blob: 60cb1fcf02a038abf70bc9d3abac10c29a1b1cbd [file] [log] [blame]
# Copyright (C) 2023 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains tables for relevant for TODO."""
from python.generators.trace_processor_table.public import Column as C
from python.generators.trace_processor_table.public import ColumnFlag
from python.generators.trace_processor_table.public import CppInt32
from python.generators.trace_processor_table.public import CppInt64
from python.generators.trace_processor_table.public import CppOptional
from python.generators.trace_processor_table.public import CppSelfTableId
from python.generators.trace_processor_table.public import CppString
from python.generators.trace_processor_table.public import Table
from python.generators.trace_processor_table.public import TableDoc
from python.generators.trace_processor_table.public import CppTableId
from python.generators.trace_processor_table.public import CppUint32
from src.trace_processor.tables.track_tables import TRACK_TABLE, COUNTER_TRACK_TABLE
PROFILER_SMAPS_TABLE = Table(
python_module=__file__,
class_name='ProfilerSmapsTable',
sql_name='profiler_smaps',
columns=[
C('upid', CppUint32()),
C('ts', CppInt64()),
C('path', CppString()),
C('size_kb', CppInt64()),
C('private_dirty_kb', CppInt64()),
C('swap_kb', CppInt64()),
C('file_name', CppString()),
C('start_address', CppInt64()),
C('module_timestamp', CppInt64()),
C('module_debugid', CppString()),
C('module_debug_path', CppString()),
C('protection_flags', CppInt64()),
C('private_clean_resident_kb', CppInt64()),
C('shared_dirty_resident_kb', CppInt64()),
C('shared_clean_resident_kb', CppInt64()),
C('locked_kb', CppInt64()),
C('proportional_resident_kb', CppInt64()),
],
tabledoc=TableDoc(
doc='''
The profiler smaps contains the memory stats for virtual memory ranges
captured by the
[heap profiler](/docs/data-sources/native-heap-profiler.md).
''',
group='Callstack profilers',
columns={
'upid':
'''The unique PID of the process.''',
'ts':
'''Timestamp of the snapshot. Multiple rows will have the same
timestamp.''',
'path':
'''The mmaped file, as per /proc/pid/smaps.''',
'size_kb':
'''Total size of the mapping.''',
'private_dirty_kb':
'''KB of this mapping that are private dirty RSS.''',
'swap_kb':
'''KB of this mapping that are in swap.''',
'file_name':
'''''',
'start_address':
'''''',
'module_timestamp':
'''''',
'module_debugid':
'''''',
'module_debug_path':
'''''',
'protection_flags':
'''''',
'private_clean_resident_kb':
'''''',
'shared_dirty_resident_kb':
'''''',
'shared_clean_resident_kb':
'''''',
'locked_kb':
'''''',
'proportional_resident_kb':
''''''
}))
PACKAGE_LIST_TABLE = Table(
python_module=__file__,
class_name='PackageListTable',
sql_name='package_list',
columns=[
C('package_name', CppString()),
C('uid', CppInt64()),
C('debuggable', CppInt32()),
C('profileable_from_shell', CppInt32()),
C('version_code', CppInt64()),
],
tabledoc=TableDoc(
doc='''
Metadata about packages installed on the system.
This is generated by the packages_list data-source.
''',
group='Misc',
columns={
'package_name':
'''name of the package, e.g. com.google.android.gm.''',
'uid':
'''UID processes of this package run as.''',
'debuggable':
'''bool whether this app is debuggable.''',
'profileable_from_shell':
'''bool whether this app is profileable.''',
'version_code':
'''versionCode from the APK.'''
}))
STACK_PROFILE_MAPPING_TABLE = Table(
python_module=__file__,
class_name='StackProfileMappingTable',
sql_name='stack_profile_mapping',
columns=[
C('build_id', CppString()),
C('exact_offset', CppInt64()),
C('start_offset', CppInt64()),
C('start', CppInt64()),
C('end', CppInt64()),
C('load_bias', CppInt64()),
C('name', CppString()),
],
tabledoc=TableDoc(
doc='''
A mapping (binary / library) in a process.
This is generated by the stack profilers: heapprofd and traced_perf.
''',
group='Callstack profilers',
columns={
'build_id': '''Hex-encoded Build ID of the binary / library.''',
'start': '''Start of the mapping in the process' address space.''',
'end': '''End of the mapping in the process' address space.''',
'name': '''Filename of the binary / library.''',
'exact_offset': '''''',
'start_offset': '''''',
'load_bias': ''''''
}))
STACK_PROFILE_FRAME_TABLE = Table(
python_module=__file__,
class_name='StackProfileFrameTable',
sql_name='stack_profile_frame',
columns=[
C('name', CppString()),
C('mapping', CppTableId(STACK_PROFILE_MAPPING_TABLE)),
C('rel_pc', CppInt64()),
C('symbol_set_id', CppOptional(CppUint32()), flags=ColumnFlag.DENSE),
C('deobfuscated_name', CppOptional(CppString())),
],
tabledoc=TableDoc(
doc='''
A frame on the callstack. This is a location in a program.
This is generated by the stack profilers: heapprofd and traced_perf.
''',
group='Callstack profilers',
columns={
'name':
'''Name of the function this location is in.''',
'mapping':
'''The mapping (library / binary) this location is in.''',
'rel_pc':
'''The program counter relative to the start of the mapping.''',
'symbol_set_id':
'''If the profile was offline symbolized, the offline
symbol information of this frame.''',
'deobfuscated_name':
'''Deobfuscated name of the function this location is in.'''
}))
STACK_PROFILE_CALLSITE_TABLE = Table(
python_module=__file__,
class_name='StackProfileCallsiteTable',
sql_name='stack_profile_callsite',
columns=[
C('depth', CppUint32()),
C('parent_id', CppOptional(CppSelfTableId())),
C('frame_id', CppTableId(STACK_PROFILE_FRAME_TABLE)),
],
tabledoc=TableDoc(
doc='''
A callsite. This is a list of frames that were on the stack.
This is generated by the stack profilers: heapprofd and traced_perf.
''',
group='Callstack profilers',
columns={
'depth':
'''Distance from the bottom-most frame of the callstack.''',
'parent_id':
'''Parent frame on the callstack. NULL for the bottom-most.''',
'frame_id':
'''Frame at this position in the callstack.'''
}))
CPU_PROFILE_STACK_SAMPLE_TABLE = Table(
python_module=__file__,
class_name='CpuProfileStackSampleTable',
sql_name='cpu_profile_stack_sample',
columns=[
C('ts', CppInt64(), flags=ColumnFlag.SORTED),
C('callsite_id', CppTableId(STACK_PROFILE_CALLSITE_TABLE)),
C('utid', CppUint32()),
C('process_priority', CppInt32()),
],
tabledoc=TableDoc(
doc='Table containing stack samples from CPU profiling.',
group='Callstack profilers',
columns={
'ts': '''timestamp of the sample.''',
'callsite_id': '''unwound callstack.''',
'utid': '''thread that was active when the sample was taken.''',
'process_priority': ''''''
}))
PERF_SESSION_TABLE = Table(
python_module=__file__,
class_name='PerfSessionTable',
sql_name='__intrinsic_perf_session',
columns=[
C('cmdline', CppOptional(CppString())),
],
tabledoc=TableDoc(
doc='''Perf sessions.''',
group='Callstack profilers',
columns={
'cmdline': '''Command line used to collect the data.''',
}))
PERF_SAMPLE_TABLE = Table(
python_module=__file__,
class_name='PerfSampleTable',
sql_name='perf_sample',
columns=[
C('ts', CppInt64(), flags=ColumnFlag.SORTED),
C('utid', CppUint32()),
C('cpu', CppOptional(CppUint32())),
C('cpu_mode', CppString()),
C('callsite_id', CppOptional(CppTableId(STACK_PROFILE_CALLSITE_TABLE))),
C('unwind_error', CppOptional(CppString())),
C('perf_session_id', CppTableId(PERF_SESSION_TABLE)),
],
tabledoc=TableDoc(
doc='''Samples from the traced_perf profiler.''',
group='Callstack profilers',
columns={
'ts':
'''Timestamp of the sample.''',
'utid':
'''Sampled thread.''',
'cpu':
'''Core the sampled thread was running on.''',
'cpu_mode':
'''Execution state (userspace/kernelspace) of the sampled
thread.''',
'callsite_id':
'''If set, unwound callstack of the sampled thread.''',
'unwind_error':
'''If set, indicates that the unwinding for this sample
encountered an error. Such samples still reference the
best-effort result via the callsite_id, with a synthetic error
frame at the point where unwinding stopped.''',
'perf_session_id':
'''Distinguishes samples from different profiling
streams (i.e. multiple data sources).'''
}))
INSTRUMENTS_SAMPLE_TABLE = Table(
python_module=__file__,
class_name='InstrumentsSampleTable',
sql_name='instruments_sample',
columns=[
C('ts', CppInt64(), flags=ColumnFlag.SORTED),
C('utid', CppUint32()),
C('cpu', CppOptional(CppUint32())),
C('callsite_id', CppOptional(CppTableId(STACK_PROFILE_CALLSITE_TABLE))),
],
tabledoc=TableDoc(
doc='''
Samples from MacOS Instruments.
''',
group='Callstack profilers',
columns={
'ts':
'''Timestamp of the sample.''',
'utid':
'''Sampled thread.''',
'cpu':
'''Core the sampled thread was running on.''',
'callsite_id':
'''If set, unwound callstack of the sampled thread.''',
}))
SYMBOL_TABLE = Table(
python_module=__file__,
class_name='SymbolTable',
sql_name='stack_profile_symbol',
columns=[
C('symbol_set_id',
CppUint32(),
flags=ColumnFlag.SORTED | ColumnFlag.SET_ID),
C('name', CppString()),
C('source_file', CppOptional(CppString())),
C('line_number', CppOptional(CppUint32())),
],
tabledoc=TableDoc(
doc='''
Symbolization data for a frame. Rows with the same symbol_set_id
describe one callframe, with the most-inlined symbol having
id == symbol_set_id.
For instance, if the function foo has an inlined call to the
function bar, which has an inlined call to baz, the
stack_profile_symbol table would look like this.
```
|id|symbol_set_id|name |source_file|line_number|
|--|-------------|-------------|-----------|-----------|
|1 | 1 |baz |foo.cc | 36 |
|2 | 1 |bar |foo.cc | 30 |
|3 | 1 |foo |foo.cc | 60 |
```
''',
group='Callstack profilers',
columns={
'name':
'''name of the function.''',
'source_file':
'''name of the source file containing the function.''',
'line_number':
'''
line number of the frame in the source file. This is the
exact line for the corresponding program counter, not the
beginning of the function.
''',
'symbol_set_id':
''''''
}))
HEAP_PROFILE_ALLOCATION_TABLE = Table(
python_module=__file__,
class_name='HeapProfileAllocationTable',
sql_name='heap_profile_allocation',
columns=[
# TODO(b/193757386): readd the sorted flag once this bug is fixed.
C('ts', CppInt64()),
C('upid', CppUint32()),
C('heap_name', CppString()),
C('callsite_id', CppTableId(STACK_PROFILE_CALLSITE_TABLE)),
C('count', CppInt64()),
C('size', CppInt64()),
],
tabledoc=TableDoc(
doc='''
Allocations that happened at a callsite.
NOTE: this table is not sorted by timestamp intentionanlly -
see b/193757386 for details.
This is generated by heapprofd.
''',
group='Callstack profilers',
columns={
'ts':
'''The timestamp the allocations happened at. heapprofd batches
allocations and frees, and all data from a dump will have the
same timestamp.''',
'upid':
'''The unique PID of the allocating process.''',
'callsite_id':
'''The callsite the allocation happened at.''',
'count':
'''If positive: number of allocations that happened at this
callsite. if negative: number of allocations that happened at
this callsite that were freed.''',
'size':
'''If positive: size of allocations that happened at this
callsite. if negative: size of allocations that happened at this
callsite that were freed.''',
'heap_name':
''''''
}))
EXPERIMENTAL_FLAMEGRAPH_TABLE = Table(
python_module=__file__,
class_name='ExperimentalFlamegraphTable',
sql_name='experimental_flamegraph',
columns=[
C('profile_type', CppString(), flags=ColumnFlag.HIDDEN),
C('ts_in',
CppOptional(CppInt64()),
flags=ColumnFlag.SORTED | ColumnFlag.HIDDEN),
C('ts_constraint', CppOptional(CppString()), flags=ColumnFlag.HIDDEN),
C('upid', CppOptional(CppUint32()), flags=ColumnFlag.HIDDEN),
C('upid_group', CppOptional(CppString()), flags=ColumnFlag.HIDDEN),
C('focus_str', CppOptional(CppString()), flags=ColumnFlag.HIDDEN),
C('ts', CppInt64(), flags=ColumnFlag.SORTED),
C('depth', CppUint32()),
C('name', CppString()),
C('map_name', CppString()),
C('count', CppInt64()),
C('cumulative_count', CppInt64()),
C('size', CppInt64()),
C('cumulative_size', CppInt64()),
C('alloc_count', CppInt64()),
C('cumulative_alloc_count', CppInt64()),
C('alloc_size', CppInt64()),
C('cumulative_alloc_size', CppInt64()),
C('parent_id', CppOptional(CppSelfTableId())),
C('source_file', CppOptional(CppString())),
C('line_number', CppOptional(CppUint32())),
],
tabledoc=TableDoc(
doc='''
Table used to render flamegraphs. This gives cumulative sizes of
nodes in the flamegraph.
WARNING: This is experimental and the API is subject to change.
''',
group='Callstack profilers',
columns={
'ts': '''''',
'upid': '''''',
'profile_type': '''''',
'focus_str': '''''',
'depth': '''''',
'name': '''''',
'map_name': '''''',
'count': '''''',
'cumulative_count': '''''',
'size': '''''',
'cumulative_size': '''''',
'alloc_count': '''''',
'cumulative_alloc_count': '''''',
'alloc_size': '''''',
'cumulative_alloc_size': '''''',
'parent_id': '''''',
'source_file': '''''',
'line_number': '''''',
'upid_group': ''''''
}))
HEAP_GRAPH_CLASS_TABLE = Table(
python_module=__file__,
class_name='HeapGraphClassTable',
sql_name='heap_graph_class',
columns=[
C('name', CppString()),
C('deobfuscated_name', CppOptional(CppString())),
C('location', CppOptional(CppString())),
C('superclass_id', CppOptional(CppSelfTableId())),
# classloader_id should really be HeapGraphObject::id, but that
# would create a loop, which is currently not possible.
# TODO(lalitm): resolve this
C('classloader_id', CppOptional(CppUint32())),
C('kind', CppString()),
],
tabledoc=TableDoc(
doc='''''',
group='ART Heap Graphs',
columns={
'name':
'''(potentially obfuscated) name of the class.''',
'deobfuscated_name':
'''if class name was obfuscated and deobfuscation map
for it provided, the deobfuscated name.''',
'location':
'''the APK / Dex / JAR file the class is contained in.
''',
'superclass_id':
'''''',
'classloader_id':
'''''',
'kind':
''''''
}))
HEAP_GRAPH_OBJECT_TABLE = Table(
python_module=__file__,
class_name='HeapGraphObjectTable',
sql_name='heap_graph_object',
columns=[
C('upid', CppUint32()),
C('graph_sample_ts', CppInt64()),
C('self_size', CppInt64()),
C('native_size', CppInt64()),
C('reference_set_id', CppOptional(CppUint32()), flags=ColumnFlag.DENSE),
C('reachable', CppInt32()),
C('type_id', CppTableId(HEAP_GRAPH_CLASS_TABLE)),
C('root_type', CppOptional(CppString())),
C('root_distance', CppInt32(), flags=ColumnFlag.HIDDEN),
],
tabledoc=TableDoc(
doc='''
The objects on the Dalvik heap.
All rows with the same (upid, graph_sample_ts) are one dump.
''',
group='ART Heap Graphs',
columns={
'upid':
'''Unique PID of the target.''',
'graph_sample_ts':
'''timestamp this dump was taken at.''',
'self_size':
'''size this object uses on the Java Heap.''',
'native_size':
'''approximate amount of native memory used by this object,
as reported by libcore.util.NativeAllocationRegistry.size.''',
'reference_set_id':
'''join key with heap_graph_reference containing all
objects referred in this object's fields.''',
'reachable':
'''bool whether this object is reachable from a GC root. If
false, this object is uncollected garbage.''',
'type_id':
'''class this object is an instance of.''',
'root_type':
'''if not NULL, this object is a GC root.''',
'root_distance':
''''''
}))
HEAP_GRAPH_REFERENCE_TABLE = Table(
python_module=__file__,
class_name='HeapGraphReferenceTable',
sql_name='heap_graph_reference',
columns=[
C('reference_set_id',
CppUint32(),
flags=ColumnFlag.SORTED | ColumnFlag.SET_ID),
C('owner_id', CppTableId(HEAP_GRAPH_OBJECT_TABLE)),
C('owned_id', CppOptional(CppTableId(HEAP_GRAPH_OBJECT_TABLE))),
C('field_name', CppString()),
C('field_type_name', CppString()),
C('deobfuscated_field_name', CppOptional(CppString())),
],
tabledoc=TableDoc(
doc='''
Many-to-many mapping between heap_graph_object.
This associates the object with given reference_set_id with the
objects that are referred to by its fields.
''',
group='ART Heap Graphs',
columns={
'reference_set_id':
'''Join key to heap_graph_object.''',
'owner_id':
'''Id of object that has this reference_set_id.''',
'owned_id':
'''Id of object that is referred to.''',
'field_name':
'''The field that refers to the object. E.g. Foo.name.''',
'field_type_name':
'''The static type of the field. E.g. java.lang.String.''',
'deobfuscated_field_name':
'''The deobfuscated name, if field_name was obfuscated and a
deobfuscation mapping was provided for it.'''
}))
VULKAN_MEMORY_ALLOCATIONS_TABLE = Table(
python_module=__file__,
class_name='VulkanMemoryAllocationsTable',
sql_name='vulkan_memory_allocations',
columns=[
C('arg_set_id', CppOptional(CppUint32())),
C('source', CppString()),
C('operation', CppString()),
C('timestamp', CppInt64()),
C('upid', CppOptional(CppUint32())),
C('device', CppOptional(CppInt64())),
C('device_memory', CppOptional(CppInt64())),
C('memory_type', CppOptional(CppUint32())),
C('heap', CppOptional(CppUint32())),
C('function_name', CppOptional(CppString())),
C('object_handle', CppOptional(CppInt64())),
C('memory_address', CppOptional(CppInt64())),
C('memory_size', CppOptional(CppInt64())),
C('scope', CppString()),
],
tabledoc=TableDoc(
doc='''''',
group='Misc',
columns={
'arg_set_id': '''''',
'source': '''''',
'operation': '''''',
'timestamp': '''''',
'upid': '''''',
'device': '''''',
'device_memory': '''''',
'memory_type': '''''',
'heap': '''''',
'function_name': '''''',
'object_handle': '''''',
'memory_address': '''''',
'memory_size': '''''',
'scope': ''''''
}))
GPU_COUNTER_GROUP_TABLE = Table(
python_module=__file__,
class_name='GpuCounterGroupTable',
sql_name='gpu_counter_group',
columns=[
C('group_id', CppInt32()),
C('track_id', CppTableId(TRACK_TABLE)),
],
tabledoc=TableDoc(
doc='''''',
group='Misc',
columns={
'group_id': '''''',
'track_id': ''''''
}))
PERF_COUNTER_TRACK_TABLE = Table(
python_module=__file__,
class_name='PerfCounterTrackTable',
sql_name='perf_counter_track',
columns=[
C('perf_session_id', CppTableId(PERF_SESSION_TABLE)),
C('cpu', CppUint32()),
C('is_timebase', CppUint32()),
],
parent=COUNTER_TRACK_TABLE,
tabledoc=TableDoc(
doc='Sampled counters\' values for samples in the perf_sample table.',
group='Counter Tracks',
columns={
'perf_session_id':
'id of a distict profiling stream',
'cpu':
'the core the sample was taken on',
'is_timebase':
'''
If true, indicates this counter was the sampling timebase for
this perf_session_id
'''
}))
# Keep this list sorted.
ALL_TABLES = [
CPU_PROFILE_STACK_SAMPLE_TABLE,
EXPERIMENTAL_FLAMEGRAPH_TABLE,
GPU_COUNTER_GROUP_TABLE,
HEAP_GRAPH_CLASS_TABLE,
HEAP_GRAPH_OBJECT_TABLE,
HEAP_GRAPH_REFERENCE_TABLE,
INSTRUMENTS_SAMPLE_TABLE,
HEAP_PROFILE_ALLOCATION_TABLE,
PACKAGE_LIST_TABLE,
PERF_SAMPLE_TABLE,
PERF_SESSION_TABLE,
PROFILER_SMAPS_TABLE,
STACK_PROFILE_CALLSITE_TABLE,
STACK_PROFILE_FRAME_TABLE,
STACK_PROFILE_MAPPING_TABLE,
SYMBOL_TABLE,
VULKAN_MEMORY_ALLOCATIONS_TABLE,
PERF_COUNTER_TRACK_TABLE,
]