iterator it = tp->ExecuteQuery(
"select symbol_set_id, name, source_file, line_number from "
"stack_profile_symbol order by symbol_set_id asc, id asc;");
while (it.Next()) {
int64_t symbol_set_id = it.Get(0).AsLong();
auto func_sysname = it.Get(1).is_null() ? "" : it.Get(1).AsString();
auto filename = it.Get(2).is_null() ? "" : it.Get(2).AsString();
int64_t line_no = it.Get(3).is_null() ? 0 : it.Get(3).AsLong();
inlines[symbol_set_id].emplace_back(interner->InternString(func_sysname),
interner->InternString(filename),
line_no);
}
if (!it.Status().ok()) {
PERFETTO_DFATAL_OR_ELOG("Invalid iterator: %s",
it.Status().message().c_str());
return {};
}
return inlines;
}
// Extracts and interns the unique frames and locations (as defined by the proto
// format) from the callstack SQL tables.
//
// Approach:
// * for each callstack (callsite ids of the leaves):
// * use experimental_annotated_callstack to build the full list of
// constituent frames
// * for each frame (root to leaf):
// * intern the location and function(s)
// * remember the mapping from callsite_id to the callstack so far (from
// the root and including the frame being considered)
//
// Optionally mixes in the annotations as a frame name suffix (since there's no
// good way to attach extra info to locations in the proto format). This relies
// on the annotations (produced by experimental_annotated_callstack) to be
// stable for a given callsite (equivalently: dependent only on their parents).
LocationTracker PreprocessLocations(trace_processor::TraceProcessor* tp,
trace_processor::StringPool* interner,
bool annotate_frames) {
LocationTracker tracker;
// Keyed by symbol_set_id, discarded once this function converts the inlines
// into Line and Function entries.
std::unordered_map<int64_t, std::vector<PreprocessedInline>> inlining_info =
PreprocessInliningInfo(tp, interner);
// Higher callsite ids most likely correspond to the deepest stacks, so we'll
// fill more of the overall callsite->location map by visiting the callsited
// in decreasing id order. Since processing a callstack also fills in the data
// for all parent callsites.
Iterator cid_it = tp->ExecuteQuery(
"select id from stack_profile_callsite order by id desc;");
while (cid_it.Next()) {
int64_t query_cid = cid_it.Get(0).AsLong();
// If the leaf has been processed, the rest of the stack is already known.
if (tracker.IsCallsiteProcessed(query_cid))
continue;
std::string annotated_query =
"select sp.id, sp.annotation, spf.mapping, spf.name, "
"coalesce(spf.deobfuscated_name, demangle(spf.name), spf.name), "
"spf.symbol_set_id from "
"experimental_annotated_callstack(" +
std::to_string(query_cid) +
") sp join stack_profile_frame spf on (sp.frame_id == spf.id) "
"order by depth asc";
Iterator c_it = tp->ExecuteQuery(annotated_query);
std::vector<int64_t> callstack_loc_ids;
while (c_it.Next()) {
int64_t cid = c_it.Get(0).AsLong();
auto annotation = c_it.Get(1).is_null() ? "" : c_it.Get(1).AsString();
int64_t mapping_id = c_it.Get(2).AsLong();
auto func_sysname = c_it.Get(3).is_null() ? "" : c_it.Get(3).AsString();
auto func_name = c_it.Get(4).is_null() ? "" : c_it.Get(4).AsString();
std::optional<int64_t> symbol_set_id =
c_it.Get(5).is_null() ? std::nullopt
: std::make_optional(c_it.Get(5).AsLong());
Location loc(mapping_id, /*single_function_id=*/-1, {});
auto intern_function = [interner, &tracker, annotate_frames](
StringId func_sysname_id,
StringId original_func_name_id,
StringId filename_id,
const std::string& anno) {
std::string fname = interner->Get(original_func_name_id).ToStdString();
if (annotate_frames && !anno.empty() && !fname.empty())
fname = fname + " [" + anno + "]";
StringId func_name_id = interner->InternString(base::StringView(fname));
Function func(func_name_id, func_sysname_id, filename_id);
return tracker.InternFunction(func);
};
// Inlining information available
if (symbol_set_id.has_value()) {
auto it = inlining_info.find(*symbol_set_id);
if (it == inlining_info.end()) {
PERFETTO_DFATAL_OR_ELOG(
"Failed to find stack_profile_symbol entry for symbol_set_id "
"%" PRIi64 "",
*symbol_set_id);
return {};
}
// N inlined functions
// The symbolised packets currently assume pre-demangled data (as that's
// the default of llvm-symbolizer), so we don't have a system name for
// each deinlined frame. Set the human-readable name for both fields. We
// can change this, but there's no demand for accurate system names in
// pprofs.
for (const auto& line : it->second) {
int64_t func_id = intern_function(line.name_id, line.name_id,
line.filename_id, annotation);
loc.inlined_functions.emplace_back(func_id, line.line_no);
}
} else {
// Otherwise - single function
int64_t func_id =
intern_function(interner->InternString(func_sysname),
interner->InternString(func_name),
/*filename_id=*/StringId::Null(), annotation);
loc.single_function_id = func_id;
}
int64_t loc_id = tracker.InternLocation(std::move(loc));
// Update the tracker with the locations so far (for example, at depth 2,
// we'll have 3 root-most locations in |callstack_loc_ids|).
callstack_loc_ids.push_back(loc_id);
tracker.MaybeSetCallsiteLocations(cid, callstack_loc_ids);
}
if (!c_it.Status().ok()) {
PERFETTO_DFATAL_OR_ELOG("Invalid iterator: %s",
c_it.Status().message().c_str());
return {};
}
}
if (!cid_it.Status().ok()) {
PERFETTO_DFATAL_OR_ELOG("Invalid iterator: %s",
cid_it.Status().message().c_str());
return {};
}
return tracker;
}
// Builds the |perftools.profiles.Profile| proto.
class GProfileBuilder {
public:
GProfileBuilder(const LocationTracker& locations,
trace_processor::StringPool* interner)
: locations_(locations), interner_(interner) {
// The pprof format requires the first entry in the string table to be the
// empty string.
int64_t empty_id = ToStringTableId(StringId::Null());
PERFETTO_CHECK(empty_id == 0);
}
void WriteSampleTypes(
const std::vector<std::pair<std::string, std::string>>& sample_types) {
for (const auto& st : sample_types) {
auto* sample_type = result_->add_sample_type();
sample_type->set_type(
ToStringTableId(interner_->InternString(base::StringView(st.first))));
sample_type->set_unit(ToStringTableId(
interner_->InternString(base::StringView(st.second))));
}
}
bool AddSample(const protozero::PackedVarInt& values, int64_t callstack_id) {
const auto& location_ids = locations_.LocationsForCallstack(callstack_id);
if (location_ids.empty()) {
PERFETTO_DFATAL_OR_ELOG(
"Failed to find frames for callstack id %" PRIi64 "", callstack_id);
return false;
}
// LocationTracker stores location lists root-first, but the pprof format
// requires leaf-first.
protozero::PackedVarInt packed_locs;
for (auto it = location_ids.rbegin(); it != location_ids.rend(); ++it)
packed_locs.Append(ToPprofId(*it));
auto* gsample = result_->add_sample();
gsample->set_value(values);
gsample->set_location_id(packed_locs);
// Remember the locations s.t. we only serialize the referenced ones.
seen_locations_.insert(location_ids.cbegin(), location_ids.cend());
return true;
}
std::string CompleteProfile(trace_processor::TraceProcessor* tp,
bool write_mappings = true) {
std::set<int64_t> seen_mappings;
std::set<int64_t> seen_functions;
if (!WriteLocations(&seen_mappings, &seen_functions))
return {};
if (!WriteFunctions(seen_functions))
return {};
if (write_mappings && !WriteMappings(tp, seen_mappings))
return {};
WriteStringTable();
return result_.SerializeAsString();
}
private:
// Serializes the Profile.Location entries referenced by this profile.
bool WriteLocations(std::set<int64_t>* seen_mappings,
std::set<int64_t>* seen_functions) {
const std::unordered_map<Location, int64_t>& locations =
locations_.AllLocations();
size_t written_locations = 0;
for (const auto& loc_and_id : locations) {
const auto& loc = loc_and_id.first;
int64_t id = loc_and_id.second;
if (seen_locations_.find(id) == seen_locations_.end())
continue;
written_locations += 1;
seen_mappings->emplace(loc.mapping_id);
auto* glocation = result_->add_location();
glocation->set_id(ToPprofId(id));
glocation->set_mapping_id(ToPprofId(loc.mapping_id));
if (!loc.inlined_functions.empty()) {
for (const auto& line : loc.inlined_functions) {
seen_functions->insert(line.function_id);
auto* gline = glocation->add_line();
gline->set_function_id(ToPprofId(line.function_id));
gline->set_line(line.line_no);
}
} else {
seen_functions->insert(loc.single_function_id);
glocation->add_line()->set_function_id(
ToPprofId(loc.single_function_id));
}
}
if (written_locations != seen_locations_.size()) {
PERFETTO_DFATAL_OR_ELOG(
"Found only %zu/%zu locations during serialization.",
written_locations, seen_locations_.size());
return false;
}
return true;
}
// Serializes the Profile.Function entries referenced by this profile.
bool WriteFunctions(const std::set<int64_t>& seen_functions) {
const std::unordered_map<Function, int64_t>& functions =
locations_.AllFunctions();
size_t written_functions = 0;
for (const auto& func_and_id : functions) {
const auto& func = func_and_id.first;
int64_t id = func_and_id.second;
if (seen_functions.find(id) == seen_functions.end())
continue;
written_functions += 1;
auto* gfunction = result_->add_function();
gfunction->set_id(ToPprofId(id));
gfunction->set_name(ToStringTableId(func.name_id));
gfunction->set_system_name(ToStringTableId(func.system_name_id));
if (!func.filename_id.is_null())
gfunction->set_filename(ToStringTableId(func.filename_id));
}
if (written_functions != seen_functions.size()) {
PERFETTO_DFATAL_OR_ELOG(
"Found only %zu/%zu functions during serialization.",
written_functions, seen_functions.size());
return false;
}
return true;
}
// Serializes the Profile.Mapping entries referenced by this profile.
bool WriteMappings(trace_processor::TraceProcessor* tp,
const std::set<int64_t>& seen_mappings) {
Iterator mapping_it = tp->ExecuteQuery(
"SELECT id, exact_offset, start, end, name, build_id "
"FROM stack_profile_mapping;");
size_t mappings_no = 0;
while (mapping_it.Next()) {
int64_t id = mapping_it.Get(0).AsLong();
if (seen_mappings.find(id) == seen_mappings.end())
continue;
++mappings_no;
auto interned_filename = ToStringTableId(
interner_->InternString(mapping_it.Get(4).AsString()));
auto interned_build_id = ToStringTableId(
interner_->InternString(mapping_it.Get(5).AsString()));
auto* gmapping = result_->add_mapping();
gmapping->set_id(ToPprofId(id));
gmapping->set_file_offset(
static_cast<uint64_t>(mapping_it.Get(1).AsLong()));
gmapping->set_memory_start(
static_cast<uint64_t>(mapping_it.Get(2).AsLong()));
gmapping->set_memory_limit(
static_cast<uint64_t>(mapping_it.Get(3).AsLong()));
gmapping->set_filename(interned_filename);
gmapping->set_build_id(interned_build_id);
}
if (!mapping_it.Status().ok()) {
PERFETTO_DFATAL_OR_ELOG("Invalid mapping iterator: %s",
mapping_it.Status().message().c_str());
return false;
}
if (mappings_no != seen_mappings.size()) {
PERFETTO_DFATAL_OR_ELOG("Missing mappings.");
return false;
}
return true;
}
void WriteStringTable() {
for (StringId id : string_table_) {
trace_processor::NullTermStringView s = interner_->Get(id);
result_->add_string_table(s.data(), s.size());
}
}
int64_t ToStringTableId(StringId interned_id) {
auto it = interning_remapper_.find(interned_id);
if (it == interning_remapper_.end()) {
int64_t table_id = static_cast<int64_t>(string_table_.size());
string_table_.push_back(interned_id);
bool inserted = false;
std::tie(it, inserted) =
interning_remapper_.emplace(interned_id, table_id);
PERFETTO_DCHECK(inserted);
}
return it->second;
}
// Contains all locations, lines, functions (in memory):
const LocationTracker& locations_;
// String interner, strings referenced by LocationTracker are already
// interned. The new internings will come from mappings, and sample types.
trace_processor::StringPool* interner_;
// The profile format uses the repeated string_table field's index as an
// implicit id, so these structures remap the interned strings into sequential
// ids. Only the strings referenced by this GProfileBuilder instance will be
// added to the table.
std::unordered_map<StringId, int64_t> interning_remapper_;
std::vector<StringId> string_table_;
// Profile proto being serialized.
protozero::HeapBuffered<third_party::perftools::profiles::pbzero::Profile>
result_;
// Set of locations referenced by the added samples.
std::set<int64_t> seen_locations_;
};
namespace heap_profile {
struct View {
const char* type;
const char* unit;
const char* aggregator;
const char* filter;
};
const View kMallocViews[] = {
{"Total malloc count", "count", "sum(count)", "size >= 0"},
{"Total malloc size", "bytes", "SUM(size)", "size >= 0"},
{"Unreleased malloc count", "count", "SUM(count)", nullptr},
{"Unreleased malloc size", "bytes", "SUM(size)", nullptr}};
const View kGenericViews[] = {
{"Total count", "count", "sum(count)", "size >= 0"},
{"Total size", "bytes", "SUM(size)", "size >= 0"},
{"Unreleased count", "count", "SUM(count)", nullptr},
{"Unreleased size", "bytes", "SUM(size)", nullptr}};
const View kJavaSamplesViews[] = {
{"Total allocation count", "count", "SUM(count)", nullptr},
{"Total allocation size", "bytes", "SUM(size)", nullptr}};
static bool VerifyPIDStats(trace_processor::TraceProcessor* tp, uint64_t pid) {
bool success = true;
std::optional<int64_t> stat =
GetStatsEntry(tp, "heapprofd_buffer_corrupted", std::make_optional(pid));
if (!stat.has_value()) {
PERFETTO_DFATAL_OR_ELOG("Failed to get heapprofd_buffer_corrupted stat");
} else if (stat.value() > 0) {
success = false;
PERFETTO_ELOG("WARNING: The profile for %" PRIu64
" ended early due to a buffer corruption."
" THIS IS ALWAYS A BUG IN HEAPPROFD OR"
" CLIENT MEMORY CORRUPTION.",
pid);
}
stat = GetStatsEntry(tp, "heapprofd_buffer_overran", std::make_optional(pid));
if (!stat.has_value()) {
PERFETTO_DFATAL_OR_ELOG("Failed to get heapprofd_buffer_overran stat");
} else if (stat.value() > 0) {
success = false;
PERFETTO_ELOG("WARNING: The profile for %" PRIu64
" ended early due to a buffer overrun.",
pid);
}
stat = GetStatsEntry(tp, "heapprofd_rejected_concurrent", pid);
if (!stat.has_value()) {
PERFETTO_DFATAL_OR_ELOG("Failed to get heapprofd_rejected_concurrent stat");
} else if (stat.value() > 0) {
success = false;
PERFETTO_ELOG("WARNING: The profile for %" PRIu64
" was rejected due to a concurrent profile.",
pid);
}
return success;
}
static std::vector<Iterator> BuildViewIterators(
trace_processor::TraceProcessor* tp,
uint64_t upid,
uint64_t ts,
const char* heap_name,
const std::vector<View>& views) {
std::vector<Iterator> view_its;
for (const View& v : views) {
std::string query = "SELECT hpa.callsite_id ";
query +=
", " + std::string(v.aggregator) + " FROM heap_profile_allocation hpa ";
// TODO(fmayer): Figure out where negative callsite_id comes from.
query += "WHERE hpa.callsite_id >= 0 ";
query += "AND hpa.upid = " + std::to_string(upid) + " ";
query += "AND hpa.ts <= " + std::to_string(ts) + " ";
query += "AND hpa.heap_name = '" + std::string(heap_name) + "' ";
if (v.filter)
query += "AND " + std::string(v.filter) + " ";
query += "GROUP BY hpa.callsite_id;";
view_its.emplace_back(tp->ExecuteQuery(query));
}
return view_its;
}
static bool WriteAllocations(GProfileBuilder* builder,
std::vector<Iterator>* view_its) {
for (;;) {
bool all_next = true;
bool any_next = false;
for (size_t i = 0; i < view_its->size(); ++i) {
Iterator& it = (*view_its)[i];
bool next = it.Next();
if (!it.Status().ok()) {
PERFETTO_DFATAL_OR_ELOG("Invalid view iterator: %s",
it.Status().message().c_str());
return false;
}
all_next = all_next && next;
any_next = any_next || next;
}
if (!all_next) {
PERFETTO_CHECK(!any_next);
break;
}
protozero::PackedVarInt sample_values;
int64_t callstack_id = -1;
for (size_t i = 0; i < view_its->size(); ++i) {
if (i == 0) {
callstack_id = (*view_its)[i].Get(0).AsLong();
} else if (callstack_id != (*view_its)[i].Get(0).AsLong()) {
PERFETTO_DFATAL_OR_ELOG("Wrong callstack.");
return false;
}
sample_values.Append((*view_its)[i].Get(1).AsLong());
}
if (!builder->AddSample(sample_values, callstack_id))
return false;
}
return true;
}
static bool TraceToHeapPprof(trace_processor::TraceProcessor* tp,
std::vector<SerializedProfile>* output,
bool annotate_frames,
uint64_t target_pid,
const std::vector<uint64_t>& target_timestamps) {
trace_processor::StringPool interner;
LocationTracker locations =
PreprocessLocations(tp, &interner, annotate_frames);
bool any_fail = false;
Iterator it = tp->ExecuteQuery(
"select distinct hpa.upid, hpa.ts, p.pid, hpa.heap_name "
"from heap_profile_allocation hpa, "
"process p where p.upid = hpa.upid;");
while (it.Next()) {
GProfileBuilder builder(locations, &interner);
uint64_t upid = static_cast<uint64_t>(it.Get(0).AsLong());
uint64_t ts = static_cast<uint64_t>(it.Get(1).AsLong());
uint64_t profile_pid = static_cast<uint64_t>(it.Get(2).AsLong());
const char* heap_name = it.Get(3).AsString();
if ((target_pid > 0 && profile_pid != target_pid) ||
(!target_timestamps.empty() &&
std::find(target_timestamps.begin(), target_timestamps.end(), ts) ==
target_timestamps.end())) {
continue;
}
if (!VerifyPIDStats(tp, profile_pid))
any_fail = true;
std::vector<View> views;
if (base::StringView(heap_name) == "libc.malloc") {
views.assign(std::begin(kMallocViews), std::end(kMallocViews));
} else if (base::StringView(heap_name) == "com.android.art") {
views.assign(std::begin(kJavaSamplesViews), std::end(kJavaSamplesViews));
} else {
views.assign(std::begin(kGenericViews), std::end(kGenericViews));
}
std::vector<std::pair<std::string, std::string>> sample_types;
for (const View& view : views) {
sample_types.emplace_back(view.type, view.unit);
}
builder.WriteSampleTypes(sample_types);
std::vector<Iterator> view_its =
BuildViewIterators(tp, upid, ts, heap_name, views);
std::string profile_proto;
if (WriteAllocations(&builder, &view_its)) {
profile_proto = builder.CompleteProfile(tp);
}
output->emplace_back(
SerializedProfile{ProfileType::kHeapProfile, profile_pid,
std::move(profile_proto), heap_name});
}
if (!it.Status().ok()) {
PERFETTO_DFATAL_OR_ELOG("Invalid iterator: %s",
it.Status().message().c_str());
return false;
}
if (any_fail) {
PERFETTO_ELOG(
"One or more of your profiles had an issue. Please consult "
"https://perfetto.dev/docs/data-sources/"
"native-heap-profiler#troubleshooting");
}
return true;
}
} // namespace heap_profile
namespace java_heap_profile {
struct View {
const char* type;
const char* unit;
const char* query;
};
constexpr View kJavaAllocationViews[] = {
{"Total allocation count", "count", "count"},
{"Total allocation size", "bytes", "size"}};
std::string CreateHeapDumpFlameGraphQuery(const std::string& columns,
const uint64_t upid,
const uint64_t ts) {
std::string query = "SELECT " + columns + " ";
query += "FROM experimental_flamegraph(";
const std::vector<std::string> query_params = {
// The type of the profile from which the flamegraph is being generated
// Always 'graph' for Java heap graphs.
"'graph'",
// Heapdump timestamp
std::to_string(ts),
// Timestamp constraints: not relevant and always null for Java heap
// graphs.
"NULL",
// The upid of the heap graph sample
std::to_string(upid),
// The upid group: not relevant and always null for Java heap graphs
"NULL",
// A regex for focusing on a particular node in the heapgraph
"NULL"};
query += base::Join(query_params, ", ");
query += ")";
return query;
}
bool WriteAllocations(
GProfileBuilder* builder,
const std::unordered_map<int64_t, std::vector<int64_t>>& view_values) {
for (const auto& [id, values] : view_values) {
protozero::PackedVarInt sample_values;
for (const int64_t value : values) {
sample_values.Append(value);
}
if (!builder->AddSample(sample_values, id)) {
return false;
}
}
return true;
}
// Extracts and interns the unique locations from the heap dump SQL tables.
//
// It uses experimental_flamegraph table to get normalized representation of
// the heap graph as a tree, which always takes the shortest path to the root.
//
// Approach:
// * First we iterate over all heap dump flamegraph rows and create a map
// of flamegraph item id -> flamegraph item parent_id, each flamechart
// item is converted to a Location where we populate Function name using
// the name of the class (as opposed to using actual call function as
// allocation call stack is not available for java heap dumps).
// Also populate view_values straightaway here to not iterate over the data
// again in the future.
// * For each location we iterate over all its parents until we find
// the root and use this list of locations as a 'callstack' (which is
// actually list of class names)
LocationTracker PreprocessLocationsForJavaHeap(
trace_processor::TraceProcessor* tp,
trace_processor::StringPool* interner,
const std::vector<View>& views,
std::unordered_map<int64_t, std::vector<int64_t>>& view_values_out,
uint64_t upid,
uint64_t ts) {
LocationTracker tracker;
std::string columns;
for (const auto& view : views) {
columns += std::string(view.query) + ", ";
}
const auto data_columns_count = static_cast<uint32_t>(views.size());
columns += "id, parent_id, name";
const std::string query = CreateHeapDumpFlameGraphQuery(columns, upid, ts);
Iterator it = tp->ExecuteQuery(query);
// flamegraph id -> flamegraph parent_id
std::unordered_map<int64_t, int64_t> parents;
// flamegraph id -> interned location id
std::unordered_map<int64_t, int64_t> interned_ids;
// Create locations
while (it.Next()) {
const int64_t id = it.Get(data_columns_count).AsLong();
const int64_t parent_id = it.Get(data_columns_count + 1).is_null()
? -1
: it.Get(data_columns_count + 1).AsLong();
auto name = it.Get(data_columns_count + 2).is_null()
? ""
: it.Get(data_columns_count + 2).AsString();
parents.emplace(id, parent_id);
StringId func_name_id = interner->InternString(name);
Function func(func_name_id, StringId::Null(), StringId::Null());
auto interned_function_id = tracker.InternFunction(func);
Location loc(/*map=*/0, /*func=*/interned_function_id, /*inlines=*/{});
auto interned_location_id = tracker.InternLocation(std::move(loc));
interned_ids.emplace(id, interned_location_id);
std::vector<int64_t> view_values_vector;
for (uint32_t i = 0; i < views.size(); ++i) {
view_values_vector.push_back(it.Get(i).AsLong());
}
view_values_out.emplace(id, view_values_vector);
}
if (!it.Status().ok()) {
PERFETTO_DFATAL_OR_ELOG("Invalid iterator: %s",
it.Status().message().c_str());
return {};
}
// Iterate over all known locations again and build root-first paths
// for every location
for (auto& parent : parents) {
std::vector<int64_t> path;
int64_t current_parent_id = parent.first;
while (current_parent_id != -1) {
auto id_it = interned_ids.find(current_parent_id);
PERFETTO_CHECK(id_it != interned_ids.end());
auto parent_location_id = id_it->second;
path.push_back(parent_location_id);
// Find parent of the parent
auto parent_id_it = parents.find(current_parent_id);
PERFETTO_CHECK(parent_id_it != parents.end());
current_parent_id = parent_id_it->second;
}
// Reverse to make it root-first list
std::reverse(path.begin(), path.end());
tracker.MaybeSetCallsiteLocations(parent.first, path);
}
return tracker;
}
bool TraceToHeapPprof(trace_processor::TraceProcessor* tp,
std::vector<SerializedProfile>* output,
uint64_t target_pid,
const std::vector<uint64_t>& target_timestamps) {
trace_processor::StringPool interner;
// Find all heap graphs available in the trace and iterate over them
Iterator it = tp->ExecuteQuery(
"select distinct hgo.graph_sample_ts, hgo.upid, p.pid from "
"heap_graph_object hgo join process p using (upid)");
while (it.Next()) {
uint64_t ts = static_cast<uint64_t>(it.Get(0).AsLong());
uint64_t upid = static_cast<uint64_t>(it.Get(1).AsLong());
uint64_t profile_pid = static_cast<uint64_t>(it.Get(2).AsLong());
if ((target_pid > 0 && profile_pid != target_pid) ||
(!target_timestamps.empty() &&
std::find(target_timestamps.begin(), target_timestamps.end(), ts) ==
target_timestamps.end())) {
continue;
}
// flamegraph id -> view values
std::unordered_map<int64_t, std::vector<int64_t>> view_values;
std::vector<View> views;
views.assign(std::begin(kJavaAllocationViews),
std::end(kJavaAllocationViews));
LocationTracker locations = PreprocessLocationsForJavaHeap(
tp, &interner, views, view_values, upid, ts);
GProfileBuilder builder(locations, &interner);
std::vector<std::pair<std::string, std::string>> sample_types;
for (const auto& view : views) {
sample_types.emplace_back(view.type, view.unit);
}
builder.WriteSampleTypes(sample_types);
std::string profile_proto;
if (WriteAllocations(&builder, view_values)) {
profile_proto = builder.CompleteProfile(tp, /*write_mappings=*/false);
}
output->emplace_back(SerializedProfile{ProfileType::kJavaHeapProfile,
profile_pid,
std::move(profile_proto), ""});
}
if (!it.Status().ok()) {
PERFETTO_DFATAL_OR_ELOG("Invalid iterator: %s",
it.Status().message().c_str());
return false;
}
return true;
}
} // namespace java_heap_profile
namespace perf_profile {
struct ProcessInfo {
uint64_t pid;
std::vector<uint64_t> utids;
};
// Returns a map of upid -> {pid, utids[]} for sampled processes.
static std::map<uint64_t, ProcessInfo> GetProcessMap(
trace_processor::TraceProcessor* tp) {
Iterator it = tp->ExecuteQuery(
"select distinct process.upid, process.pid, thread.utid from perf_sample "
"join thread using (utid) join process using (upid) where callsite_id is "
"not null order by process.upid asc");
std::map<uint64_t, ProcessInfo> process_map;
while (it.Next()) {
uint64_t upid = static_cast<uint64_t>(it.Get(0).AsLong());
uint64_t pid = static_cast<uint64_t>(it.Get(1).AsLong());
uint64_t utid = static_cast<uint64_t>(it.Get(2).AsLong());
process_map[upid].pid = pid;
process_map[upid].utids.push_back(utid);
}
if (!it.Status().ok()) {
PERFETTO_DFATAL_OR_ELOG("Invalid iterator: %s",
it.Status().message().c_str());
return {};
}
return process_map;
}
static void LogTracePerfEventIssues(trace_processor::TraceProcessor* tp) {
std::optional<int64_t> stat = GetStatsEntry(tp, "perf_samples_skipped");
if (!stat.has_value()) {
PERFETTO_DFATAL_OR_ELOG("Failed to look up perf_samples_skipped stat");
} else if (stat.value() > 0) {
PERFETTO_ELOG(
"Warning: the trace recorded %" PRIi64
" skipped samples, which otherwise matched the tracing config. This "
"would cause a process to be completely absent from the trace, but "
"does *not* imply data loss in any of the output profiles.",
stat.value());
}
stat = GetStatsEntry(tp, "perf_samples_skipped_dataloss");
if (!stat.has_value()) {
PERFETTO_DFATAL_OR_ELOG(
"Failed to look up perf_samples_skipped_dataloss stat");
} else if (stat.value() > 0) {
PERFETTO_ELOG("DATA LOSS: the trace recorded %" PRIi64
" lost perf samples (within traced_perf). This means that "
"the trace is missing information, but it is not known "
"which profile that affected.",
stat.value());
}
// Check if any per-cpu ringbuffers encountered dataloss (as recorded by the
// kernel).
Iterator it = tp->ExecuteQuery(
"select idx, value from stats where name == 'perf_cpu_lost_records' and "
"value > 0 order by idx asc");
while (it.Next()) {
PERFETTO_ELOG(
"DATA LOSS: during the trace, the per-cpu kernel ring buffer for cpu "
"%" PRIi64 " recorded %" PRIi64
" lost samples. This means that the trace is missing information, "
"but it is not known which profile that affected.",
static_cast<int64_t>(it.Get(0).AsLong()),
static_cast<int64_t>(it.Get(1).AsLong()));
}
if (!it.Status().ok()) {
PERFETTO_DFATAL_OR_ELOG("Invalid iterator: %s",
it.Status().message().c_str());
}
}
// TODO(rsavitski): decide whether errors in |AddSample| should result in an
// empty profile (and/or whether they should make the overall conversion
// unsuccessful). Furthermore, clarify the return value's semantics for both
// perf and heap profiles.
static bool TraceToPerfPprof(trace_processor::TraceProcessor* tp,
std::vector<SerializedProfile>* output,
bool annotate_frames,
uint64_t target_pid) {
trace_processor::StringPool interner;
LocationTracker locations =
PreprocessLocations(tp, &interner, annotate_frames);
LogTracePerfEventIssues(tp);
// Aggregate samples by upid when building profiles.
std::map<uint64_t, ProcessInfo> process_map = GetProcessMap(tp);
for (const auto& p : process_map) {
const ProcessInfo& process = p.second;
if (target_pid != 0 && process.pid != target_pid)
continue;
GProfileBuilder builder(locations, &interner);
builder.WriteSampleTypes({{"samples", "count"}});
std::string query = "select callsite_id from perf_sample where utid in (" +
AsCsvString(process.utids) +
") and callsite_id is not null order by ts asc;";
protozero::PackedVarInt single_count_value;
single_count_value.Append(1);
Iterator it = tp->ExecuteQuery(query);
while (it.Next()) {
int64_t callsite_id = static_cast<int64_t>(it.Get(0).AsLong());
builder.AddSample(single_count_value, callsite_id);
}
if (!it.Status().ok()) {
PERFETTO_DFATAL_OR_ELOG("Failed to iterate over samples: %s",
it.Status().c_message());
return false;
}
std::string profile_proto = builder.CompleteProfile(tp);
output->emplace_back(SerializedProfile{
ProfileType::kPerfProfile, process.pid, std::move(profile_proto), ""});
}
return true;
}
} // namespace perf_profile
} // namespace
bool TraceToPprof(trace_processor::TraceProcessor* tp,
std::vector<SerializedProfile>* output,
ConversionMode mode,
uint64_t flags,
uint64_t pid,
const std::vector<uint64_t>& timestamps) {
bool annotate_frames =
flags & static_cast<uint64_t>(ConversionFlags::kAnnotateFrames);
switch (mode) {
case (ConversionMode::kHeapProfile):
return heap_profile::TraceToHeapPprof(tp, output, annotate_frames, pid,
timestamps);
case (ConversionMode::kPerfProfile):
return perf_profile::TraceToPerfPprof(tp, output, annotate_frames, pid);
case (ConversionMode::kJavaHeapProfile):
return java_heap_profile::TraceToHeapPprof(tp, output, pid, timestamps);
}
PERFETTO_FATAL("unknown conversion option"); // for gcc
}
} // namespace trace_to_text
} // namespace perfetto