blob: 0595c1ffc2354b5939a55455774d045aa29e89d7 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "perfetto/protozero/proto_decoder.h"
#include <string.h>
#include <cinttypes>
#include <limits>
#include <memory>
#include "perfetto/base/compiler.h"
#include "perfetto/base/logging.h"
#include "perfetto/ext/base/utils.h"
#include "perfetto/protozero/proto_utils.h"
namespace protozero {
using namespace proto_utils;
#if !PERFETTO_IS_LITTLE_ENDIAN()
#error Unimplemented for big endian archs.
#endif
namespace {
struct ParseFieldResult {
enum ParseResult { kAbort, kSkip, kOk };
ParseResult parse_res;
const uint8_t* next;
Field field;
};
// Parses one field and returns the field itself and a pointer to the next
// field to parse. If parsing fails, the returned |next| == |buffer|.
ParseFieldResult ParseOneField(const uint8_t* const buffer,
const uint8_t* const end) {
ParseFieldResult res{ParseFieldResult::kAbort, buffer, Field{}};
// The first byte of a proto field is structured as follows:
// The least 3 significant bits determine the field type.
// The most 5 significant bits determine the field id. If MSB == 1, the
// field id continues on the next bytes following the VarInt encoding.
const uint8_t kFieldTypeNumBits = 3;
const uint64_t kFieldTypeMask = (1 << kFieldTypeNumBits) - 1; // 0000 0111;
const uint8_t* pos = buffer;
// If we've already hit the end, just return an invalid field.
if (PERFETTO_UNLIKELY(pos >= end))
return res;
uint64_t preamble = 0;
if (PERFETTO_LIKELY(*pos < 0x80)) { // Fastpath for fields with ID < 16.
preamble = *(pos++);
} else {
const uint8_t* next = ParseVarInt(pos, end, &preamble);
if (PERFETTO_UNLIKELY(pos == next))
return res;
pos = next;
}
uint32_t field_id = static_cast<uint32_t>(preamble >> kFieldTypeNumBits);
if (field_id == 0 || pos >= end)
return res;
auto field_type = static_cast<uint8_t>(preamble & kFieldTypeMask);
const uint8_t* new_pos = pos;
uint64_t int_value = 0;
uint64_t size = 0;
switch (field_type) {
case static_cast<uint8_t>(ProtoWireType::kVarInt): {
new_pos = ParseVarInt(pos, end, &int_value);
// new_pos not being greater than pos means ParseVarInt could not fully
// parse the number. This is because we are out of space in the buffer.
// Set the id to zero and return but don't update the offset so a future
// read can read this field.
if (PERFETTO_UNLIKELY(new_pos == pos))
return res;
break;
}
case static_cast<uint8_t>(ProtoWireType::kLengthDelimited): {
uint64_t payload_length;
new_pos = ParseVarInt(pos, end, &payload_length);
if (PERFETTO_UNLIKELY(new_pos == pos))
return res;
// ParseVarInt guarantees that |new_pos| <= |end| when it succeeds;
if (payload_length > static_cast<uint64_t>(end - new_pos))
return res;
const uintptr_t payload_start = reinterpret_cast<uintptr_t>(new_pos);
int_value = payload_start;
size = payload_length;
new_pos += payload_length;
break;
}
case static_cast<uint8_t>(ProtoWireType::kFixed64): {
new_pos = pos + sizeof(uint64_t);
if (PERFETTO_UNLIKELY(new_pos > end))
return res;
memcpy(&int_value, pos, sizeof(uint64_t));
break;
}
case static_cast<uint8_t>(ProtoWireType::kFixed32): {
new_pos = pos + sizeof(uint32_t);
if (PERFETTO_UNLIKELY(new_pos > end))
return res;
memcpy(&int_value, pos, sizeof(uint32_t));
break;
}
default:
PERFETTO_DLOG("Invalid proto field type: %u", field_type);
return res;
}
res.next = new_pos;
if (PERFETTO_UNLIKELY(field_id > std::numeric_limits<uint16_t>::max())) {
PERFETTO_DLOG("Skipping field %" PRIu32 " because its id > 0xFFFF",
field_id);
res.parse_res = ParseFieldResult::kSkip;
return res;
}
if (PERFETTO_UNLIKELY(size > proto_utils::kMaxMessageLength)) {
PERFETTO_DLOG("Skipping field %" PRIu32 " because it's too big (%" PRIu64
" KB)",
field_id, size / 1024);
res.parse_res = ParseFieldResult::kSkip;
return res;
}
res.parse_res = ParseFieldResult::kOk;
res.field.initialize(static_cast<uint16_t>(field_id), field_type, int_value,
static_cast<uint32_t>(size));
return res;
}
} // namespace
Field ProtoDecoder::FindField(uint32_t field_id) {
Field res{};
auto old_position = read_ptr_;
read_ptr_ = begin_;
for (auto f = ReadField(); f.valid(); f = ReadField()) {
if (f.id() == field_id) {
res = f;
break;
}
}
read_ptr_ = old_position;
return res;
}
Field ProtoDecoder::ReadField() {
ParseFieldResult res;
do {
res = ParseOneField(read_ptr_, end_);
read_ptr_ = res.next;
} while (PERFETTO_UNLIKELY(res.parse_res == ParseFieldResult::kSkip));
return res.field;
}
void TypedProtoDecoderBase::ParseAllFields() {
const uint8_t* cur = begin_;
ParseFieldResult res;
for (;;) {
res = ParseOneField(cur, end_);
PERFETTO_DCHECK(res.parse_res != ParseFieldResult::kOk || res.next != cur);
cur = res.next;
if (PERFETTO_UNLIKELY(res.parse_res == ParseFieldResult::kSkip))
continue;
if (PERFETTO_UNLIKELY(res.parse_res == ParseFieldResult::kAbort))
break;
PERFETTO_DCHECK(res.parse_res == ParseFieldResult::kOk);
PERFETTO_DCHECK(res.field.valid());
auto field_id = res.field.id();
if (PERFETTO_UNLIKELY(field_id >= num_fields_))
continue;
// There are two reasons why we might want to expand the heap capacity:
// 1. We are writing a non-repeated field, which has an id >
// INITIAL_STACK_CAPACITY. In this case ExpandHeapStorage() ensures to
// allocate at least (num_fields_ + 1) slots.
// 2. We are writing a repeated field but ran out of capacity.
if (PERFETTO_UNLIKELY(field_id >= size_ || size_ >= capacity_))
ExpandHeapStorage();
PERFETTO_DCHECK(field_id < size_);
Field* fld = &fields_[field_id];
if (PERFETTO_LIKELY(!fld->valid())) {
// This is the first time we see this field.
*fld = std::move(res.field);
} else {
// Repeated field case.
// In this case we need to:
// 1. Append the last value of the field to end of the repeated field
// storage.
// 2. Replace the default instance at offset |field_id| with the current
// value. This is because in case of repeated field a call to Get(X) is
// supposed to return the last value of X, not the first one.
// This is so that the RepeatedFieldIterator will iterate in the right
// order, see comments on RepeatedFieldIterator.
PERFETTO_DCHECK(size_ < capacity_);
fields_[size_++] = *fld;
*fld = std::move(res.field);
}
}
read_ptr_ = res.next;
}
void TypedProtoDecoderBase::ExpandHeapStorage() {
// When we expand the heap we must ensure that we have at very last capacity
// to deal with all known fields plus at least one repeated field. We go +2048
// here based on observations on a large 4GB android trace. This is to avoid
// trivial re-allocations when dealing with repeated fields of a message that
// has > INITIAL_STACK_CAPACITY fields.
const uint32_t min_capacity = num_fields_ + 2048; // Any num >= +1 will do.
const uint32_t new_capacity = std::max(capacity_ * 2, min_capacity);
PERFETTO_CHECK(new_capacity > size_ && new_capacity > num_fields_);
std::unique_ptr<Field[]> new_storage(new Field[new_capacity]);
static_assert(std::is_trivially_constructible<Field>::value,
"Field must be trivially constructible");
static_assert(std::is_trivially_copyable<Field>::value,
"Field must be trivially copyable");
// Zero-initialize the slots for known field IDs slots, as they can be
// randomly accessed. Instead, there is no need to initialize the repeated
// slots, because they are written linearly with no gaps and are always
// initialized before incrementing |size_|.
const uint32_t new_size = std::max(size_, num_fields_);
memset(&new_storage[size_], 0, sizeof(Field) * (new_size - size_));
memcpy(&new_storage[0], fields_, sizeof(Field) * size_);
heap_storage_ = std::move(new_storage);
fields_ = &heap_storage_[0];
capacity_ = new_capacity;
size_ = new_size;
}
} // namespace protozero