blob: ac7f8faa2a87f4614d9cbb5242cf4098ae999ebb [file] [log] [blame]
// Copyright (C) 2018 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <random>
#include <benchmark/benchmark.h>
#include "perfetto/base/time.h"
#include "perfetto/ext/traced/traced.h"
#include "perfetto/ext/tracing/core/trace_packet.h"
#include "perfetto/tracing/core/trace_config.h"
#include "src/base/test/test_task_runner.h"
#include "test/gtest_and_gmock.h"
#include "test/test_helper.h"
#include "protos/perfetto/config/test_config.gen.h"
#include "protos/perfetto/trace/test_event.gen.h"
#include "protos/perfetto/trace/trace_packet.pbzero.h"
namespace perfetto {
namespace {
bool IsBenchmarkFunctionalOnly() {
return getenv("BENCHMARK_FUNCTIONAL_TEST_ONLY") != nullptr;
}
void BenchmarkProducer(benchmark::State& state) {
base::TestTaskRunner task_runner;
TestHelper helper(&task_runner);
helper.StartServiceIfRequired();
FakeProducer* producer = helper.ConnectFakeProducer();
helper.ConnectConsumer();
helper.WaitForConsumerConnect();
TraceConfig trace_config;
trace_config.add_buffers()->set_size_kb(512);
auto* ds_config = trace_config.add_data_sources()->mutable_config();
ds_config->set_name("android.perfetto.FakeProducer");
ds_config->set_target_buffer(0);
static constexpr uint32_t kRandomSeed = 42;
uint32_t message_count = static_cast<uint32_t>(state.range(0));
uint32_t message_bytes = static_cast<uint32_t>(state.range(1));
uint32_t mb_per_s = static_cast<uint32_t>(state.range(2));
uint32_t messages_per_s = mb_per_s * 1024 * 1024 / message_bytes;
uint32_t time_for_messages_ms =
10000 + (messages_per_s == 0 ? 0 : message_count * 1000 / messages_per_s);
ds_config->mutable_for_testing()->set_seed(kRandomSeed);
ds_config->mutable_for_testing()->set_message_count(message_count);
ds_config->mutable_for_testing()->set_message_size(message_bytes);
ds_config->mutable_for_testing()->set_max_messages_per_second(messages_per_s);
helper.StartTracing(trace_config);
helper.WaitForProducerEnabled();
uint64_t wall_start_ns = static_cast<uint64_t>(base::GetWallTimeNs().count());
uint64_t service_start_ns =
helper.service_thread()->GetThreadCPUTimeNsForTesting();
uint64_t producer_start_ns =
helper.producer_thread()->GetThreadCPUTimeNsForTesting();
uint32_t iterations = 0;
for (auto _ : state) {
auto cname = "produced.and.committed." + std::to_string(iterations++);
auto on_produced_and_committed = task_runner.CreateCheckpoint(cname);
producer->ProduceEventBatch(helper.WrapTask(on_produced_and_committed));
task_runner.RunUntilCheckpoint(cname, time_for_messages_ms);
}
uint64_t service_ns =
helper.service_thread()->GetThreadCPUTimeNsForTesting() -
service_start_ns;
uint64_t producer_ns =
helper.producer_thread()->GetThreadCPUTimeNsForTesting() -
producer_start_ns;
uint64_t wall_ns =
static_cast<uint64_t>(base::GetWallTimeNs().count()) - wall_start_ns;
state.counters["Ser CPU"] = benchmark::Counter(
100.0 * static_cast<double>(service_ns) / static_cast<double>(wall_ns));
state.counters["Ser ns/m"] = benchmark::Counter(
static_cast<double>(service_ns) / static_cast<double>(message_count));
state.counters["Pro CPU"] = benchmark::Counter(
100.0 * static_cast<double>(producer_ns) / static_cast<double>(wall_ns));
state.SetBytesProcessed(iterations * message_bytes * message_count);
// Read back the buffer just to check correctness.
helper.ReadData();
helper.WaitForReadData();
bool is_first_packet = true;
std::minstd_rand0 rnd_engine(kRandomSeed);
for (const auto& packet : helper.trace()) {
ASSERT_TRUE(packet.has_for_testing());
if (is_first_packet) {
rnd_engine = std::minstd_rand0(packet.for_testing().seq_value());
is_first_packet = false;
} else {
ASSERT_EQ(packet.for_testing().seq_value(), rnd_engine());
}
}
}
static void BenchmarkConsumer(benchmark::State& state) {
base::TestTaskRunner task_runner;
TestHelper helper(&task_runner);
helper.StartServiceIfRequired();
FakeProducer* producer = helper.ConnectFakeProducer();
helper.ConnectConsumer();
helper.WaitForConsumerConnect();
TraceConfig trace_config;
static const uint32_t kBufferSizeBytes =
IsBenchmarkFunctionalOnly() ? 16 * 1024 : 2 * 1024 * 1024;
trace_config.add_buffers()->set_size_kb(kBufferSizeBytes / 1024);
static constexpr uint32_t kRandomSeed = 42;
uint32_t message_bytes = static_cast<uint32_t>(state.range(0));
uint32_t mb_per_s = static_cast<uint32_t>(state.range(1));
bool is_saturated_producer = mb_per_s == 0;
uint32_t message_count = kBufferSizeBytes / message_bytes;
uint32_t messages_per_s = mb_per_s * 1024 * 1024 / message_bytes;
uint32_t number_of_batches =
is_saturated_producer ? 0 : std::max(1u, message_count / messages_per_s);
auto* ds_config = trace_config.add_data_sources()->mutable_config();
ds_config->set_name("android.perfetto.FakeProducer");
ds_config->set_target_buffer(0);
ds_config->mutable_for_testing()->set_seed(kRandomSeed);
ds_config->mutable_for_testing()->set_message_count(message_count);
ds_config->mutable_for_testing()->set_message_size(message_bytes);
ds_config->mutable_for_testing()->set_max_messages_per_second(messages_per_s);
helper.StartTracing(trace_config);
helper.WaitForProducerEnabled();
uint64_t wall_start_ns = static_cast<uint64_t>(base::GetWallTimeNs().count());
uint64_t service_start_ns = static_cast<uint64_t>(
helper.service_thread()->GetThreadCPUTimeNsForTesting());
uint64_t consumer_start_ns =
static_cast<uint64_t>(base::GetThreadCPUTimeNs().count());
uint64_t read_time_taken_ns = 0;
uint64_t iterations = 0;
uint32_t counter = 0;
for (auto _ : state) {
auto cname = "produced.and.committed." + std::to_string(iterations++);
auto on_produced_and_committed = task_runner.CreateCheckpoint(cname);
producer->ProduceEventBatch(helper.WrapTask(on_produced_and_committed));
if (is_saturated_producer) {
// If the producer is running in saturated mode, wait until it flushes
// data.
task_runner.RunUntilCheckpoint(cname);
// Then time how long it takes to read back the data.
int64_t start = base::GetWallTimeNs().count();
helper.ReadData(counter);
helper.WaitForReadData(counter++);
read_time_taken_ns +=
static_cast<uint64_t>(base::GetWallTimeNs().count() - start);
} else {
// If the producer is not running in saturated mode, every second the
// producer will send a batch of data over. Wait for a second before
// performing readback; do this for each batch the producer sends.
for (uint32_t i = 0; i < number_of_batches; i++) {
auto batch_cname = "batch.checkpoint." + std::to_string(counter);
auto batch_checkpoint = task_runner.CreateCheckpoint(batch_cname);
task_runner.PostDelayedTask(batch_checkpoint, 1000);
task_runner.RunUntilCheckpoint(batch_cname);
int64_t start = base::GetWallTimeNs().count();
helper.ReadData(counter);
helper.WaitForReadData(counter++);
read_time_taken_ns +=
static_cast<uint64_t>(base::GetWallTimeNs().count() - start);
}
}
}
uint64_t service_ns =
helper.service_thread()->GetThreadCPUTimeNsForTesting() -
service_start_ns;
uint64_t consumer_ns =
static_cast<uint64_t>(base::GetThreadCPUTimeNs().count()) -
consumer_start_ns;
uint64_t wall_ns =
static_cast<uint64_t>(base::GetWallTimeNs().count()) - wall_start_ns;
state.counters["Ser CPU"] = benchmark::Counter(
100.0 * static_cast<double>(service_ns) / static_cast<double>(wall_ns));
state.counters["Ser ns/m"] =
benchmark::Counter(1.0 * static_cast<double>(service_ns) /
static_cast<double>(message_count));
state.counters["Con CPU"] = benchmark::Counter(
100.0 * static_cast<double>(consumer_ns) / static_cast<double>(wall_ns));
state.counters["Con Speed"] =
benchmark::Counter(static_cast<double>(iterations) * 1000.0 * 1000.0 *
1000.0 * static_cast<double>(kBufferSizeBytes) /
static_cast<double>(read_time_taken_ns));
}
void SaturateCpuProducerArgs(benchmark::internal::Benchmark* b) {
int min_message_count = 16;
int max_message_count = IsBenchmarkFunctionalOnly() ? 16 : 1024 * 1024;
int min_payload = 8;
int max_payload = IsBenchmarkFunctionalOnly() ? 8 : 2048;
for (int count = min_message_count; count <= max_message_count; count *= 2) {
for (int bytes = min_payload; bytes <= max_payload; bytes *= 2) {
b->Args({count, bytes, 0 /* speed */});
}
}
}
void ConstantRateProducerArgs(benchmark::internal::Benchmark* b) {
int message_count = IsBenchmarkFunctionalOnly() ? 2 * 1024 : 128 * 1024;
int min_speed = IsBenchmarkFunctionalOnly() ? 64 : 8;
int max_speed = 128;
for (int speed = min_speed; speed <= max_speed; speed *= 2) {
b->Args({message_count, 128, speed});
b->Args({message_count, 256, speed});
}
}
void SaturateCpuConsumerArgs(benchmark::internal::Benchmark* b) {
int min_payload = 8;
int max_payload = IsBenchmarkFunctionalOnly() ? 16 : 64 * 1024;
for (int bytes = min_payload; bytes <= max_payload; bytes *= 2) {
b->Args({bytes, 0 /* speed */});
}
}
void ConstantRateConsumerArgs(benchmark::internal::Benchmark* b) {
int min_speed = IsBenchmarkFunctionalOnly() ? 128 : 1;
int max_speed = IsBenchmarkFunctionalOnly() ? 128 : 2;
for (int speed = min_speed; speed <= max_speed; speed *= 2) {
b->Args({2, speed});
b->Args({4, speed});
}
}
} // namespace
static void BM_EndToEnd_Producer_SaturateCpu(benchmark::State& state) {
BenchmarkProducer(state);
}
BENCHMARK(BM_EndToEnd_Producer_SaturateCpu)
->Unit(benchmark::kMicrosecond)
->UseRealTime()
->Apply(SaturateCpuProducerArgs);
static void BM_EndToEnd_Producer_ConstantRate(benchmark::State& state) {
BenchmarkProducer(state);
}
BENCHMARK(BM_EndToEnd_Producer_ConstantRate)
->Unit(benchmark::kMicrosecond)
->UseRealTime()
->Apply(ConstantRateProducerArgs);
static void BM_EndToEnd_Consumer_SaturateCpu(benchmark::State& state) {
BenchmarkConsumer(state);
}
BENCHMARK(BM_EndToEnd_Consumer_SaturateCpu)
->Unit(benchmark::kMicrosecond)
->UseRealTime()
->Apply(SaturateCpuConsumerArgs);
static void BM_EndToEnd_Consumer_ConstantRate(benchmark::State& state) {
BenchmarkConsumer(state);
}
BENCHMARK(BM_EndToEnd_Consumer_ConstantRate)
->Unit(benchmark::kMillisecond)
->UseRealTime()
->Apply(ConstantRateConsumerArgs);
} // namespace perfetto