blob: ae4a2c4dfa0020b459ef80ab70ae5bbc80b7e811 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <string>
#include <vector>
#include "perfetto/ext/base/file_utils.h"
#include "perfetto/ext/base/scoped_file.h"
#include "perfetto/protozero/proto_utils.h"
#include "perfetto/protozero/scattered_heap_buffer.h"
#include "protos/perfetto/trace/ftrace/ftrace_event.pbzero.h"
#include "protos/perfetto/trace/ftrace/ftrace_event_bundle.pbzero.h"
#include "protos/perfetto/trace/ftrace/sched.pbzero.h"
#include "protos/perfetto/trace/trace.pbzero.h"
#include "protos/perfetto/trace/trace_packet.pbzero.h"
// Re-encodes the given trace, converting sched events to their compact
// representation.
//
// Notes:
// * doesn't do bundle splitting/merging, the original trace must already
// have multi-page bundles for the re-encoding to be realistic.
// * when importing the resulting trace into trace_processor, a few leading
// switch/wakeup events can be skipped (since there's not enough info to
// reconstruct the full events at that point), and this might change the
// trace_bounds.
namespace perfetto {
namespace compact_reencode {
namespace {
void WriteToFile(const std::string& out, const char* path) {
PERFETTO_CHECK(!unlink(path) || errno == ENOENT);
auto out_fd = base::OpenFile(path, O_RDWR | O_CREAT, 0666);
if (!out_fd || base::WriteAll(out_fd.get(), out.data(), out.size()) !=
static_cast<ssize_t>(out.size())) {
PERFETTO_FATAL("WriteToFile");
}
}
static void CopyField(protozero::Message* out, const protozero::Field& field) {
using protozero::proto_utils::ProtoWireType;
if (field.type() == ProtoWireType::kVarInt) {
out->AppendVarInt(field.id(), field.as_uint64());
} else if (field.type() == ProtoWireType::kLengthDelimited) {
out->AppendBytes(field.id(), field.as_bytes().data, field.as_bytes().size);
} else if (field.type() == ProtoWireType::kFixed32) {
out->AppendFixed(field.id(), field.as_uint32());
} else if (field.type() == ProtoWireType::kFixed64) {
out->AppendFixed(field.id(), field.as_uint64());
} else {
PERFETTO_FATAL("unexpected wire type");
}
}
void ReEncodeBundle(protos::pbzero::TracePacket* packet_out,
const uint8_t* data,
size_t size) {
protos::pbzero::FtraceEventBundle::Decoder bundle(data, size);
auto* bundle_out = packet_out->set_ftrace_events();
if (bundle.has_lost_events())
bundle_out->set_lost_events(bundle.lost_events());
if (bundle.has_cpu())
bundle_out->set_cpu(bundle.cpu());
protozero::PackedVarInt switch_timestamp;
protozero::PackedVarInt switch_prev_state;
protozero::PackedVarInt switch_next_pid;
protozero::PackedVarInt switch_next_prio;
protozero::PackedVarInt switch_next_comm_index;
uint64_t last_switch_timestamp = 0;
std::vector<std::string> string_table;
auto intern = [&string_table](std::string str) {
for (size_t i = 0; i < string_table.size(); i++) {
if (str == string_table[i])
return static_cast<uint32_t>(i);
}
size_t new_idx = string_table.size();
string_table.push_back(str);
return static_cast<uint32_t>(new_idx);
};
// sched_waking pieces
protozero::PackedVarInt waking_timestamp;
protozero::PackedVarInt waking_pid;
protozero::PackedVarInt waking_target_cpu;
protozero::PackedVarInt waking_prio;
protozero::PackedVarInt waking_comm_index;
uint64_t last_waking_timestamp = 0;
for (auto event_it = bundle.event(); event_it; ++event_it) {
protos::pbzero::FtraceEvent::Decoder event(*event_it);
if (!event.has_sched_switch() && !event.has_sched_waking()) {
CopyField(bundle_out, event_it.field());
} else if (event.has_sched_switch()) {
switch_timestamp.Append(event.timestamp() - last_switch_timestamp);
last_switch_timestamp = event.timestamp();
protos::pbzero::SchedSwitchFtraceEvent::Decoder sswitch(
event.sched_switch());
auto iid = intern(sswitch.next_comm().ToStdString());
switch_next_comm_index.Append(iid);
switch_next_pid.Append(sswitch.next_pid());
switch_next_prio.Append(sswitch.next_prio());
switch_prev_state.Append(sswitch.prev_state());
} else {
waking_timestamp.Append(event.timestamp() - last_waking_timestamp);
last_waking_timestamp = event.timestamp();
protos::pbzero::SchedWakingFtraceEvent::Decoder swaking(
event.sched_waking());
auto iid = intern(swaking.comm().ToStdString());
waking_comm_index.Append(iid);
waking_pid.Append(swaking.pid());
waking_target_cpu.Append(swaking.target_cpu());
waking_prio.Append(swaking.prio());
}
}
auto* compact_sched = bundle_out->set_compact_sched();
for (const auto& s : string_table)
compact_sched->add_intern_table(s.data(), s.size());
compact_sched->set_switch_timestamp(switch_timestamp);
compact_sched->set_switch_next_comm_index(switch_next_comm_index);
compact_sched->set_switch_next_pid(switch_next_pid);
compact_sched->set_switch_next_prio(switch_next_prio);
compact_sched->set_switch_prev_state(switch_prev_state);
compact_sched->set_waking_timestamp(waking_timestamp);
compact_sched->set_waking_pid(waking_pid);
compact_sched->set_waking_target_cpu(waking_target_cpu);
compact_sched->set_waking_prio(waking_prio);
compact_sched->set_waking_comm_index(waking_comm_index);
}
std::string ReEncode(const std::string& raw) {
protos::pbzero::Trace::Decoder trace(raw);
protozero::HeapBuffered<protos::pbzero::Trace> output;
for (auto packet_it = trace.packet(); packet_it; ++packet_it) {
protozero::ProtoDecoder packet(*packet_it);
protos::pbzero::TracePacket* packet_out = output->add_packet();
for (auto field = packet.ReadField(); field.valid();
field = packet.ReadField()) {
if (field.id() == protos::pbzero::TracePacket::kFtraceEventsFieldNumber) {
ReEncodeBundle(packet_out, field.data(), field.size());
} else {
CopyField(packet_out, field);
}
}
}
// Minor technicality: we will be a tiny bit off the real encoding since
// we've encoded the top-level Trace & TracePacket sizes redundantly, while
// the tracing service writes them as a minimal varint (so only a few bytes
// off per trace packet).
return output.SerializeAsString();
}
int Main(int argc, const char** argv) {
if (argc < 3) {
PERFETTO_LOG("Usage: %s input output", argv[0]);
return 1;
}
const char* in_path = argv[1];
const char* out_path = argv[2];
std::string raw;
if (!base::ReadFile(in_path, &raw)) {
PERFETTO_PLOG("ReadFile");
return 1;
}
std::string raw_out = ReEncode(raw);
WriteToFile(raw_out, out_path);
return 0;
}
} // namespace
} // namespace compact_reencode
} // namespace perfetto
int main(int argc, const char** argv) {
return perfetto::compact_reencode::Main(argc, argv);
}