blob: cca1997eeddd861014491dfe7987544b2678c89c [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/trace_processor/fuchsia_trace_utils.h"
namespace perfetto {
namespace trace_processor {
namespace fuchsia_trace_utils {
namespace {
constexpr uint32_t kInlineStringMarker = 0x8000;
constexpr uint32_t kInlineStringLengthMask = 0x7FFF;
} // namespace
bool IsInlineString(uint32_t string_ref) {
// Treat a string ref of 0 (the empty string) as inline. The empty string is
// not a true entry in the string table.
return (string_ref & kInlineStringMarker) || (string_ref == 0);
}
bool IsInlineThread(uint32_t thread_ref) {
return thread_ref == 0;
}
// Converts a tick count to nanoseconds. Returns -1 if the result would not
// fit in a nonnegative int64_t. Negative timestamps are not allowed by the
// Fuchsia trace format. Also returns -1 if ticks_per_second is zero.
int64_t TicksToNs(uint64_t ticks, uint64_t ticks_per_second) {
uint64_t ticks_hi = ticks >> 32;
uint64_t ticks_lo = ticks & ((uint64_t(1) << 32) - 1);
uint64_t ns_per_sec = 1000000000;
if (ticks_per_second == 0) {
return -1;
}
// This multiplication may overflow.
uint64_t result_hi = ticks_hi * ((ns_per_sec << 32) / ticks_per_second);
if (ticks_hi != 0 &&
result_hi / ticks_hi != ((ns_per_sec << 32) / ticks_per_second)) {
return -1;
}
// This computation never overflows, because ticks_lo is less than 2^32, and
// ns_per_sec = 10^9 < 2^32.
uint64_t result_lo = ticks_lo * ns_per_sec / ticks_per_second;
// Performing addition before the cast avoids undefined behavior.
int64_t result = static_cast<int64_t>(result_hi + result_lo);
// Check for addition overflow.
if (result < 0) {
return -1;
}
return result;
}
Variadic ArgValue::ToStorageVariadic(TraceStorage* storage) const {
switch (type_) {
case ArgType::kNull:
return Variadic::String(storage->InternString("null"));
case ArgType::kInt32:
return Variadic::Integer(static_cast<int64_t>(int32_));
case ArgType::kUint32:
return Variadic::Integer(static_cast<int64_t>(uint32_));
case ArgType::kInt64:
return Variadic::Integer(int64_);
case ArgType::kUint64:
return Variadic::Integer(static_cast<int64_t>(uint64_));
case ArgType::kDouble:
return Variadic::Real(double_);
case ArgType::kString:
return Variadic::String(string_);
case ArgType::kPointer:
return Variadic::Integer(static_cast<int64_t>(pointer_));
case ArgType::kKoid:
return Variadic::Integer(static_cast<int64_t>(koid_));
case ArgType::kUnknown:
return Variadic::String(storage->InternString("unknown"));
}
PERFETTO_FATAL("Not reached"); // Make GCC happy.
}
size_t RecordCursor::WordIndex() {
return word_index_;
}
void RecordCursor::SetWordIndex(size_t index) {
word_index_ = index;
}
bool RecordCursor::ReadTimestamp(uint64_t ticks_per_second, int64_t* ts_out) {
const uint64_t* ts_data;
if (!ReadWords(1, &ts_data)) {
return false;
}
if (ts_out != nullptr) {
*ts_out = TicksToNs(*ts_data, ticks_per_second);
}
return true;
}
bool RecordCursor::ReadInlineString(uint32_t string_ref_or_len,
base::StringView* string_out) {
// Note that this works correctly for the empty string, where string_ref is 0.
size_t len = string_ref_or_len & kInlineStringLengthMask;
size_t len_words = (len + 7) / 8;
const uint64_t* string_data;
if (!ReadWords(len_words, &string_data)) {
return false;
}
if (string_out != nullptr) {
*string_out =
base::StringView(reinterpret_cast<const char*>(string_data), len);
}
return true;
}
bool RecordCursor::ReadInlineThread(ThreadInfo* thread_out) {
const uint64_t* thread_data;
if (!ReadWords(2, &thread_data)) {
return false;
}
if (thread_out != nullptr) {
thread_out->pid = thread_data[0];
thread_out->tid = thread_data[1];
}
return true;
}
bool RecordCursor::ReadInt64(int64_t* out) {
const uint64_t* out_data;
if (!ReadWords(1, &out_data)) {
return false;
}
if (out != nullptr) {
*out = static_cast<int64_t>(*out_data);
}
return true;
}
bool RecordCursor::ReadUint64(uint64_t* out) {
const uint64_t* out_data;
if (!ReadWords(1, &out_data)) {
return false;
}
if (out != nullptr) {
*out = *out_data;
}
return true;
}
bool RecordCursor::ReadDouble(double* out) {
static_assert(sizeof(double) == sizeof(uint64_t), "double must be 64 bits");
const uint64_t* out_data;
if (!ReadWords(1, &out_data)) {
return false;
}
if (out != nullptr) {
memcpy(out, out_data, sizeof(double));
}
return true;
}
bool RecordCursor::ReadWords(size_t num_words, const uint64_t** data_out) {
const uint64_t* end =
reinterpret_cast<const uint64_t*>(tbv_.data() + tbv_.length());
const uint64_t* data =
reinterpret_cast<const uint64_t*>(tbv_.data()) + word_index_;
// This addition is unconditional so that callers with data_out == nullptr do
// not necessarily have to check the return value, as future calls will fail
// due to attempting to read out of bounds.
word_index_ += num_words;
if (data + num_words <= end) {
if (data_out != nullptr) {
*data_out = data;
}
return true;
} else {
return false;
}
}
} // namespace fuchsia_trace_utils
} // namespace trace_processor
} // namespace perfetto