blob: 62eb2bd6dd4443d5ba5609cdcf2d18ee8d593097 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/trace_processor/proto_trace_tokenizer.h"
#include <string>
#include "perfetto/base/logging.h"
#include "perfetto/base/utils.h"
#include "perfetto/protozero/proto_decoder.h"
#include "perfetto/protozero/proto_utils.h"
#include "src/trace_processor/event_tracker.h"
#include "src/trace_processor/process_tracker.h"
#include "src/trace_processor/stats.h"
#include "src/trace_processor/trace_blob_view.h"
#include "src/trace_processor/trace_sorter.h"
#include "src/trace_processor/trace_storage.h"
#include "perfetto/trace/ftrace/ftrace_event.pbzero.h"
#include "perfetto/trace/ftrace/ftrace_event_bundle.pbzero.h"
#include "perfetto/trace/trace.pbzero.h"
#include "perfetto/trace/trace_packet.pbzero.h"
namespace perfetto {
namespace trace_processor {
using protozero::ProtoDecoder;
using protozero::proto_utils::MakeTagLengthDelimited;
using protozero::proto_utils::MakeTagVarInt;
using protozero::proto_utils::ParseVarInt;
ProtoTraceTokenizer::ProtoTraceTokenizer(TraceProcessorContext* ctx)
: context_(ctx) {}
ProtoTraceTokenizer::~ProtoTraceTokenizer() = default;
bool ProtoTraceTokenizer::Parse(std::unique_ptr<uint8_t[]> owned_buf,
size_t size) {
uint8_t* data = &owned_buf[0];
if (!partial_buf_.empty()) {
// It takes ~5 bytes for a proto preamble + the varint size.
const size_t kHeaderBytes = 5;
if (PERFETTO_UNLIKELY(partial_buf_.size() < kHeaderBytes)) {
size_t missing_len = std::min(kHeaderBytes - partial_buf_.size(), size);
partial_buf_.insert(partial_buf_.end(), &data[0], &data[missing_len]);
if (partial_buf_.size() < kHeaderBytes)
return true;
data += missing_len;
size -= missing_len;
}
// At this point we have enough data in |partial_buf_| to read at least the
// field header and know the size of the next TracePacket.
constexpr uint8_t kTracePacketTag =
MakeTagLengthDelimited(protos::pbzero::Trace::kPacketFieldNumber);
const uint8_t* pos = &partial_buf_[0];
uint8_t proto_field_tag = *pos;
uint64_t field_size = 0;
const uint8_t* next = ParseVarInt(++pos, &*partial_buf_.end(), &field_size);
bool parse_failed = next == pos;
pos = next;
if (proto_field_tag != kTracePacketTag || field_size == 0 || parse_failed) {
PERFETTO_ELOG("Failed parsing a TracePacket from the partial buffer");
return false; // Unrecoverable error, stop parsing.
}
// At this point we know how big the TracePacket is.
size_t hdr_size = static_cast<size_t>(pos - &partial_buf_[0]);
size_t size_incl_header = static_cast<size_t>(field_size + hdr_size);
PERFETTO_DCHECK(size_incl_header > partial_buf_.size());
// There is a good chance that between the |partial_buf_| and the new |data|
// of the current call we have enough bytes to parse a TracePacket.
if (partial_buf_.size() + size >= size_incl_header) {
// Create a new buffer for the whole TracePacket and copy into that:
// 1) The beginning of the TracePacket (including the proto header) from
// the partial buffer.
// 2) The rest of the TracePacket from the current |data| buffer (note
// that we might have consumed already a few bytes form |data| earlier
// in this function, hence we need to keep |off| into account).
std::unique_ptr<uint8_t[]> buf(new uint8_t[size_incl_header]);
memcpy(&buf[0], partial_buf_.data(), partial_buf_.size());
// |size_missing| is the number of bytes for the rest of the TracePacket
// in |data|.
size_t size_missing = size_incl_header - partial_buf_.size();
memcpy(&buf[partial_buf_.size()], &data[0], size_missing);
data += size_missing;
size -= size_missing;
partial_buf_.clear();
uint8_t* buf_start = &buf[0]; // Note that buf is std::moved below.
ParseInternal(std::move(buf), buf_start, size_incl_header);
} else {
partial_buf_.insert(partial_buf_.end(), data, &data[size]);
return true;
}
}
ParseInternal(std::move(owned_buf), data, size);
return true;
}
void ProtoTraceTokenizer::ParseInternal(std::unique_ptr<uint8_t[]> owned_buf,
uint8_t* data,
size_t size) {
PERFETTO_DCHECK(data >= &owned_buf[0]);
const uint8_t* start = &owned_buf[0];
const size_t data_off = static_cast<size_t>(data - start);
TraceBlobView whole_buf(std::move(owned_buf), data_off, size);
protos::pbzero::Trace::Decoder decoder(data, size);
for (auto it = decoder.packet(); it; ++it) {
size_t field_offset = whole_buf.offset_of(it->data());
ParsePacket(whole_buf.slice(field_offset, it->size()));
}
const size_t bytes_left = decoder.bytes_left();
if (bytes_left > 0) {
PERFETTO_DCHECK(partial_buf_.empty());
partial_buf_.insert(partial_buf_.end(), &data[decoder.read_offset()],
&data[decoder.read_offset() + bytes_left]);
}
}
void ProtoTraceTokenizer::ParsePacket(TraceBlobView packet) {
protos::pbzero::TracePacket::Decoder decoder(packet.data(), packet.length());
auto timestamp = decoder.has_timestamp()
? static_cast<int64_t>(decoder.timestamp())
: latest_timestamp_;
latest_timestamp_ = std::max(timestamp, latest_timestamp_);
if (decoder.has_ftrace_events()) {
auto ftrace_field = decoder.ftrace_events();
const size_t fld_off = packet.offset_of(ftrace_field.data);
ParseFtraceBundle(packet.slice(fld_off, ftrace_field.size));
return;
}
// Use parent data and length because we want to parse this again
// later to get the exact type of the packet.
context_->sorter->PushTracePacket(timestamp, std::move(packet));
PERFETTO_DCHECK(!decoder.bytes_left());
}
PERFETTO_ALWAYS_INLINE
void ProtoTraceTokenizer::ParseFtraceBundle(TraceBlobView bundle) {
protos::pbzero::FtraceEventBundle::Decoder decoder(bundle.data(),
bundle.length());
if (PERFETTO_UNLIKELY(!decoder.has_cpu())) {
PERFETTO_ELOG("CPU field not found in FtraceEventBundle");
context_->storage->IncrementStats(stats::ftrace_bundle_tokenizer_errors);
return;
}
uint32_t cpu = decoder.cpu();
if (PERFETTO_UNLIKELY(cpu > base::kMaxCpus)) {
PERFETTO_ELOG("CPU larger than kMaxCpus (%u > %zu)", cpu, base::kMaxCpus);
return;
}
for (auto it = decoder.event(); it; ++it) {
size_t off = bundle.offset_of(it->data());
ParseFtraceEvent(cpu, bundle.slice(off, it->size()));
}
context_->sorter->FinalizeFtraceEventBatch(cpu);
}
PERFETTO_ALWAYS_INLINE
void ProtoTraceTokenizer::ParseFtraceEvent(uint32_t cpu, TraceBlobView event) {
constexpr auto kTimestampFieldNumber =
protos::pbzero::FtraceEvent::kTimestampFieldNumber;
const uint8_t* data = event.data();
const size_t length = event.length();
ProtoDecoder decoder(data, length);
uint64_t raw_timestamp = 0;
bool timestamp_found = false;
// Speculate on the fact that the timestamp is often the 1st field of the
// event.
constexpr auto timestampFieldTag = MakeTagVarInt(kTimestampFieldNumber);
if (PERFETTO_LIKELY(length > 10 && data[0] == timestampFieldTag)) {
// Fastpath.
const uint8_t* next = ParseVarInt(data + 1, data + 11, &raw_timestamp);
timestamp_found = next != data + 1;
decoder.Reset(next);
} else {
// Slowpath.
if (auto ts_field = decoder.FindField(kTimestampFieldNumber)) {
timestamp_found = true;
raw_timestamp = ts_field.as_uint64();
}
}
if (PERFETTO_UNLIKELY(!timestamp_found)) {
PERFETTO_ELOG("Timestamp field not found in FtraceEvent");
context_->storage->IncrementStats(stats::ftrace_bundle_tokenizer_errors);
return;
}
int64_t timestamp = static_cast<int64_t>(raw_timestamp);
latest_timestamp_ = std::max(timestamp, latest_timestamp_);
// We don't need to parse this packet, just push it to be sorted with
// the timestamp.
context_->sorter->PushFtraceEvent(cpu, timestamp, std::move(event));
}
} // namespace trace_processor
} // namespace perfetto