blob: 727ee7ee53c65645f40b0a5d52832c7700de5092 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/ipc/buffered_frame_deserializer.h"
#include <algorithm>
#include <string>
#include "perfetto/base/logging.h"
#include "perfetto/ext/base/utils.h"
#include "test/gtest_and_gmock.h"
#include "src/ipc/wire_protocol.pb.h"
namespace perfetto {
namespace ipc {
namespace {
constexpr uint32_t kHeaderSize = sizeof(uint32_t);
// Generates a parsable Frame of exactly |size| bytes (including header).
std::vector<char> GetSimpleFrame(size_t size) {
// A bit of reverse math of the proto encoding: a Frame which has only the
// |data_for_testing| fields, will require for each data_for_testing that is
// up to 127 bytes:
// - 1 byte to write the field preamble (field type and id).
// - 1 byte to write the field size, if 0 < size <= 127.
// - N bytes for the actual content (|padding| below).
// So below we split the payload into chunks of <= 127 bytes, keeping into
// account the extra 2 bytes for each chunk.
Frame frame;
std::vector<char> padding;
char padding_char = '0';
const uint32_t payload_size = static_cast<uint32_t>(size - kHeaderSize);
for (uint32_t size_left = payload_size; size_left > 0;) {
PERFETTO_CHECK(size_left >= 2); // We cannot produce frames < 2 bytes.
uint32_t padding_size;
if (size_left <= 127) {
padding_size = size_left - 2;
size_left = 0;
} else {
padding_size = 124;
size_left -= padding_size + 2;
}
padding.resize(padding_size);
for (uint32_t i = 0; i < padding_size; i++) {
padding_char = padding_char == 'z' ? '0' : padding_char + 1;
padding[i] = padding_char;
}
frame.add_data_for_testing(padding.data(), padding_size);
}
PERFETTO_CHECK(frame.ByteSize() == static_cast<int>(payload_size));
std::vector<char> encoded_frame;
encoded_frame.resize(size);
char* enc_buf = encoded_frame.data();
PERFETTO_CHECK(frame.SerializeToArray(enc_buf + kHeaderSize,
static_cast<int>(payload_size)));
memcpy(enc_buf, base::AssumeLittleEndian(&payload_size), kHeaderSize);
PERFETTO_CHECK(encoded_frame.size() == size);
return encoded_frame;
}
void CheckedMemcpy(BufferedFrameDeserializer::ReceiveBuffer rbuf,
const std::vector<char>& encoded_frame,
size_t offset = 0) {
ASSERT_GE(rbuf.size, encoded_frame.size() + offset);
memcpy(rbuf.data + offset, encoded_frame.data(), encoded_frame.size());
}
bool FrameEq(std::vector<char> expected_frame_with_header, const Frame& frame) {
std::string reserialized_frame = frame.SerializeAsString();
size_t expected_size = expected_frame_with_header.size() - kHeaderSize;
EXPECT_EQ(expected_size, reserialized_frame.size());
if (expected_size != reserialized_frame.size())
return false;
return memcmp(reserialized_frame.data(),
expected_frame_with_header.data() + kHeaderSize,
reserialized_frame.size()) == 0;
}
// Tests the simple case where each recv() just returns one whole header+frame.
TEST(BufferedFrameDeserializerTest, WholeMessages) {
BufferedFrameDeserializer bfd;
for (size_t i = 1; i <= 50; i++) {
const size_t size = i * 10;
BufferedFrameDeserializer::ReceiveBuffer rbuf = bfd.BeginReceive();
ASSERT_NE(nullptr, rbuf.data);
std::vector<char> frame = GetSimpleFrame(size);
CheckedMemcpy(rbuf, frame);
ASSERT_TRUE(bfd.EndReceive(frame.size()));
// Excactly one frame should be decoded, with no leftover buffer.
auto decoded_frame = bfd.PopNextFrame();
ASSERT_TRUE(decoded_frame);
ASSERT_EQ(static_cast<int32_t>(size - kHeaderSize),
decoded_frame->ByteSize());
ASSERT_FALSE(bfd.PopNextFrame());
ASSERT_EQ(0u, bfd.size());
}
}
// Sends first a simple test frame. Then creates a realistic Frame fragmenting
// it in three chunks and tests that the decoded Frame matches the original one.
// The recv() sequence is as follows:
// 1. [ simple_frame ] [ frame_chunk1 ... ]
// 2. [ ... frame_chunk2 ... ]
// 3. [ ... frame_chunk3 ]
TEST(BufferedFrameDeserializerTest, FragmentedFrameIsCorrectlyDeserialized) {
BufferedFrameDeserializer bfd;
Frame frame;
frame.set_request_id(42);
auto* bind_reply = frame.mutable_msg_bind_service_reply();
bind_reply->set_success(true);
bind_reply->set_service_id(0x4242);
auto* method = bind_reply->add_methods();
method->set_id(0x424242);
method->set_name("foo");
std::vector<char> serialized_frame;
uint32_t payload_size = static_cast<uint32_t>(frame.ByteSize());
serialized_frame.resize(kHeaderSize + payload_size);
ASSERT_TRUE(frame.SerializeToArray(serialized_frame.data() + kHeaderSize,
static_cast<int>(payload_size)));
memcpy(serialized_frame.data(), base::AssumeLittleEndian(&payload_size),
kHeaderSize);
std::vector<char> simple_frame = GetSimpleFrame(32);
std::vector<char> frame_chunk1(serialized_frame.begin(),
serialized_frame.begin() + 5);
BufferedFrameDeserializer::ReceiveBuffer rbuf = bfd.BeginReceive();
CheckedMemcpy(rbuf, simple_frame);
CheckedMemcpy(rbuf, frame_chunk1, simple_frame.size());
ASSERT_TRUE(bfd.EndReceive(simple_frame.size() + frame_chunk1.size()));
std::vector<char> frame_chunk2(serialized_frame.begin() + 5,
serialized_frame.begin() + 10);
rbuf = bfd.BeginReceive();
CheckedMemcpy(rbuf, frame_chunk2);
ASSERT_TRUE(bfd.EndReceive(frame_chunk2.size()));
std::vector<char> frame_chunk3(serialized_frame.begin() + 10,
serialized_frame.end());
rbuf = bfd.BeginReceive();
CheckedMemcpy(rbuf, frame_chunk3);
ASSERT_TRUE(bfd.EndReceive(frame_chunk3.size()));
// Validate the received frame2.
std::unique_ptr<Frame> decoded_simple_frame = bfd.PopNextFrame();
ASSERT_TRUE(decoded_simple_frame);
ASSERT_EQ(static_cast<int32_t>(simple_frame.size() - kHeaderSize),
decoded_simple_frame->ByteSize());
std::unique_ptr<Frame> decoded_frame = bfd.PopNextFrame();
ASSERT_TRUE(decoded_frame);
ASSERT_TRUE(FrameEq(serialized_frame, *decoded_frame));
}
// Tests the case of a EndReceive(0) while receiving a valid frame in chunks.
TEST(BufferedFrameDeserializerTest, ZeroSizedReceive) {
BufferedFrameDeserializer bfd;
std::vector<char> frame = GetSimpleFrame(100);
std::vector<char> frame_chunk1(frame.begin(), frame.begin() + 50);
std::vector<char> frame_chunk2(frame.begin() + 50, frame.end());
BufferedFrameDeserializer::ReceiveBuffer rbuf = bfd.BeginReceive();
CheckedMemcpy(rbuf, frame_chunk1);
ASSERT_TRUE(bfd.EndReceive(frame_chunk1.size()));
rbuf = bfd.BeginReceive();
ASSERT_TRUE(bfd.EndReceive(0));
rbuf = bfd.BeginReceive();
CheckedMemcpy(rbuf, frame_chunk2);
ASSERT_TRUE(bfd.EndReceive(frame_chunk2.size()));
// Excactly one frame should be decoded, with no leftover buffer.
std::unique_ptr<Frame> decoded_frame = bfd.PopNextFrame();
ASSERT_TRUE(decoded_frame);
ASSERT_TRUE(FrameEq(frame, *decoded_frame));
ASSERT_FALSE(bfd.PopNextFrame());
ASSERT_EQ(0u, bfd.size());
}
// Tests the case of a EndReceive(4) where the header has no payload. The frame
// should be just skipped and not returned by PopNextFrame().
TEST(BufferedFrameDeserializerTest, EmptyPayload) {
BufferedFrameDeserializer bfd;
std::vector<char> frame = GetSimpleFrame(100);
BufferedFrameDeserializer::ReceiveBuffer rbuf = bfd.BeginReceive();
std::vector<char> empty_frame(kHeaderSize, 0);
CheckedMemcpy(rbuf, empty_frame);
ASSERT_TRUE(bfd.EndReceive(kHeaderSize));
rbuf = bfd.BeginReceive();
CheckedMemcpy(rbuf, frame);
ASSERT_TRUE(bfd.EndReceive(frame.size()));
// |fram| should be properly decoded.
std::unique_ptr<Frame> decoded_frame = bfd.PopNextFrame();
ASSERT_TRUE(decoded_frame);
ASSERT_TRUE(FrameEq(frame, *decoded_frame));
ASSERT_FALSE(bfd.PopNextFrame());
}
// Test the case where a single Receive() returns batches of > 1 whole frames.
// See case C in the comments for BufferedFrameDeserializer::EndReceive().
TEST(BufferedFrameDeserializerTest, MultipleFramesInOneReceive) {
BufferedFrameDeserializer bfd;
std::vector<std::vector<size_t>> frame_batch_sizes(
{{11}, {13, 17, 19}, {23}, {29, 31}});
for (std::vector<size_t>& batch : frame_batch_sizes) {
BufferedFrameDeserializer::ReceiveBuffer rbuf = bfd.BeginReceive();
size_t frame_offset_in_batch = 0;
for (size_t frame_size : batch) {
auto frame = GetSimpleFrame(frame_size);
CheckedMemcpy(rbuf, frame, frame_offset_in_batch);
frame_offset_in_batch += frame.size();
}
ASSERT_TRUE(bfd.EndReceive(frame_offset_in_batch));
for (size_t expected_size : batch) {
auto frame = bfd.PopNextFrame();
ASSERT_TRUE(frame);
ASSERT_EQ(static_cast<int32_t>(expected_size - kHeaderSize),
frame->ByteSize());
}
ASSERT_FALSE(bfd.PopNextFrame());
ASSERT_EQ(0u, bfd.size());
}
}
TEST(BufferedFrameDeserializerTest, RejectVeryLargeFrames) {
BufferedFrameDeserializer bfd;
BufferedFrameDeserializer::ReceiveBuffer rbuf = bfd.BeginReceive();
const uint32_t kBigSize = std::numeric_limits<uint32_t>::max() - 2;
memcpy(rbuf.data, base::AssumeLittleEndian(&kBigSize), kHeaderSize);
memcpy(rbuf.data + kHeaderSize, "some initial payload", 20);
ASSERT_FALSE(bfd.EndReceive(kHeaderSize + 20));
}
// Tests the extreme case of recv() fragmentation. Two valid frames are received
// but each recv() puts one byte at a time. Covers cases A and B commented in
// BufferedFrameDeserializer::EndReceive().
TEST(BufferedFrameDeserializerTest, HighlyFragmentedFrames) {
BufferedFrameDeserializer bfd;
for (size_t i = 1; i <= 50; i++) {
std::vector<char> frame = GetSimpleFrame(i * 100);
for (size_t off = 0; off < frame.size(); off++) {
BufferedFrameDeserializer::ReceiveBuffer rbuf = bfd.BeginReceive();
CheckedMemcpy(rbuf, {frame[off]});
// The frame should be available only when receiving the last byte.
ASSERT_TRUE(bfd.EndReceive(1));
if (off < frame.size() - 1) {
ASSERT_FALSE(bfd.PopNextFrame()) << off << "/" << frame.size();
ASSERT_EQ(off + 1, bfd.size());
} else {
ASSERT_TRUE(bfd.PopNextFrame());
}
}
}
}
// A bunch of valid frames interleaved with frames that have a valid header
// but unparsable payload. The expectation is that PopNextFrame() returns
// nullptr for the unparsable frames but the other frames are decoded peroperly.
TEST(BufferedFrameDeserializerTest, CanRecoverAfterUnparsableFrames) {
BufferedFrameDeserializer bfd;
for (size_t i = 1; i <= 50; i++) {
const size_t size = i * 10;
std::vector<char> frame = GetSimpleFrame(size);
const bool unparsable = (i % 3) == 1;
if (unparsable)
memset(frame.data() + kHeaderSize, 0xFF, size - kHeaderSize);
BufferedFrameDeserializer::ReceiveBuffer rbuf = bfd.BeginReceive();
CheckedMemcpy(rbuf, frame);
ASSERT_TRUE(bfd.EndReceive(frame.size()));
// Excactly one frame should be decoded if |parsable|. In any case no
// leftover bytes should be left in the buffer.
auto decoded_frame = bfd.PopNextFrame();
if (unparsable) {
ASSERT_FALSE(decoded_frame);
} else {
ASSERT_TRUE(decoded_frame);
ASSERT_EQ(static_cast<int32_t>(size - kHeaderSize),
decoded_frame->ByteSize());
}
ASSERT_EQ(0u, bfd.size());
}
}
// Test that we can sustain recvs() which constantly max out the capacity.
// It sets up four frames:
// |frame1|: small, 1024 + 4 bytes.
// |frame2|: as big as the |kMaxCapacity|. Its recv() is split into two chunks.
// |frame3|: together with the 2nd part of |frame2| it maxes out capacity again.
// |frame4|: as big as the |kMaxCapacity|. Received in one recv(), no splits.
//
// Which are then recv()'d in a loop in the following way.
// |------------ max recv capacity ------------|
// 1. [ frame1 ] [ frame2_chunk1 ..... ]
// 2. [ ... frame2_chunk2 ]
// 3. [ frame3 ]
// 4. [ frame 4 ]
TEST(BufferedFrameDeserializerTest, FillCapacity) {
size_t kMaxCapacity = 1024 * 16;
BufferedFrameDeserializer bfd(kMaxCapacity);
for (int i = 0; i < 3; i++) {
std::vector<char> frame1 = GetSimpleFrame(1024);
std::vector<char> frame2 = GetSimpleFrame(kMaxCapacity);
std::vector<char> frame2_chunk1(
frame2.begin(),
frame2.begin() + static_cast<ptrdiff_t>(kMaxCapacity - frame1.size()));
std::vector<char> frame2_chunk2(
frame2.begin() + static_cast<ptrdiff_t>(frame2_chunk1.size()),
frame2.end());
std::vector<char> frame3 =
GetSimpleFrame(kMaxCapacity - frame2_chunk2.size());
std::vector<char> frame4 = GetSimpleFrame(kMaxCapacity);
ASSERT_EQ(kMaxCapacity, frame1.size() + frame2_chunk1.size());
ASSERT_EQ(kMaxCapacity, frame2_chunk1.size() + frame2_chunk2.size());
ASSERT_EQ(kMaxCapacity, frame2_chunk2.size() + frame3.size());
ASSERT_EQ(kMaxCapacity, frame4.size());
BufferedFrameDeserializer::ReceiveBuffer rbuf = bfd.BeginReceive();
CheckedMemcpy(rbuf, frame1);
CheckedMemcpy(rbuf, frame2_chunk1, frame1.size());
ASSERT_TRUE(bfd.EndReceive(frame1.size() + frame2_chunk1.size()));
rbuf = bfd.BeginReceive();
CheckedMemcpy(rbuf, frame2_chunk2);
ASSERT_TRUE(bfd.EndReceive(frame2_chunk2.size()));
rbuf = bfd.BeginReceive();
CheckedMemcpy(rbuf, frame3);
ASSERT_TRUE(bfd.EndReceive(frame3.size()));
rbuf = bfd.BeginReceive();
CheckedMemcpy(rbuf, frame4);
ASSERT_TRUE(bfd.EndReceive(frame4.size()));
std::unique_ptr<Frame> decoded_frame_1 = bfd.PopNextFrame();
ASSERT_TRUE(decoded_frame_1);
ASSERT_TRUE(FrameEq(frame1, *decoded_frame_1));
std::unique_ptr<Frame> decoded_frame_2 = bfd.PopNextFrame();
ASSERT_TRUE(decoded_frame_2);
ASSERT_TRUE(FrameEq(frame2, *decoded_frame_2));
std::unique_ptr<Frame> decoded_frame_3 = bfd.PopNextFrame();
ASSERT_TRUE(decoded_frame_3);
ASSERT_TRUE(FrameEq(frame3, *decoded_frame_3));
std::unique_ptr<Frame> decoded_frame_4 = bfd.PopNextFrame();
ASSERT_TRUE(decoded_frame_4);
ASSERT_TRUE(FrameEq(frame4, *decoded_frame_4));
ASSERT_FALSE(bfd.PopNextFrame());
}
}
} // namespace
} // namespace ipc
} // namespace perfetto